Changeset 1541 for palm/trunk


Ignore:
Timestamp:
Jan 28, 2015 11:14:05 AM (10 years ago)
Author:
kanani
Message:

update of tutorial files and figures

Location:
palm/trunk/TUTORIAL/SOURCE
Files:
19 added
8 deleted
2 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/exercise_topography.tex

    r1515 r1541  
    8787   \frametitle{Questions to be Answered}
    8888   \small
    89    \begin{itemize}
    90       \item<2->{Can you identify flow convergence / divergence patterns near the cube?}
     89   \begin{enumerate}
     90      \item<2->{Can you identify any interesting flow patterns around the cube and what do they tell us?}
    9191      \begin{itemize}
    9292         \item{What kind of output do you need to answer this?}
    9393      \end{itemize}
    94       \item<3->{How does the horizontally and temporally averaged momentum flux profile look
    95             like?}
     94      \item<3->{How do the horizontally and temporally averaged velocity and momentum flux profiles look like?}
    9695      \begin{itemize}
    9796         \item{How long should the averaging time interval be?}
    9897      \end{itemize}
    99       \item<4->{Is it really a large-eddy simulation?}
     98      \item<4->{Is it really a fully developed large-eddy simulation?}
    10099      \begin{itemize}
    101100         \item{Are the subgrid-scale fluxes much smaller than the resolved-scale fluxes?}
     
    103102               with time?}
    104103      \end{itemize}
    105    \end{itemize}
    106    \onslide<5->\textbf{Final question:}
    107    \begin{itemize}
    108       \item{Do the results of both runs agree?}
    109    \end{itemize}
     104      \item{\onslide<5->\textbf{Final question:} Do the results of both runs agree?}
     105   \end{enumerate}
    110106\end{frame}
    111107
     
    141137         \item{For constant bulk velocity, see \textbf{conserve\_volume\_flow}.}
    142138         \item{For Coriolis force, see \textbf{omega}.}
     139         \item{For neutral flow, see \textbf{neutral}.}
    143140      \end{itemize}
    144141      \item<6->{\textbf{Topography}}
     
    214211      \item<3->[2.]{Check your results to answer all questions – except the final question.}
    215212      \item<4->[3.]{After this run has finished, use ncview, ncdump etc. to check the precise
    216                location of the building (look at 2D array zusi that is contained in 2D xy
     213               location of the building (look at 2D array \textit{zusi} that is contained in 2D xy
    217214               cross-sections and 3D volume data).}
    218215      \item<5->[4.]{Use this information to manually create the ''raster\_topo'' file.}
     
    249246% Folie 9
    250247\begin{frame}
    251    \frametitle{Flow convergence / divergence (I)}
     248   \frametitle{Question 1: Flow patterns (I)}
     249   \par\smallskip
     250   \footnotesize
     251   \textbf{Horizontal cross sections of 1-h averaged velocity components \textit{u} and \textit{v}}
    252252   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/u_xy.eps} \hspace{0.8cm}
    253253   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/v_xy.eps}
     
    256256% Folie 10
    257257\begin{frame}
    258    \frametitle{Flow convergence / divergence (II)}
     258   \frametitle{Question 1: Flow patterns (II)}
     259   \par\smallskip
     260   \footnotesize
     261   \textbf{Horizontal and streamwise vertical cross sections of 1-h averaged \\ velocity component \textit{w}}
     262   \par\smallskip
    259263   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/w_xy.eps} \hspace{0.8cm}
    260264   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/w_xz.eps}
     
    263267% Folie 11
    264268\begin{frame}
    265    \frametitle{Streamlines}
     269   \frametitle{Question 1: Flow patterns (III)}
     270   \par\smallskip
     271   \footnotesize
     272   \textbf{Streamlines (1-h average) for the same cross sections as seen in Frame 10 \\ for the \textit{w}-velocity}
     273   \par\smallskip
    266274   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/streamlines/streamlines_xy.eps} \hspace{0.8cm}
    267275   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/streamlines/streamlines_xz.eps} \hspace{0.8cm}
     
    271279% Folie 12
    272280\begin{frame}
    273    \frametitle{Vertical profiles of $\overline{w'u'}$, $\overline{w'v'}$}
     281   \frametitle{Question 2: Velocity and momentum flux profiles}
     282   \par\smallskip
     283   \footnotesize
     284   \textbf{Vertical profiles of 1-h and horizontally averaged \textit{u}-, \textit{v}- and \textit{w}-velocity}
     285   \par\smallskip
     286   \includegraphics[width=\textwidth]{exercise_topography_figures/profiles/profile_uvw.png}
     287\end{frame}
     288
     289% Folie 13
     290\begin{frame}
     291   \frametitle{Question 2: Velocity and momentum flux profiles}
     292   \par\smallskip
     293   \footnotesize
     294   \textbf{Vertical profiles of 1-h and horizontally averaged total turbulent momentum \\ fluxes $wu$ and $wv$}
     295   \par\smallskip
    274296   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/profiles/wu_time_pr.eps} \hspace{0.8cm}
    275297   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/profiles/wv_time_pr.eps}
    276298\end{frame}
    277299
    278 % Folie 13
    279 \begin{frame}
    280    \frametitle{LES? - Fluxes}
     300% Folie 14
     301\begin{frame}
     302   \frametitle{Question 3: LES? - Fluxes}
     303   \par\smallskip
     304   \footnotesize
     305   \textbf{Vertical profiles of 1-h and horizontally averaged momentum fluxes: total ($wu$), resolved-scale ($w^{*}u^{*}$) and subgrid-scale ($w''u''$) fluxes}
     306   \par\smallskip
    281307   \begin{center}
    282308      \includegraphics[width=0.6\textwidth]{exercise_topography_figures/profiles/wu_comp_pr.eps}
     
