Ignore:
Timestamp:
Jan 28, 2015 11:14:05 AM (10 years ago)
Author:
kanani
Message:

update of tutorial files and figures

File:
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/exercise_topography.tex

    r1515 r1541  
    8787   \frametitle{Questions to be Answered}
    8888   \small
    89    \begin{itemize}
    90       \item<2->{Can you identify flow convergence / divergence patterns near the cube?}
     89   \begin{enumerate}
     90      \item<2->{Can you identify any interesting flow patterns around the cube and what do they tell us?}
    9191      \begin{itemize}
    9292         \item{What kind of output do you need to answer this?}
    9393      \end{itemize}
    94       \item<3->{How does the horizontally and temporally averaged momentum flux profile look
    95             like?}
     94      \item<3->{How do the horizontally and temporally averaged velocity and momentum flux profiles look like?}
    9695      \begin{itemize}
    9796         \item{How long should the averaging time interval be?}
    9897      \end{itemize}
    99       \item<4->{Is it really a large-eddy simulation?}
     98      \item<4->{Is it really a fully developed large-eddy simulation?}
    10099      \begin{itemize}
    101100         \item{Are the subgrid-scale fluxes much smaller than the resolved-scale fluxes?}
     
    103102               with time?}
    104103      \end{itemize}
    105    \end{itemize}
    106    \onslide<5->\textbf{Final question:}
    107    \begin{itemize}
    108       \item{Do the results of both runs agree?}
    109    \end{itemize}
     104      \item{\onslide<5->\textbf{Final question:} Do the results of both runs agree?}
     105   \end{enumerate}
    110106\end{frame}
    111107
     
    141137         \item{For constant bulk velocity, see \textbf{conserve\_volume\_flow}.}
    142138         \item{For Coriolis force, see \textbf{omega}.}
     139         \item{For neutral flow, see \textbf{neutral}.}
    143140      \end{itemize}
    144141      \item<6->{\textbf{Topography}}
     
    214211      \item<3->[2.]{Check your results to answer all questions – except the final question.}
    215212      \item<4->[3.]{After this run has finished, use ncview, ncdump etc. to check the precise
    216                location of the building (look at 2D array zusi that is contained in 2D xy
     213               location of the building (look at 2D array \textit{zusi} that is contained in 2D xy
    217214               cross-sections and 3D volume data).}
    218215      \item<5->[4.]{Use this information to manually create the ''raster\_topo'' file.}
     
    249246% Folie 9
    250247\begin{frame}
    251    \frametitle{Flow convergence / divergence (I)}
     248   \frametitle{Question 1: Flow patterns (I)}
     249   \par\smallskip
     250   \footnotesize
     251   \textbf{Horizontal cross sections of 1-h averaged velocity components \textit{u} and \textit{v}}
    252252   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/u_xy.eps} \hspace{0.8cm}
    253253   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/v_xy.eps}
     
    256256% Folie 10
    257257\begin{frame}
    258    \frametitle{Flow convergence / divergence (II)}
     258   \frametitle{Question 1: Flow patterns (II)}
     259   \par\smallskip
     260   \footnotesize
     261   \textbf{Horizontal and streamwise vertical cross sections of 1-h averaged \\ velocity component \textit{w}}
     262   \par\smallskip
    259263   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/w_xy.eps} \hspace{0.8cm}
    260264   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/cross_sections/w_xz.eps}
     
    263267% Folie 11
    264268\begin{frame}
    265    \frametitle{Streamlines}
     269   \frametitle{Question 1: Flow patterns (III)}
     270   \par\smallskip
     271   \footnotesize
     272   \textbf{Streamlines (1-h average) for the same cross sections as seen in Frame 10 \\ for the \textit{w}-velocity}
     273   \par\smallskip
    266274   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/streamlines/streamlines_xy.eps} \hspace{0.8cm}
    267275   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/streamlines/streamlines_xz.eps} \hspace{0.8cm}
     
    271279% Folie 12
    272280\begin{frame}
    273    \frametitle{Vertical profiles of $\overline{w'u'}$, $\overline{w'v'}$}
     281   \frametitle{Question 2: Velocity and momentum flux profiles}
     282   \par\smallskip
     283   \footnotesize
     284   \textbf{Vertical profiles of 1-h and horizontally averaged \textit{u}-, \textit{v}- and \textit{w}-velocity}
     285   \par\smallskip
     286   \includegraphics[width=\textwidth]{exercise_topography_figures/profiles/profile_uvw.png}
     287\end{frame}
     288
     289% Folie 13
     290\begin{frame}
     291   \frametitle{Question 2: Velocity and momentum flux profiles}
     292   \par\smallskip
     293   \footnotesize
     294   \textbf{Vertical profiles of 1-h and horizontally averaged total turbulent momentum \\ fluxes $wu$ and $wv$}
     295   \par\smallskip
    274296   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/profiles/wu_time_pr.eps} \hspace{0.8cm}
    275297   \includegraphics[width=0.45\textwidth]{exercise_topography_figures/profiles/wv_time_pr.eps}
    276298\end{frame}
    277299
    278 % Folie 13
    279 \begin{frame}
    280    \frametitle{LES? - Fluxes}
     300% Folie 14
     301\begin{frame}
     302   \frametitle{Question 3: LES? - Fluxes}
     303   \par\smallskip
     304   \footnotesize
     305   \textbf{Vertical profiles of 1-h and horizontally averaged momentum fluxes: total ($wu$), resolved-scale ($w^{*}u^{*}$) and subgrid-scale ($w''u''$) fluxes}
     306   \par\smallskip
    281307   \begin{center}
    282308      \includegraphics[width=0.6\textwidth]{exercise_topography_figures/profiles/wu_comp_pr.eps}
     
