[2338] | 1 | !> @file model_1d_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1961] | 22 | ! |
---|
[3049] | 23 | ! |
---|
[1961] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: model_1d_mod.f90 4449 2020-03-09 14:43:16Z schwenkel $ |
---|
[4449] | 27 | ! Set intermediate_timestep_count back to zero after 1D-model integration. |
---|
| 28 | ! This is required e.g. for initial calls of calc_mean_profile. |
---|
| 29 | ! |
---|
| 30 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 31 | ! Corrected "Former revisions" section |
---|
[4449] | 32 | ! |
---|
[4182] | 33 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3274] | 34 | ! Modularization of all bulk cloud physics code components |
---|
[1961] | 35 | ! |
---|
[4182] | 36 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 37 | ! Initial revision |
---|
| 38 | ! |
---|
| 39 | ! |
---|
[1] | 40 | ! Description: |
---|
| 41 | ! ------------ |
---|
[1682] | 42 | !> 1D-model to initialize the 3D-arrays. |
---|
[4449] | 43 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
[1682] | 44 | !> of the wind profile is being computed. |
---|
| 45 | !> All subroutines required can be found within this file. |
---|
[1691] | 46 | !> |
---|
| 47 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
[1709] | 48 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
[2965] | 49 | !> @fixme option "as_in_3d_model" seems to be an inappropriate option because |
---|
[2918] | 50 | !> the 1D model uses different turbulence closure approaches at least if |
---|
| 51 | !> the 3D model is set to LES-mode. |
---|
[1] | 52 | !------------------------------------------------------------------------------! |
---|
[2338] | 53 | MODULE model_1d_mod |
---|
[1] | 54 | |
---|
[1320] | 55 | USE arrays_3d, & |
---|
[2918] | 56 | ONLY: dd2zu, ddzu, ddzw, dzu, dzw, pt_init, q_init, ug, u_init, & |
---|
[2338] | 57 | vg, v_init, zu |
---|
[3274] | 58 | |
---|
| 59 | USE basic_constants_and_equations_mod, & |
---|
| 60 | ONLY: g, kappa, pi |
---|
[4449] | 61 | |
---|
[2338] | 62 | USE control_parameters, & |
---|
[3274] | 63 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, f, & |
---|
[2338] | 64 | humidity, ibc_e_b, intermediate_timestep_count, & |
---|
[3274] | 65 | intermediate_timestep_count_max, km_constant, & |
---|
[2338] | 66 | message_string, mixing_length_1d, prandtl_number, & |
---|
[2696] | 67 | roughness_length, run_description_header, simulated_time_chr, & |
---|
| 68 | timestep_scheme, tsc, z0h_factor |
---|
[2338] | 69 | |
---|
[1320] | 70 | USE indices, & |
---|
[2338] | 71 | ONLY: nzb, nzb_diff, nzt |
---|
[4449] | 72 | |
---|
[1320] | 73 | USE kinds |
---|
[1] | 74 | |
---|
[3083] | 75 | USE pegrid, & |
---|
| 76 | ONLY: myid |
---|
[2338] | 77 | |
---|
[4449] | 78 | |
---|
[1] | 79 | IMPLICIT NONE |
---|
| 80 | |
---|
[2338] | 81 | INTEGER(iwp) :: current_timestep_number_1d = 0 !< current timestep number (1d-model) |
---|
[2696] | 82 | INTEGER(iwp) :: damp_level_ind_1d !< lower grid index of damping layer (1d-model) |
---|
[2338] | 83 | |
---|
| 84 | LOGICAL :: run_control_header_1d = .FALSE. !< flag for output of run control header (1d-model) |
---|
| 85 | LOGICAL :: stop_dt_1d = .FALSE. !< termination flag, used in case of too small timestep (1d-model) |
---|
| 86 | |
---|
[3083] | 87 | REAL(wp) :: alpha_buoyancy !< model constant according to Koblitz (2013) |