    284310\end{frame}
    285311
    286 % Folie 14
    287 \begin{frame}
    288    \frametitle{LES? - Time Series (I)}
     312% Folie 15
     313\begin{frame}
     314   \frametitle{Question 3: LES? - Time Series (I)}
     315   \par\smallskip
     316   \footnotesize
     317   \textbf{Total kinetic energy \textit{E} of the flow and maximum \textit{u}-velocity in the model domain}
     318   \par\smallskip
    289319   \begin{center}
    290320      \includegraphics[width=0.95\textwidth]{exercise_topography_figures/timeseries/E_ts.eps} \\
     
    293323\end{frame}
    294324
    295 % Folie 15
    296 \begin{frame}
    297    \frametitle{LES? - Time Series (II)}
     325% Folie 16
     326\begin{frame}
     327   \frametitle{Question 3: LES? - Time Series (II)}
     328   \par\smallskip
     329   \footnotesize
     330   \textbf{Maximum \textit{v}- and \textit{w}-velocity in the model domain}
     331   \par\smallskip
    298332   \begin{center}
    299333      \includegraphics[width=\textwidth]{exercise_topography_figures/timeseries/vmax_ts.eps} \\
     
    302336\end{frame}
    303337
     338\subsection{Answers}
     339
     340% Folie 17
     341\begin{frame}
     342   \frametitle{Answer to question 1 (I)}
     343   \footnotesize
     344   \textbf{Can you identify any interesting flow patterns around the cube and what do they tell us?}
     345   \par\smallskip
     346   \footnotesize
     347   The 1-h-averaged near-surface horizontal velocity components \textit{u} and \textit{v} show (see Frame 9):
     348   \scriptsize
     349   \begin{itemize}
     350      \item{reversed streamwise flow in the gap between leeward and windward cube wall,}
     351      \item{diverging spanwise flow in the gap with nearly same magnitude as reversed spanwise flow.}
     352   \end{itemize}
     353   \par\smallskip
     354   \footnotesize
     355   The \textit{w}-velocity fields complete the picture (see Frame 10), we see:
     356   \scriptsize
     357   \begin{itemize}
     358      \item{descending mean flow near the windward cube wall,}
     359      \item{ascending mean flow near the leeward cube wall.}
     360   \end{itemize}
     361\end{frame}
     362
     363% Folie 18
     364\begin{frame}
     365   \frametitle{Answer to question 1 (II)}
     366   \footnotesize
     367   \textbf{Can you identify any interesting flow patterns around the cube and what do they tell us?}
     368   \par\smallskip
     369   \footnotesize
     370   Streamlines in Frame 11 show an overall view of the mean horizontal (left; near surface) and the mean streamwise-vertical (right; center of cube wall) flow:
     371   \scriptsize
     372   \begin{itemize}
     373    \item{left: in the gap between leeward and windward cube wall, streamlines are directed in opposite direction to the prescribed flow direction, and they diverge in the spanwise direction,}
     374    \item{left: starting at the corners of the leeward cube wall, these diverging streamlines converge with the streamlines of the flow forced around the side walls of the cube,}
     375    \item{right: above the cube roof, the mean flow is horizontal and directed as prescribed,}
     376    \item{right: in the streamwise gap, we find a rotor-like vortex, explaining the mean downward motion in the largest part of the gap, the upward motion at the leeward cube wall, and the reversed streamwise flow, covering almost fully the gap dimensions.}
     377   \end{itemize}
     378   \par\smallskip
     379   \footnotesize
     380   \textbf{Note:} Flow patterns can change significantly when the size of the gaps between buildings changes (see e.g. Oke, T. R. \textit{Street Design and Urban Canopy Layer Climate}. Energy and Buildings, 11 (1988)).
     381\end{frame}
     382
     383% Folie 19
     384\begin{frame}
     385   \frametitle{Answer to question 2 (I)}
     386   \footnotesize
     387   \textbf{How do the horizontally and temporally averaged velocity and momentum flux profiles look like?}
     388   \par\smallskip
     389   \footnotesize
     390   Frame 12 shows 1-h and horizontally averaged vertical profiles of velocity components \textit{u}, \textit{v} and \textit{w}:
     391   \scriptsize
     392   \begin{itemize}
     393      \item{\textit{u}: Channel flow causes zero velocity at bottom and top domain wall. Upper domain half: Velocities increase with distance from upper channel wall, peaks at around 60m, and decreases quickly closer towards cube top. Lower domain half: \textit{u} further decreases towards bottom channel wall, due to roughness of the wall, and \textit{u} is much smaller here than in upper domain half, due to presence of cube.}
     394      \item{\textit{v}: In the horizontal average, \textit{v}-component is much smaller than \textit{u}, and it fluctuates around zero. Time average should be increased to further eliminate these fluctuations. Flow is forced by \textit{u}-component}, and cube does not induce significant \textit{v} in horizontal mean.
     395      \item{\textit{w}: Zero above, small negative values below cube top. In fully developed LES with sufficient domain size and averaging, horizontally averaged \textit{w} profile should be zero.}
     396   \end{itemize}
     397\end{frame}
     398
     399% Folie 20
     400\begin{frame}
     401   \frametitle{Answer to question 2 (II)}
     402   \footnotesize
     403   \textbf{How do the horizontally and temporally averaged velocity and momentum flux profiles look like?}
     404   \par\smallskip
     405   \footnotesize
