Changes between Version 4 and Version 5 of doc/tec/turbulence_parameterization


Ignore:
Timestamp:
Nov 20, 2018 9:46:17 AM (6 years ago)
Author:
gronemeier
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/turbulence_parameterization

    v4 v5  
    1 \varepsilon\varepsilon= Turbulence Paramereization =
     1= Turbulence Parameterization =
    22
    3 [[NoteBox(warn,Page is under construction!)]]
    4 
    5 Since r????, PALM can be operated as a RANS (Reynolds-averaged Navier-Stokes) model.
     3Since r2696, PALM can be operated as a RANS (Reynolds-averaged Navier-Stokes) model.
    64When running PALM as a RANS model, a different turbulence closure is used compared to the LES model where the turbulence kinetic energy (TKE) //e// is completely parameterized.
    75
     
    119which are described below.
    1210
     11Switching to the RANS parameterizaion is done by setting the namelist parameter //[/wiki/doc/app/inipar#rans_mode rans_mode] = .TRUE.//.
     12Selecting one of the available turbulence models is done via the namelist parameter [/wiki/doc/app/inipar#turbulence_closure turbulence_closure].
     13
     14
    1315== [=#tkel_model TKE-l model] ==
    1416
    15 The //TKE-l// model uses the following prognostic equation to calculate //e//:
     17The //TKE-l// model calculates the eddy diffusivities via the turbulence kinetic energy //e// and the mixing length //l//:
     18{{{
     19#!Latex
     20\begin{align*}
     21   K_\mathrm{m} &= c_0 \ l \ \sqrt{e}, \\
     22   K_\mathrm{h} &= \frac{K_\mathrm{m}}{\mathrm{Pr}},
     23\end{align*}
     24}}}
     25where //Pr// denotes the Prandtl number.
     26The model constant //c//,,0,, is set to 0.55 by default, but can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_c rans_const_c].
     27
     28The TKE is calculated using the following prognostic equation:
    1629{{{
    1730#!Latex
     
    2235      - \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z}
    2336      + K_\mathrm{e} \frac{\partial^2 e}{\partial x_j^2}
    24       - \varepsilon.
     37      - \varepsilon,
    2538\end{equation*}
    2639}}}
    27 where //K//,,m,,, //K//,,h,,, and //K//,,e,, are the eddy diffusivities of momentum and heat, and the diffusivity coefficient of the TKE, respectively, which are calculated via
     40where //K//,,e,, is defined as
    2841{{{
    2942#!Latex
    3043\begin{align*}
    31    K_\mathrm{m} &= c_0 \ l \ \sqrt{e}, \\
    32    K_\mathrm{h} &= \frac{K_\mathrm{m}}{\mathrm{Pr}}, \\
    3344   K_\mathrm{e} &= \frac{K_\mathrm{m}}{\sigma_e},
    3445\end{align*}
     
    3647with //σ//,,e,, = 1.
    3748This can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_sigma rans_const_sigma].
    38 Here, //Pr// and //l// denote the Prandtl number and mixing length, respectively.
    39 The model constant //c//,,0,, is set to 0.55 by default, but can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_c rans_const_c].
     49The dissipation rate //ε// of the TKE is calculated via
     50{{{
     51#!Latex
     52\begin{equation*}
     53   \varepsilon = c_0^3 \ e \ \frac{\sqrt{e}}{l}.
     54\end{equation*}
     55}}}
     56
    4057The mixing length is defined using the mixing length //l//,,B,, according to Blackadar (1962) and the Dyer-Businger function Φ,,m,,
    4158{{{
     
    4966}}}
    5067where //κ//, //f//, //U//,,g,,, //L//, and //z// denote the von-Karman constant, the Coriolis parameter, the geostrophic wind, the Monin-Obukhov length, and the height, respectively.
     68//l//,,wall,, defines an upper limit of the mixing length as the distance to the nearest solid surface (wall).
    5169
    52 The dissipation rate of the TKE, ε, is calculated via
    53 {{{
    54 #!Latex
    55 \begin{equation*}
    56    \varepsilon = c_0^3 \ e \ \frac{\sqrt{e}}{l}.
    57 \end{equation*}
    58 }}}
    5970
    6071== [=#tkee_model TKE-ε model] ==
    6172
    62 The TKE-ε model uses an additional prognostic equation to calculate the dissipation rate ε of the TKE:
     73The //TKE-ε// model calculates the eddy diffusivities via the turbulence kinetic energy //e// and the dissipation rate //ε// of the TKE:
     74{{{
     75#!Latex
     76\begin{align*}
     77   K_\mathrm{m} &= c_0^4 \ \frac{e^2}{\varepsilon}, \\
     78   K_\mathrm{h} &= \frac{K_\mathrm{m}}{\mathrm{Pr}},
     79\end{align*}
     80}}}
     81where //Pr// denotes the Prandtl number.
     82The model constant //c//,,0,, is set to 0.55 by default, but can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_c rans_const_c].
     83
     84The TKE is calculated using the same prognostic equation as the //TKE-l// model.
     85The dissipation rate //ε// is calculated via the following prognostic equation:
    6386{{{
    6487#!Latex
     
    6992      - c_3 \frac{\varepsilon}{e} \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z}
    7093      + K_\varepsilon \frac{\partial^2 \varepsilon}{\partial x_j^2}
    71       - c_2 \frac{\varepsilon^2}{e}.
     94      - c_2 \frac{\varepsilon^2}{e},
    7295\end{equation*}
    7396}}}
    74 The diffusivity coefficient //K//,,ε,, is defined as
     97where //K//,,ε,, is defined as
    7598{{{
    7699#!Latex
     
    81104with //σ//,,ε,, = 1.3.
    82105This can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_sigma rans_const_sigma].
     106The model constants //c//,,1,,, //c//,,2,,, and //c//,,3,, are set to 1.44, 1.92, and 1.44, respectively.
     107These values can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_c rans_const_c].