---|
[3126] | 88 | REAL(wp) :: c_0 = 0.416179145_wp !< = 0.03^0.25; model constant according to Koblitz (2013) |
---|
[3083] | 89 | REAL(wp) :: c_1 = 1.52_wp !< model constant according to Koblitz (2013) |
---|
| 90 | REAL(wp) :: c_2 = 1.83_wp !< model constant according to Koblitz (2013) |
---|
| 91 | REAL(wp) :: c_3 !< model constant |
---|
| 92 | REAL(wp) :: c_mu !< model constant |
---|
[2696] | 93 | REAL(wp) :: damp_level_1d = -1.0_wp !< namelist parameter |
---|
[2338] | 94 | REAL(wp) :: dt_1d = 60.0_wp !< dynamic timestep (1d-model) |
---|
| 95 | REAL(wp) :: dt_max_1d = 300.0_wp !< timestep limit (1d-model) |
---|
[2696] | 96 | REAL(wp) :: dt_pr_1d = 9999999.9_wp !< namelist parameter |
---|
| 97 | REAL(wp) :: dt_run_control_1d = 60.0_wp !< namelist parameter |
---|
| 98 | REAL(wp) :: end_time_1d = 864000.0_wp !< namelist parameter |
---|
[3083] | 99 | REAL(wp) :: lambda !< maximum mixing length |
---|
[2338] | 100 | REAL(wp) :: qs1d !< characteristic humidity scale (1d-model) |
---|
| 101 | REAL(wp) :: simulated_time_1d = 0.0_wp !< updated simulated time (1d-model) |
---|
[3083] | 102 | REAL(wp) :: sig_diss = 2.95_wp !< model constant according to Koblitz (2013) |
---|
| 103 | REAL(wp) :: sig_e = 2.95_wp !< model constant according to Koblitz (2013) |
---|
[2338] | 104 | REAL(wp) :: time_pr_1d = 0.0_wp !< updated simulated time for profile output (1d-model) |
---|
| 105 | REAL(wp) :: time_run_control_1d = 0.0_wp !< updated simulated time for run-control output (1d-model) |
---|
| 106 | REAL(wp) :: ts1d !< characteristic temperature scale (1d-model) |
---|
[2696] | 107 | REAL(wp) :: us1d !< friction velocity (1d-model) |
---|
| 108 | REAL(wp) :: usws1d !< u-component of the momentum flux (1d-model) |
---|
| 109 | REAL(wp) :: vsws1d !< v-component of the momentum flux (1d-model) |
---|
[2338] | 110 | REAL(wp) :: z01d !< roughness length for momentum (1d-model) |
---|
| 111 | REAL(wp) :: z0h1d !< roughness length for scalars (1d-model) |
---|
| 112 | |
---|
[2696] | 113 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d !< tke dissipation rate (1d-model) |
---|
| 114 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d_p !< prognostic value of tke dissipation rate (1d-model) |
---|
| 115 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d !< tke (1d-model) |
---|
[2338] | 116 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d_p !< prognostic value of tke (1d-model) |
---|
[2696] | 117 | REAL(wp), DIMENSION(:), ALLOCATABLE :: kh1d !< turbulent diffusion coefficient for heat (1d-model) |
---|
| 118 | REAL(wp), DIMENSION(:), ALLOCATABLE :: km1d !< turbulent diffusion coefficient for momentum (1d-model) |
---|
| 119 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d !< mixing length for turbulent diffusion coefficients (1d-model) |
---|
[2918] | 120 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_init !< initial mixing length (1d-model) |
---|
[2338] | 121 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_diss !< mixing length for dissipation (1d-model) |
---|
[2696] | 122 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rif1d !< Richardson flux number (1d-model) |
---|
| 123 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_diss !< tendency of diss (1d-model) |
---|
| 124 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_dissm !< weighted tendency of diss for previous sub-timestep (1d-model) |