     406   Frame 13 shows 1-h and horizontally averaged vertical profiles of \textit{u} and \textit{v} components of total turbulent vertical momentum flux, for two ouput times:
     407   \scriptsize
     408   \begin{itemize}
     409      \item{\textit{wv} is one order of magnitude smaller than \textit{wu} (flow is forced with the \textit{u}-component), hence, the \textit{wv} profile is not smooth, it strongly fluctuates with heigt and time.}
     410      \item{In contrast, the \textit{wu} profile is smooth and barely changes from one 1-h average to the next, indicating sufficient averaging time.}
     411   \end{itemize}
     412\end{frame}
     413
     414% Folie 21
     415\begin{frame}
     416   \frametitle{Answer to question 2 (III)}
     417   \footnotesize
     418   \textbf{How does the horizontally and temporally averaged momentum flux profile look like?}
     419   \par\smallskip
     420   \scriptsize
     421   \begin{itemize}
     422      \item{This \textit{wu} profile of channel flow around a cube strongly deviates from the typical \textit{wu profile} in a neutral obstacle-free atmospheric boundary layer (ABL). In the latter, \textit{wu} takes largest negative values at the surface and increases towards zero at the top the boundary layer. This means, the flow is decelerated everywhere within the ABL due to surface friction. In the cube-flow, the \textit{wu} profile can be split into three regions:}
     423      \begin{itemize}
     424       {\scriptsize
     425         \item{z=40 to 80m: linear increase with height, i.e. the flow is decelerated in this part. Up to 65m, \textit{wu} is negative, i.e. the roughness of the cube top causes the deceleration. Above, \textit{wu} is positive, i.e. the flow is decelerated due to the no-slip boundary condition at the domain top.}
     426         \item{z=15 to 40m: decreasing with height, i.e. the flow is accelerated here, which can be attributed to the above-cube flow.}
     427         \item{z=0 to 15m: increasing with height, meaning flow deceleration, due to surface friction.}}
     428      \end{itemize}
     429   \end{itemize}
     430   \par\bigskip
     431   \scriptsize
     432   \textbf{Note: Such momentum flux profiles (\textit{wu}) are typical for urban and vegetation canopy flows.}
     433\end{frame}
     434
     435
     436% Folie 22
     437\begin{frame}
     438   \frametitle{Answer to question 3}
     439   \footnotesize
     440   \textbf{Is it really a fully developed large-eddy simulation?}
     441   \par\smallskip
     442   \scriptsize
     443   \begin{itemize}
     444      \item{Frame 14: Except near the surface and at the domain top, subgrid-scale momentum flux \textit{w``u''} is one order of magnitude smaller than the resolved-scale counterpart \textit{w*u*}, hence we can conclude, that the  grid spacing is sufficiently small in order to resolve the energy-containing eddies within this neutral flow around a solid cube.}
     445      \item{Frame 15: Timeseries of the kinetic energy \textit{E} and the maximum \textit{u} value in the flow indicate that two hours of simulation time are sufficient for the spin up of the model. Both quantities level out towards the end of the simulation.}
     446      \item{Frame 16: The temporal evolution of maximum \textit{v} and \textit{w} values indicates that the flow shows turbulent features, since both components frequently change signs.}
     447   \end{itemize}
     448\end{frame}
     449
    304450\end{document}
  • palm/trunk/TUTORIAL/SOURCE/topography.tex

    r1515 r1541  
    2222\usepackage{pdfcomment}
    2323\usepackage{xcolor}
     24\usepackage{tabto}
    2425
    2526\institute{Institute of Meteorology and Climatology, Leibniz UniversitÀt Hannover}
     
    5455\end{frame}
    5556
    56 \section{Topography}
    57 \subsection{Topography}
    5857
    5958% Folie 2
     
    6261   \begin{itemize}
    6362      \item{Purpose of topography in PALM}
    64       \item{Definition}
    6563      \item{Realization}
    6664      \begin{itemize}
     65         \item{Definition}
    6766         \item{Physical concept}
    6867         \item{Technical / numerical implementation}
    69       \end{itemize}
    70       \item{Strengths and limitations}
     68         \item{Strengths and limitations}
     69      \end{itemize}
    7170      \item{Control parameters}
    7271      \begin{itemize}
     
    8180   \end{itemize}
    8281\end{frame}
     82
     83\section{Purpose}
     84\subsection{Purpose}
    8385
    8486% Folie 3
     
    98100\end{frame}
    99101
     102\section{Realization}
     103\subsection{Realization}
     104
    100105% Folie 4
    101106\begin{frame}
    102107   \frametitle{Definition}   
    103108   \begin{itemize}
    104       \item{The topography definition in PALM covers solid, impermeable, fixed flow obstacles with a volume of at least one grid box.}
    105       \par\bigskip
    106       \item{The following qualifies as topography: \textcolor{green!50!black!100}{\checkmark}}     
     109      \item{Topography in PALM covers solid, impermeable, fixed flow obstacles with a volume of at least one grid box.}
     110      \par\bigskip
     111      \item{Following qualifies as topography: \textcolor{green!50!black!100}{\checkmark}}     
    107112      \begin{itemize}
    108113         \footnotesize
    109          \item{Human-made obstacles (buildings)}
     114         \item{Artificial obstacles (buildings)}
    110115         \item{Natural obstacles (hills, mountains)}
    111116      \end{itemize}
     