    284310\end{frame}
    285311
    286 % Folie 14
    287 \begin{frame}
    288    \frametitle{LES? - Time Series (I)}
     312% Folie 15
     313\begin{frame}
     314   \frametitle{Question 3: LES? - Time Series (I)}
     315   \par\smallskip
     316   \footnotesize
     317   \textbf{Total kinetic energy \textit{E} of the flow and maximum \textit{u}-velocity in the model domain}
     318   \par\smallskip
    289319   \begin{center}
    290320      \includegraphics[width=0.95\textwidth]{exercise_topography_figures/timeseries/E_ts.eps} \\
     
    293323\end{frame}
    294324
    295 % Folie 15
    296 \begin{frame}
    297    \frametitle{LES? - Time Series (II)}
     325% Folie 16
     326\begin{frame}
     327   \frametitle{Question 3: LES? - Time Series (II)}
     328   \par\smallskip
     329   \footnotesize
     330   \textbf{Maximum \textit{v}- and \textit{w}-velocity in the model domain}
     331   \par\smallskip
    298332   \begin{center}
    299333      \includegraphics[width=\textwidth]{exercise_topography_figures/timeseries/vmax_ts.eps} \\
     
    302336\end{frame}
    303337
     338\subsection{Answers}
     339
     340% Folie 17
     341\begin{frame}
     342   \frametitle{Answer to question 1 (I)}
     343   \footnotesize
     344   \textbf{Can you identify any interesting flow patterns around the cube and what do they tell us?}
     345   \par\smallskip
     346   \footnotesize
     347   The 1-h-averaged near-surface horizontal velocity components \textit{u} and \textit{v} show (see Frame 9):
     348   \scriptsize
     349   \begin{itemize}
     350      \item{reversed streamwise flow in the gap between leeward and windward cube wall,}
     351      \item{diverging spanwise flow in the gap with nearly same magnitude as reversed spanwise flow.}
     352   \end{itemize}
     353   \par\smallskip
     354   \footnotesize
     355   The \textit{w}-velocity fields complete the picture (see Frame 10), we see:
     356   \scriptsize
     357   \begin{itemize}
     358      \item{descending mean flow near the windward cube wall,}
     359      \item{ascending mean flow near the leeward cube wall.}
     360   \end{itemize}
     361\end{frame}
     362
     363% Folie 18
     364\begin{frame}
     365   \frametitle{Answer to question 1 (II)}
     366   \footnotesize
     367   \textbf{Can you identify any interesting flow patterns around the cube and what do they tell us?}
     368   \par\smallskip
     369   \footnotesize
     370   Streamlines in Frame 11 show an overall view of the mean horizontal (left; near surface) and the mean streamwise-vertical (right; center of cube wall) flow:
     371   \scriptsize
     372   \begin{itemize}
     373    \item{left: in the gap between leeward and windward cube wall, streamlines are directed in opposite direction to the prescribed flow direction, and they diverge in the spanwise direction,}
     374    \item{left: starting at the corners of the leeward cube wall, these diverging streamlines converge with the streamlines of the flow forced around the side walls of the cube,}
     375    \item{right: above the cube roof, the mean flow is horizontal and directed as prescribed,}
     376    \item{right: in the streamwise gap, we find a rotor-like vortex, explaining the mean downward motion in the largest part of the gap, the upward motion at the leeward cube wall, and the reversed streamwise flow, covering almost fully the gap dimensions.}
     377   \end{itemize}
     378   \par\smallskip
     379   \footnotesize
     380   \textbf{Note:} Flow patterns can change significantly when the size of the gaps between buildings changes (see e.g. Oke, T. R. \textit{Street Design and Urban Canopy Layer Climate}. Energy and Buildings, 11 (1988)).
     381\end{frame}
     382
     383% Folie 19
     384\begin{frame}
     385   \frametitle{Answer to question 2 (I)}
     386   \footnotesize
     387   \textbf{How do the horizontally and temporally averaged velocity and momentum flux profiles look like?}
     388   \par\smallskip
     389   \footnotesize
     390   Frame 12 shows 1-h and horizontally averaged vertical profiles of velocity components \textit{u}, \textit{v} and \textit{w}:
     391   \scriptsize
     392   \begin{itemize}
     393      \item{\textit{u}: Channel flow causes zero velocity at bottom and top domain wall. Upper domain half: Velocities increase with distance from upper channel wall, peaks at around 60m, and decreases quickly closer towards cube top. Lower domain half: \textit{u} further decreases towards bottom channel wall, due to roughness of the wall, and \textit{u} is much smaller here than in upper domain half, due to presence of cube.}
