Version 4 (modified by gronemeier, 6 years ago) (diff)

--

\varepsilon\varepsilon= Turbulence Paramereization =

Page is under construction!

Since r????, PALM can be operated as a RANS (Reynolds-averaged Navier-Stokes) model. When running PALM as a RANS model, a different turbulence closure is used compared to the LES model where the turbulence kinetic energy (TKE) e is completely parameterized.

Two different turbulence models are available:

which are described below.

TKE-l model

The TKE-l model uses the following prognostic equation to calculate e:

\begin{equation*}
   \frac{\partial{e}}{\partial t} =
      - u_j\frac{\partial e}{\partial x_j}
      + K_\mathrm{m} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j}
      - \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z}
      + K_\mathrm{e} \frac{\partial^2 e}{\partial x_j^2}
      - \varepsilon.
\end{equation*}

where Km, Kh, and Ke are the eddy diffusivities of momentum and heat, and the diffusivity coefficient of the TKE, respectively, which are calculated via

\begin{align*}
   K_\mathrm{m} &= c_0 \ l \ \sqrt{e}, \\
   K_\mathrm{h} &= \frac{K_\mathrm{m}}{\mathrm{Pr}}, \\
   K_\mathrm{e} &= \frac{K_\mathrm{m}}{\sigma_e},
\end{align*}

with σe = 1. This can be altered via the namelist parameter rans_const_sigma. Here, Pr and l denote the Prandtl number and mixing length, respectively. The model constant c0 is set to 0.55 by default, but can be altered via the namelist parameter rans_const_c. The mixing length is defined using the mixing length lB according to Blackadar (1962) and the Dyer-Businger function Φm

\begin{align*}
   l &= \min\left( \frac{l_\mathrm{B}}{\Phi_\mathrm{m}}, l_\mathrm{wall} \right), \\
   l_\mathrm{B} &= \dfrac{\kappa z}{1+\frac{\kappa z}{\lambda}}, \\
   \lambda &= 2.7 \cdot 10^{-4} |U_g| f, \\
   \Phi_\mathrm{m} &= 1+5\frac{z}{L},
\end{align*}

where κ, f, Ug, L, and z denote the von-Karman constant, the Coriolis parameter, the geostrophic wind, the Monin-Obukhov length, and the height, respectively.

The dissipation rate of the TKE, ε, is calculated via

\begin{equation*}
   \varepsilon = c_0^3 \ e \ \frac{\sqrt{e}}{l}.
\end{equation*}

TKE-ε model

The TKE-ε model uses an additional prognostic equation to calculate the dissipation rate ε of the TKE:

\begin{equation*}
   \frac{\partial{\varepsilon}}{\partial t} =
      - u_j\frac{\partial \varepsilon}{\partial x_j}
      + c_1 \frac{\varepsilon}{e} K_\mathrm{m} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j}
      - c_3 \frac{\varepsilon}{e} \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z}
      + K_\varepsilon \frac{\partial^2 \varepsilon}{\partial x_j^2}
      - c_2 \frac{\varepsilon^2}{e}.
\end{equation*}

The diffusivity coefficient Kε is defined as

\begin{equation*}
   K_\varepsilon = \frac{K_\mathrm{m}}{\sigma_\varepsilon}
\end{equation*}

with σε = 1.3. This can be altered via the namelist parameter rans_const_sigma.