    117122                                                                     \> canopy model, local roughness length  \end{tabbing} }
    118123         \item{Small obstacles (signposts)}
    119          \item{Moving obstacles (vehicles)}                                                   
     124         \item{Moving obstacles (vehicles, wind turbine rotors)}                                                   
    120125      \end{itemize}
    121126   \end{itemize}
     
    134139   \end{columns}
    135140   \begin{columns}[c]
    136    \column{0.6\textwidth}
     141   \column{0.4\textwidth}
    137142      \begin{itemize}
    138143         \item{Grid boxes are}
    139144         \begin{itemize}
    140             \item{\begin{minipage}{0.1\textwidth}
    141                      \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small1.png}
    142                   \end{minipage}
    143                   \begin{minipage}{0.5\textwidth} \scriptsize
     145            \item{\begin{minipage}{0.4\textwidth} \scriptsize
    144146                     \par\medskip
    145                      100\% free fluid, \\
     147                     100\% \\free fluid, \\
    146148                  \end{minipage}}
    147             \item{\begin{minipage}{0.1\textwidth}
    148                      \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png}
    149                   \end{minipage}
    150                   \begin{minipage}{0.5\textwidth} \scriptsize
    151                      100\% fluid adjacent to an obstacle, or
     149            \item{\begin{minipage}{0.4\textwidth} \scriptsize
     150                     100\% \\fluid adjacent to an obstacle, or
    152151                  \end{minipage}}     
    153             \item{\begin{minipage}{0.1\textwidth}
    154                      \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small3.png}
    155                   \end{minipage}
    156                   \begin{minipage}{0.5\textwidth} \scriptsize
     152            \item{\begin{minipage}{0.4\textwidth} \scriptsize
    157153                     \par\medskip
    158154                     100\% obstacle. \\
    159155                  \end{minipage}}             
    160156         \end{itemize}
     157      \end{itemize}
     158   \column{0.6\textwidth}
     159      \vspace{-2.cm}\includegraphics[angle=90,width=.9\textwidth]{topography_figures/physical_concept.eps}
     160   \end{columns}
     161   \begin{columns}[c]
     162   \column{1.\textwidth}
     163      \begin{itemize}
    161164         \item{No-slip boundary condition}
    162165         \begin{itemize}
    163             \item{\scriptsize Wall-normal velocity component is zero at obstacle surface \textbf{\textcolor{blue}{---------}}}
     166            \item{\scriptsize Wall-normal velocity component is zero at obstacle surface}
    164167         \end{itemize}
    165168         \par\bigskip
    166          \item{\begin{minipage}{0.75\textwidth}  \scriptsize
    167                   Local surface layer for the first grid box \\adjacent to each obstacle surface
     169         \item{\begin{minipage}{0.8\textwidth}  \scriptsize
     170                  Local surface layer for the first grid box adjacent to each obstacle surface
    168171               \end{minipage}
    169172               \begin{minipage}{0.1\textwidth}
    170                   \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png}
     173                  \includegraphics[width=0.35\textwidth]{topography_figures/physical_concept_small.eps}
    171174               \end{minipage}}
    172175         \par\smallskip
     
    175178         \end{itemize}
    176179      \end{itemize}
    177    \column{0.4\textwidth}
    178       \includegraphics[width=\textwidth]{topography_figures/physical_concept.png}
    179180   \end{columns}
    180181\end{frame}
     