---|
[2338] | 125 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_e !< tendency of e (1d-model) |
---|
| 126 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_em !< weighted tendency of e for previous sub-timestep (1d-model) |
---|
| 127 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_u !< tendency of u (1d-model) |
---|
| 128 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_um !< weighted tendency of u for previous sub-timestep (1d-model) |
---|
| 129 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_v !< tendency of v (1d-model) |
---|
| 130 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_vm !< weighted tendency of v for previous sub-timestep (1d-model) |
---|
[2696] | 131 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d !< u-velocity component (1d-model) |
---|
[2338] | 132 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d_p !< prognostic value of u-velocity component (1d-model) |
---|
[2696] | 133 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d !< v-velocity component (1d-model) |
---|
[2338] | 134 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d_p !< prognostic value of v-velocity component (1d-model) |
---|
| 135 | |
---|
| 136 | ! |
---|
| 137 | !-- Initialize 1D model |
---|
| 138 | INTERFACE init_1d_model |
---|
| 139 | MODULE PROCEDURE init_1d_model |
---|
| 140 | END INTERFACE init_1d_model |
---|
| 141 | |
---|
| 142 | ! |
---|
| 143 | !-- Print profiles |
---|
| 144 | INTERFACE print_1d_model |
---|
| 145 | MODULE PROCEDURE print_1d_model |
---|
| 146 | END INTERFACE print_1d_model |
---|
| 147 | |
---|
| 148 | ! |
---|
| 149 | !-- Print run control information |
---|
| 150 | INTERFACE run_control_1d |
---|
| 151 | MODULE PROCEDURE run_control_1d |
---|
| 152 | END INTERFACE run_control_1d |
---|
| 153 | |
---|
| 154 | ! |
---|
| 155 | !-- Main procedure |
---|
| 156 | INTERFACE time_integration_1d |
---|
| 157 | MODULE PROCEDURE time_integration_1d |
---|
| 158 | END INTERFACE time_integration_1d |
---|
| 159 | |
---|
| 160 | ! |
---|
| 161 | !-- Calculate time step |
---|
| 162 | INTERFACE timestep_1d |
---|
| 163 | MODULE PROCEDURE timestep_1d |
---|
| 164 | END INTERFACE timestep_1d |
---|
| 165 | |
---|
| 166 | SAVE |
---|
| 167 | |
---|
| 168 | PRIVATE |
---|
| 169 | ! |
---|
| 170 | !-- Public interfaces |
---|
| 171 | PUBLIC init_1d_model |
---|
| 172 | |
---|
| 173 | ! |
---|
| 174 | !-- Public variables |
---|
[2696] | 175 | PUBLIC damp_level_1d, damp_level_ind_1d, diss1d, dt_pr_1d, & |
---|
| 176 | dt_run_control_1d, e1d, end_time_1d, kh1d, km1d, l1d, rif1d, u1d, & |
---|
| 177 | us1d, usws1d, v1d, vsws1d |
---|
[2338] | 178 | |
---|
| 179 | |
---|
| 180 | CONTAINS |
---|
| 181 | |
---|
| 182 | SUBROUTINE init_1d_model |
---|
[4449] | 183 | |
---|
[2918] | 184 | USE grid_variables, & |
---|
| 185 | ONLY: dx, dy |
---|
| 186 | |
---|
[2338] | 187 | IMPLICIT NONE |
---|
| 188 | |
---|
[2696] | 189 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 190 | |
---|
| 191 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 192 | |
---|
| 193 | ! |
---|
| 194 | !-- Allocate required 1D-arrays |
---|
[2696] | 195 | ALLOCATE( diss1d(nzb:nzt+1), diss1d_p(nzb:nzt+1), & |
---|
| 196 | e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), kh1d(nzb:nzt+1), & |
---|