     394      \item{\textit{v}: In the horizontal average, \textit{v}-component is much smaller than \textit{u}, and it fluctuates around zero. Time average should be increased to further eliminate these fluctuations. Flow is forced by \textit{u}-component}, and cube does not induce significant \textit{v} in horizontal mean.
     395      \item{\textit{w}: Zero above, small negative values below cube top. In fully developed LES with sufficient domain size and averaging, horizontally averaged \textit{w} profile should be zero.}
     396   \end{itemize}
     397\end{frame}
     398
     399% Folie 20
     400\begin{frame}
     401   \frametitle{Answer to question 2 (II)}
     402   \footnotesize
     403   \textbf{How do the horizontally and temporally averaged velocity and momentum flux profiles look like?}
     404   \par\smallskip
     405   \footnotesize
     406   Frame 13 shows 1-h and horizontally averaged vertical profiles of \textit{u} and \textit{v} components of total turbulent vertical momentum flux, for two ouput times:
     407   \scriptsize
     408   \begin{itemize}
     409      \item{\textit{wv} is one order of magnitude smaller than \textit{wu} (flow is forced with the \textit{u}-component), hence, the \textit{wv} profile is not smooth, it strongly fluctuates with heigt and time.}
     410      \item{In contrast, the \textit{wu} profile is smooth and barely changes from one 1-h average to the next, indicating sufficient averaging time.}
     411   \end{itemize}
     412\end{frame}
     413
     414% Folie 21
     415\begin{frame}
     416   \frametitle{Answer to question 2 (III)}
     417   \footnotesize
     418   \textbf{How does the horizontally and temporally averaged momentum flux profile look like?}
     419   \par\smallskip
     420   \scriptsize
     421   \begin{itemize}
     422      \item{This \textit{wu} profile of channel flow around a cube strongly deviates from the typical \textit{wu profile} in a neutral obstacle-free atmospheric boundary layer (ABL). In the latter, \textit{wu} takes largest negative values at the surface and increases towards zero at the top the boundary layer. This means, the flow is decelerated everywhere within the ABL due to surface friction. In the cube-flow, the \textit{wu} profile can be split into three regions:}
     423      \begin{itemize}
     424       {\scriptsize
     425         \item{z=40 to 80m: linear increase with height, i.e. the flow is decelerated in this part. Up to 65m, \textit{wu} is negative, i.e. the roughness of the cube top causes the deceleration. Above, \textit{wu} is positive, i.e. the flow is decelerated due to the no-slip boundary condition at the domain top.}
     426         \item{z=15 to 40m: decreasing with height, i.e. the flow is accelerated here, which can be attributed to the above-cube flow.}
     427         \item{z=0 to 15m: increasing with height, meaning flow deceleration, due to surface friction.}}
     428      \end{itemize}
     429   \end{itemize}
     430   \par\bigskip
     431   \scriptsize
     432   \textbf{Note: Such momentum flux profiles (\textit{wu}) are typical for urban and vegetation canopy flows.}
     433\end{frame}
     434
     435
     436% Folie 22
     437\begin{frame}
     438   \frametitle{Answer to question 3}
     439   \footnotesize
     440   \textbf{Is it really a fully developed large-eddy simulation?}
     441   \par\smallskip
     442   \scriptsize
     443   \begin{itemize}
     444      \item{Frame 14: Except near the surface and at the domain top, subgrid-scale momentum flux \textit{w``u''} is one order of magnitude smaller than the resolved-scale counterpart \textit{w*u*}, hence we can conclude, that the  grid spacing is sufficiently small in order to resolve the energy-containing eddies within this neutral flow around a solid cube.}
     445      \item{Frame 15: Timeseries of the kinetic energy \textit{E} and the maximum \textit{u} value in the flow indicate that two hours of simulation time are sufficient for the spin up of the model. Both quantities level out towards the end of the simulation.}
     446      \item{Frame 16: The temporal evolution of maximum \textit{v} and \textit{w} values indicates that the flow shows turbulent features, since both components frequently change signs.}
     447   \end{itemize}
     448\end{frame}
     449
    304450\end{document}
Note: See TracChangeset for help on using the changeset viewer.