    183184\begin{frame}
    184185   \frametitle{Realization - \\ Numerical /Technical Implementation (I)}
     186   \small
     187   \begin{columns}[c]
     188   \column{0.65\textwidth}
     189      \begin{itemize}
     190         \item{Obstacles must be surface-mounted}
     191         \item{Overhanging structures \textbf{\textcolor{blue}{$\times$}}, holes \textbf{\textcolor{red}{$\times$}} etc. are not permitted.}
     192         \begin{itemize}
     193            \footnotesize
     194            \item{This simplification allows extra performance optimization by reducing the 3D obstacle structure to a "'2.5D"' structure.}
     195            \item{"'2.5D"' means that each surface grid cell is assigned only one building-height value (in m).}
     196            \item{This conforms to the "'2.5D"' format of Digital Elevation Models (DEM).}
     197         \end{itemize}
     198      \end{itemize}     
     199   \column{0.3\textwidth}
     200      \par\medskip
     201      \includegraphics[width=1.\textwidth]{topography_figures/technical_implementation.eps}
     202   \column{0.05\textwidth}
     203      \vspace*{2cm}\textcolor{red}{$\times$}
     204      \textcolor{green!50!black!100}{\checkmark}
     205   \end{columns}
     206\end{frame}
     207
     208% Folie 7
     209\begin{frame}
     210   \frametitle{Realization - \\ Numerical /Technical Implementation (II)}
    185211   \small
    186212   \begin{columns}[c]
    187213   \column{0.5\textwidth}
    188214      \begin{itemize}
    189          \item{Obstacles must be surface-mounted}
    190          \item{Overhanging structures \textcolor{blue}{$\times$}, holes \textcolor{red}{$\times$} etc. are not permitted.}
    191          \begin{itemize}
    192             \footnotesize
    193             \item{This simplification allows extra performance optimization by reducing the 3D obstacle dimension to a "'2.5D"' dimension.}
    194             \item{"'2.5D"' means that each horizontal grid cell is assigned only one height level.}
    195             \item{This conforms to the "'2.5D"' format of Digital Elevation Models (DEM).}
    196          \end{itemize}
    197       \end{itemize}     
    198    \column{0.4\textwidth}
    199       \par\medskip
    200       \includegraphics[width=1.1\textwidth]{topography_figures/technical_implementation.png}
    201    \end{columns}
    202 \end{frame}
    203 
    204 % Folie 7
    205 \begin{frame}
    206    \frametitle{Realization - \\ Numerical /Technical Implementation (II)}
    207    \begin{columns}[c]
    208    \column{0.4\textwidth}
    209       \footnotesize     
    210       The location of the wall-normal velocity component defines the location of the impermeable obstacle surface. \\
    211       \par\smallskip
    212       Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function.
    213       \par\bigskip
    214       $\bullet$ scalars \\
    215       \textcolor{red}{$\bullet$ u (staggered)} \\
    216       \textcolor{green!40!black!100}{\textbf{+} v (staggered)}
    217 %      \includegraphics[width=0.4\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small1.png} \\
    218 %      \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small2.png} \\
    219 %      \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small3.png}
    220    \column{0.6\textwidth}
    221       \includegraphics<1|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_1.png}
    222       \includegraphics<2|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_2.png}
    223       \includegraphics<3|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_3.png}
    224       \includegraphics<4|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_4.png}
    225       \includegraphics<5|handout:1>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_5.png}
     215         \item{The location of the wall-normal velocity component defines the location of the impermeable obstacle surface}
     216         \item{Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function}
     217      \end{itemize}
     218      \par\bigskip
     219      \hspace{1cm}$\bullet$ scalars \\
     220      \hspace{1cm}\textcolor{red}{$\bullet$ u (staggered)} \\
     221      \hspace{.92cm}\textcolor{green!40!black!100}{\textbf{+} v (staggered)}
     222   \column{0.5\textwidth}
     223      \includegraphics[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_5.png}
    226224   \end{columns}
    227225\end{frame}
     
    234232   \begin{itemize}
    235233      \item{In order to process topography from external data sources, the data must be made available
    236             to PALM as a rastered ASCII file, e.g. example\_topo.}
    237       \item{The layout of example\_topo must conform to the computational domain size and to the grid size dx and dy.}
    238       \item{The rastered height data of example\_topo are given in m above ground and do not need to match
     234            to PALM as a rastered ASCII file:}
     235      \begin{itemize}
     236         \item{see e.g. {\tt trunk/EXAMPLES/topo\_file/example\_topo\_file\_topo}.}
     237      \end{itemize}
     238      \item{The layout of this topography file must conform to the computational domain size and to the grid size {\tt dx} and {\tt dy}.}
     239      \item{The rastered height data of this topo file are given in m above ground and do not need to match
    239240            the vertical grid, since they will be interpolated, if required.}
    240241      \par\bigskip
     
    251252   \frametitle{Realization – \\ Numerical / Technical Implementation (IV)} 
    252253   \small
    253    \textbf{Potential issue}
    254    \begin{itemize}
    255       \item{Load imbalance}
    256       \begin{itemize}
    257          \item{Leads to inefficient parallelization: \dq fast\dq CPU(s) must wait for \dq slow\dq CPU(s)}
    258          \item{Occurs if the CPUs do not share the same workload}
    259          \begin{itemize}
    260             \item{E.g. if topography is significantly heterogeneous in a large volume fraction of the computational domain}
    261          \end{itemize}
    262       \end{itemize}     
    263    \end{itemize}
     254   \textbf{Potential issue: Load imbalance}
     255   \begin{columns}[c]
     256   \column{0.55\textwidth}
     257      \begin{itemize}
     258         \item{Since prognostic equations are not calculated inside buildings, \\ \textbf{load imbalance} might occur, if topography is heterogeneously distributed among the subdomains.}
     259         \begin{itemize}
     260          \item{This means \dq fast\dq CPU(s) must wait for \dq slow\dq CPU(s), leading to inefficient parallelization.}
     261         \end{itemize}
     262      \end{itemize}
     263   \column{0.45\textwidth}
     264      \includegraphics[angle=90,width=\textwidth]{topography_figures/load_imbalance.eps}
     265   \end{columns}
    264266\end{frame}
    265267
     
    273275      \item[+]{Conforms with \dq 2.5D\dq format of Digital Elevation Models (DEM)}
    274276      \par\bigskip
    275       \item[-]{Obstacles must be surface-mounted}
    276       \item[-]{Grid boxes can only be 100\% fluid or 100\% obstacle \\ \par\smallskip
    277               \begin{footnotesize} Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function, which can modify the real obstacle size or the orientation of the obstacle faces\end{footnotesize}}
    278       \item[-]{Overhanging structures, holes etc. are not permitted due to the \dq 2.5D\dq format}
     277      \item[$-$]{Obstacles must be surface-mounted}
     278      \item[$-$]{Overhanging structures, holes etc. are not permitted due to the \dq 2.5D\dq format}
     279      \item[$-$]{Grid boxes can only be 100\% fluid or 100\% obstacle \\ \par\smallskip
     280                \begin{footnotesize} Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function, which can modify the real obstacle size or the orientation of the obstacle faces\end{footnotesize}}
    279281   \end{itemize}
    280282\end{frame}
     