[2918] | 197 | km1d(nzb:nzt+1), l1d(nzb:nzt+1), l1d_init(nzb:nzt+1), & |
---|
[2696] | 198 | l1d_diss(nzb:nzt+1), rif1d(nzb:nzt+1), te_diss(nzb:nzt+1), & |
---|
| 199 | te_dissm(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
[2338] | 200 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 201 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 202 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
[1] | 203 | |
---|
| 204 | ! |
---|
| 205 | !-- Initialize arrays |
---|
| 206 | IF ( constant_diffusion ) THEN |
---|
[1001] | 207 | km1d = km_constant |
---|
| 208 | kh1d = km_constant / prandtl_number |
---|
[1] | 209 | ELSE |
---|
[2696] | 210 | diss1d = 0.0_wp; diss1d_p = 0.0_wp |
---|
[1353] | 211 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 212 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
| 213 | rif1d = 0.0_wp |
---|
[1] | 214 | ! |
---|
| 215 | !-- Compute the mixing length |
---|
[2918] | 216 | l1d_init(nzb) = 0.0_wp |
---|
[1] | 217 | |
---|
| 218 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 219 | ! |
---|
| 220 | !-- Blackadar mixing length |
---|
[1353] | 221 | IF ( f /= 0.0_wp ) THEN |
---|
| 222 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
| 223 | ABS( f ) + 1E-10_wp |
---|
[1] | 224 | ELSE |
---|
[1353] | 225 | lambda = 30.0_wp |
---|
[1] | 226 | ENDIF |
---|
| 227 | |
---|
| 228 | DO k = nzb+1, nzt+1 |
---|
[2918] | 229 | l1d_init(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 230 | ENDDO |
---|
| 231 | |
---|
| 232 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 233 | ! |
---|
[2918] | 234 | !-- Use the same mixing length as in 3D model (LES-mode) |
---|
[3083] | 235 | !> @todo rename (delete?) this option |
---|
| 236 | !> As the mixing length is different between RANS and LES mode, it |
---|
| 237 | !> must be distinguished here between these modes. For RANS mode, |
---|
| 238 | !> the mixing length is calculated accoding to Blackadar, which is |
---|
| 239 | !> the other option at this point. |
---|
| 240 | !> Maybe delete this option entirely (not appropriate in LES case) |
---|
| 241 | !> 2018-03-20, gronemeier |
---|
[2918] | 242 | DO k = nzb+1, nzt |
---|
| 243 | l1d_init(k) = ( dx * dy * dzw(k) )**0.33333333333333_wp |
---|
| 244 | ENDDO |
---|
| 245 | l1d_init(nzt+1) = l1d_init(nzt) |
---|
[1] | 246 | |
---|
| 247 | ENDIF |
---|
| 248 | ENDIF |
---|
[2918] | 249 | l1d = l1d_init |
---|
| 250 | l1d_diss = l1d_init |
---|
[2337] | 251 | u1d = u_init |
---|
| 252 | u1d_p = u_init |
---|
| 253 | v1d = v_init |
---|
| 254 | v1d_p = v_init |
---|
[1] | 255 | |
---|
| 256 | ! |
---|
| 257 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 258 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 259 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
[1353] | 260 | u1d(0:1) = 0.1_wp |
---|
| 261 | u1d_p(0:1) = 0.1_wp |
---|
| 262 | v1d(0:1) = 0.1_wp |
---|
| 263 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 264 | |
---|
| 265 | ! |
---|
| 266 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
[1691] | 267 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 268 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 269 | ELSE |
---|
[3083] | 270 | diss1d(nzb+1) = 0.001_wp |
---|
[1353] | 271 | e1d(nzb+1) = 1.0_wp |
---|
| 272 | km1d(nzb+1) = 1.0_wp |
---|
| 273 | us1d = 0.0_wp |
---|
[1] | 274 | ENDIF |
---|