    284286   \frametitle{Take a Short Break... Urban Flow Visualization}
    285287   \begin{columns}[c]
    286    \column{0.42\textwidth}
    287       \includegraphics<1>[width=\textwidth]{topography_figures/hannover_1.png}
    288       \href{.html}{\includegraphics<2>[width=\textwidth]{topography_figures/hannover_2.png}}
    289    \column{0.58\textwidth}
    290       Set-up: neutral boundary layer
    291       \begin{itemize}
    292          \item{Particle = passive tracer}
    293          \item{Colour $\sim$ particle height}
    294          \item{Tail length ~ particle velocity}         
    295       \end{itemize}     
    296       \par\bigskip
    297       \begin{itemize}
    298          \item{Flow past office tower:}
    299          \begin{itemize}
    300             \item{initially laminar: not yet an LES}
    301             \item{intermittent: different episodes}
    302          \end{itemize}
    303          \item{Broad street canyon flow:}
    304          \begin{itemize}
    305             \item{channeling}
    306             \item{low-level upstream flow}
     288   \column{0.5\textwidth}
     289      \includegraphics<1->[width=.8\textwidth]{topography_figures/hannover_1.png}
     290      \par\smallskip
     291      \href{.html}{\includegraphics<2->[width=.8\textwidth]{topography_figures/hannover_2.png}}
     292   \column{0.5\textwidth}
     293      \par\smallskip
     294      \footnotesize
     295      \uncover<1->{Set-up: neutral boundary layer}
     296      \begin{itemize}
     297         \uncover<1->{\item{Particle = passive tracer}}
     298         \uncover<1->{\item{Colour $\sim$ particle height}}
     299         \uncover<1->{\item{Tail length ~ particle velocity}}         
     300      \end{itemize}
     301      \begin{itemize}
     302         \uncover<2>{\item{Flow past office tower:}}
     303         \begin{itemize}
     304            \uncover<2>{\item{initially laminar: not yet an LES}}
     305            \uncover<2>{\item{intermittent: different episodes}}
     306         \end{itemize}
     307         \uncover<2>{\item{Broad street canyon flow:}}
     308         \begin{itemize}
     309            \uncover<2>{\item{channeling}}
     310            \uncover<2>{\item{low-level upstream flow}}
    307311         \end{itemize}
    308312      \end{itemize}
     
    310314\end{frame}
    311315
     316\section{Control parameters}
     317\subsection{Control parameters}
     318
    312319% Folie 12
    313320\begin{frame}
    314321   \frametitle{Required Topography Control Parameters}
    315     \footnotesize
    316    {\tt topography =}
    317    \begin{itemize}
    318       \item{{\tt 'flat'} \hspace{3cm} no topography (default)}
    319       \item{{\tt 'single\_building'} \hspace{1.2cm} \textcolor{red}{generic} single building}
    320       \item{{\tt 'single\_street\_canyon'} \hspace{0.4cm} \textcolor{red}{generic} single quasi-2D street canyon}
    321       \item{{\tt 'read\_from\_file'} \hspace{1.4cm} \textcolor{blue}{rastered} ASCII file, e.g. {\tt example\_topo}}
    322       \item{any other string \hspace{1.8cm} processed by user subroutine user\_init\_grid}
    323    \end{itemize}
    324    {\tt topography\_grid\_convention =}
    325    \begin{itemize}
    326       \item{{\tt '\textcolor{red}{cell\_edge}'} \hspace{2.2cm} default for \textcolor{red}{generic} topography: \textcolor{red}{$\leftrightarrow$}}
    327       \item{{\tt '\textcolor{blue}{cell\_center}'} \hspace{1.9cm} default for \textcolor{blue}{rastered} topography: \textcolor{blue}{$\bigcirc$ $\leftrightarrow$}}
    328    \end{itemize}
    329    \includegraphics<1|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_1.png}
    330    \includegraphics<2|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_2.png}
    331    \includegraphics<3|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_3.png}
    332    \includegraphics<4|handout:1>[width=0.5\textwidth]{topography_figures/control_parameters_4.png}
     322    \scriptsize
     323   \uncover<1->{{\tt topography =}}
     324   \begin{itemize}
     325      \uncover<1->{\item{{\tt 'flat'}                   \tabto{4cm} no topography (default)}}
     326      \uncover<1->{\item{{\tt 'single\_building'}       \tabto{4cm} \textcolor{red}{generic} single building}}
     327      \uncover<1->{\item{{\tt 'single\_street\_canyon'} \tabto{4cm} \textcolor{red}{generic} single quasi-2D street canyon}}
     328      \uncover<1->{\item{{\tt 'read\_from\_file'}       \tabto{4cm} \textcolor{blue}{rastered} ASCII file \\ \tabto{4cm}(e.g. {\tt trunk/EXAMPLES/topo\_file})}}
     329      \uncover<1->{\item{any other string               \tabto{4cm} processed by user subroutine user\_init\_grid}}
     330   \end{itemize}
     331   \uncover<2->{{\tt topography\_grid\_convention =}}
     332   \begin{itemize}
     333      \uncover<2->{\item{{\tt '\textcolor{red}{cell\_edge}'}    \tabto{4cm} default for \textcolor{red}{generic} topography: \textcolor{red}{$\leftrightarrow$}}}
     334      \uncover<3->{\item{{\tt '\textcolor{blue}{cell\_center}'} \tabto{4cm} default for \textcolor{blue}{rastered} topography: \textcolor{blue}{$\bigcirc$ $\leftrightarrow$}}}
     335   \end{itemize}
     336   \includegraphics<2|handout:0>[width=0.4\textwidth]{topography_figures/control_parameters_2.png}
     337   \includegraphics<3|handout:1>[width=0.4\textwidth]{topography_figures/control_parameters_4.png}
    333338\end{frame}
    334339
     
    337342   \frametitle{Optional Topography Control Parameters (I)}
    338343   \small
    339    \textbf{Generic topography}   
    340    \scriptsize
    341    \begin{itemize}
    342       \item{topography = {\tt 'single\_building'}}
    343       \begin{itemize}
    344          \scriptsize
    345          \item{building\_height = 50.0 \hspace{0.67cm} height of the building}
    346          \item{building\_length\_x = 50.0 \hspace{0.43cm} length of the building in x-direction}
    347          \item{building\_length\_y = 50.0 \hspace{0.43cm} length of the building in y-direction}
    348          \item{building\_wall\_left \hspace{1.4cm} (default is building centered in x-direction)}
    349          \item{building\_wall\_south \hspace{1.13cm} (default is building centered in y-direction)}
    350       \end{itemize}
    351       \item{topography = {\tt 'single\_street\_canyon'}}
    352       \begin{itemize}
    353          \scriptsize
    354          \item{canyon\_height = 50.0 \hspace{0.45cm} height of the canyon \\
    355                and}
    356          \item{canyon\_width\_x = 50.0 \hspace{0.3cm} implies canyon axis orientation in y-direction}
    357          \item{canyon\_wall\_left \hspace{1.17cm} (default is canyon centered in x-direction) \\
    358                or}
    359          \item{canyon\_width\_y = 50.0 \hspace{0.3cm} implies canyon axis orientation in x-direction}
    360          \item{canyon\_wall\_south \hspace{0.9cm} (default is canyon centered in y-direction)}
    361       \end{itemize}
    362    \end{itemize}
     344   \textbf{Generic topography}
     345   \begin{figure}
     346      \centering\includegraphics[width=.8\textwidth]{topography_figures/single_building_parameters.eps}
     347   \end{figure}
    363348\end{frame}
    364349
     
    366351\begin{frame}
    367352   \frametitle{Optional Topography Control Parameters (II)}
     353   \small
     354   \textbf{Generic topography}
     355   \begin{figure}
     356      \centering\includegraphics[width=.8\textwidth]{topography_figures/single_canyon_parameters.eps}
     357   \end{figure}
     358\end{frame}
     359
     360% Folie 15
     361\begin{frame}
     362   \frametitle{Optional Topography Control Parameters (III)}
    368363   \scriptsize   
    369364   \textbf{Rastered topography}\\
    370    \begin{minipage}{0.7\textwidth}
     365   \begin{minipage}{0.8\textwidth}
    371366      \begin{itemize}
    372367         \scriptsize
     
    378373      \end{itemize}
    379374   \end{minipage}
    380    \begin{minipage}{0.2\textwidth}
     375   \begin{minipage}{0.15\textwidth}
    381376      \includegraphics[width=0.5\textwidth]{topography_figures/optional_control_parameters_1.png}
    382377   \end{minipage}
    383378   \begin{center}
    384       \includegraphics[width=0.85\textwidth]{topography_figures/optional_control_parameters_2.png}
     379      \includegraphics[width=0.75\textwidth]{topography_figures/optional_control_parameters_2.png}
    385380   \end{center}
    386381   \begin{itemize}
    387382      \item[]{}
    388383      \begin{itemize}
    389          \scriptsize         
    390          \item{layout must conform to domain size and grid size dx and dy.}
    391          \item{height data}
    392          \begin{itemize}
    393             \scriptsize
    394             \item{in m above ground (INTEGER or REAL)}
    395             \item{do not need to match the vertical grid}
    396          \end{itemize}
    397       \end{itemize}
    398    \end{itemize}
    399 \end{frame}
    400 
    401 % Folie 15
    402 \begin{frame}
    403    \frametitle{Optional Topography Control Parameters (III)}
     384         \scriptsize
     385         \item{ASCII file {\tt example\_topo} must be available as INPUT file, like {\tt example\_p3d} ({\tt JOBS/example/INPUT/})}     
     386         \item{layout must conform to domain size and grid size {\tt dx} and {\tt dy}}
     387         \item{height data in m above ground (INTEGER or REAL) do not need to match the vertical grid}
     388      \end{itemize}
     389   \end{itemize}
     390\end{frame}
     391
     392% Folie 16
     393\begin{frame}
     394   \frametitle{Optional Topography Control Parameters (IV)}
    404395   \small
    405396   \textbf{Rastered topography}
     
    417408\end{frame}
    418409
    419 % Folie 16   
     410% Folie 17   
    420411\begin{frame}
    421412   \frametitle{General Control Parameters (I): Suitable Driving Methods}
     
    460451\end{frame}
    461452
    462 % Folie 17
     453% Folie 18
    463454\begin{frame}
    464455   \frametitle{General Control Parameters (II): Initialization}
     
    500491\end{frame}
    501492
    502 % Folie 18
     493% Folie 19
    503494\begin{frame}
    504495   \frametitle{General Control Parameters (III): Boundary Conditions}
     
    524515\end{frame}
    525516
    526 % Folie 19
     517% Folie 20
    527518\begin{frame}
    528519   \frametitle{General Control Parameters (IV): Pressure Solver}
     
    544535\end{frame}
    545536
    546 % Folie 20
     537\section{Data output/ Scenarios}
     538\subsection{Data output/ Scenarios}
     539
     540% Folie 21
    547541\begin{frame}
    548542   \frametitle{Data Analysis / Output – Some Considerations (I)}
     
    580574\end{frame}
    581575
    582 % Folie 21
     576% Folie 22
    583577\begin{frame}
    584578   \frametitle{Your Responsibility and Contribution}
     
    598592\end{frame}
    599593
    600 % Folie 22
     594% Folie 23
    601595\begin{frame}
    602596   \frametitle{Some recent examples of topography/building applications with PALM}
     
    645639\end{frame}
    646640
    647 % Folie 22
     641% Folie 24
    648642\begin{frame}
    649643   \Large
     
    651645\end{frame}
    652646
    653 % Folie 23
     647% Folie 25
    654648\begin{frame}
    655649   \frametitle{Set-up Scenario: Single Street Canyon (I)}
     
    670664\end{frame}
    671665
    672 % Folie 24
     666% Folie 26
    673667\begin{frame}
    674668   \frametitle{Set-up Scenario: Single Street Canyon (II)}
     
    680674\end{frame}
    681675
    682 % Folie 25
     676% Folie 27
    683677\begin{frame}
    684678 \begin{tikzpicture}[remember picture, overlay]
     
    686680         {%
    687681         \begin{tikzpicture}[remember picture, overlay]
    688             \uncover<1>{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_1.png}};}
    689             \uncover<2->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_2.png}};}
    690             %\uncover<3->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_3.png}};}
    691             \uncover<3->{\node at (-3.5,-0.2) {\includegraphics[width=0.48\textwidth]{topography_figures/scenario_ssc_example_4.png}};}
    692             \uncover<4->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_ssc_example_5.png}};}
     682            \uncover<1>{\node at (2.75,-0.5) {\includegraphics[width=0.55\textwidth]{topography_figures/scenario_ssc_example_2.png}};}
     683            \uncover<1>{\node at (-3.25,-0.5) {\includegraphics[width=0.55\textwidth]{topography_figures/scenario_ssc_example_1.png}};}
    693684         \end{tikzpicture}
    694685         };
     
    696687\end{frame}
    697688
    698 % Folie 26
     689% Folie 28
     690\begin{frame}
     691 \begin{tikzpicture}[remember picture, overlay]
     692      \node [shift={(6.5 cm, 5cm)}]  at (current page.south west)
     693         {%
     694         \begin{tikzpicture}[remember picture, overlay]
     695            \uncover<1>{\node at (2.75,-0.5) {\includegraphics[width=0.55\textwidth]{topography_figures/scenario_ssc_example_2.png}};}
     696            \uncover<1>{\node at (-3.25,-0.5) {\includegraphics[width=0.55\textwidth]{topography_figures/scenario_ssc_example_1.png}};}
     697            \uncover<1>{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_ssc_example_5.png}};}
     698            \uncover<2>{\node at (-3.5,-0.2) {\includegraphics[width=0.48\textwidth]{topography_figures/scenario_ssc_example_4.png}};}
     699         \end{tikzpicture}
     700         };
     701  \end{tikzpicture}
     702\end{frame}
     703
     704% Folie 29
    699705\begin{frame}
    700706   \frametitle{Set-up Scenario: Constant Flux Layer}
     
    715721\end{frame}
    716722
    717 % Folie 27
     723% Folie 30
    718724\begin{frame}
    719725 \begin{tikzpicture}[remember picture, overlay]
     
    722728         \begin{tikzpicture}[remember picture, overlay]
    723729            \uncover<1->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_cfl_example_1.png}};}
    724             \uncover<2->{\node at (-3.5,-0.2) {\includegraphics[width=0.45\textwidth]{topography_figures/scenario_cfl_example_2.png}};}
    725             \uncover<3->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_cfl_example_3.png}};}
    726730         \end{tikzpicture}
    727731         };
     
    729733\end{frame}
    730734
    731 % Folie 28
     735% Folie 31
     736\begin{frame}
     737 \begin{tikzpicture}[remember picture, overlay]
     738      \node [shift={(6.5 cm, 5cm)}]  at (current page.south west)
     739         {%
     740         \begin{tikzpicture}[remember picture, overlay]
     741            \uncover<1->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_cfl_example_1.png}};}
     742            \uncover<1->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_cfl_example_3.png}};}
     743            \uncover<2->{\node at (-3.5,-0.2) {\includegraphics[width=0.45\textwidth]{topography_figures/scenario_cfl_example_2.png}};}
     744         \end{tikzpicture}
     745         };
     746  \end{tikzpicture}
     747\end{frame}
     748
     749% Folie 32
    732750\begin{frame}
    733751   \frametitle{Rules of Good Practise}
Note: See TracChangeset for help on using the changeset viewer.