[1353] | 275 | ts1d = 0.0_wp |
---|
| 276 | usws1d = 0.0_wp |
---|
| 277 | vsws1d = 0.0_wp |
---|
[996] | 278 | z01d = roughness_length |
---|
[4449] | 279 | z0h1d = z0h_factor * z01d |
---|
[1960] | 280 | IF ( humidity ) qs1d = 0.0_wp |
---|
[1] | 281 | |
---|
| 282 | ! |
---|
[3083] | 283 | !-- Tendencies must be preset in order to avoid runtime errors |
---|
| 284 | te_diss = 0.0_wp |
---|
[2696] | 285 | te_dissm = 0.0_wp |
---|
[3083] | 286 | te_e = 0.0_wp |
---|
[1353] | 287 | te_em = 0.0_wp |
---|
| 288 | te_um = 0.0_wp |
---|
| 289 | te_vm = 0.0_wp |
---|
[46] | 290 | |
---|
| 291 | ! |
---|
[2338] | 292 | !-- Set model constant |
---|
[3083] | 293 | IF ( dissipation_1d == 'as_in_3d_model' ) c_0 = 0.1_wp |
---|
| 294 | c_mu = c_0**4 |
---|
[2338] | 295 | |
---|
| 296 | ! |
---|
[1] | 297 | !-- Set start time in hh:mm:ss - format |
---|
| 298 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 299 | |
---|
| 300 | ! |
---|
[2337] | 301 | !-- Integrate the 1D-model equations using the Runge-Kutta scheme |
---|
[1] | 302 | CALL time_integration_1d |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | END SUBROUTINE init_1d_model |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | !------------------------------------------------------------------------------! |
---|
| 310 | ! Description: |
---|
| 311 | ! ------------ |
---|
[2338] | 312 | !> Runge-Kutta time differencing scheme for the 1D-model. |
---|
[1] | 313 | !------------------------------------------------------------------------------! |
---|
[4449] | 314 | |
---|
[1682] | 315 | SUBROUTINE time_integration_1d |
---|
[1] | 316 | |
---|
| 317 | IMPLICIT NONE |
---|
| 318 | |
---|
[2696] | 319 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 320 | |
---|
[2338] | 321 | INTEGER(iwp) :: k !< loop index |
---|
[2696] | 322 | |
---|
[2338] | 323 | REAL(wp) :: a !< auxiliary variable |
---|
| 324 | REAL(wp) :: b !< auxiliary variable |
---|
| 325 | REAL(wp) :: dpt_dz !< vertical temperature gradient |
---|
| 326 | REAL(wp) :: flux !< vertical temperature gradient |
---|
| 327 | REAL(wp) :: kmzm !< Km(z-dz/2) |
---|
| 328 | REAL(wp) :: kmzp !< Km(z+dz/2) |
---|
| 329 | REAL(wp) :: l_stable !< mixing length for stable case |
---|
| 330 | REAL(wp) :: pt_0 !< reference temperature |
---|
| 331 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
[1] | 332 | |
---|
| 333 | ! |
---|
| 334 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 335 | !-- determine and printout quantities used for run control |
---|
[3083] | 336 | dt_1d = 0.01_wp |
---|
[1] | 337 | CALL run_control_1d |
---|
| 338 | |
---|
| 339 | ! |
---|
| 340 | !-- Start of time loop |
---|
| 341 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 342 | |
---|
| 343 | ! |
---|
| 344 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 345 | !-- timesteps |
---|
| 346 | |
---|
| 347 | intermediate_timestep_count = 0 |
---|
| 348 | DO WHILE ( intermediate_timestep_count < & |
---|
| 349 | intermediate_timestep_count_max ) |
---|
| 350 | |
---|
| 351 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 352 | |
---|
| 353 | CALL timestep_scheme_steering |
---|
| 354 | |
---|
| 355 | ! |
---|
[4449] | 356 | !-- Compute all tendency terms. If a constant-flux layer is simulated, |
---|
[2696] | 357 | !-- k starts at nzb+2. |
---|
[1] | 358 | DO k = nzb_diff, nzt |
---|
| 359 | |
---|
[1353] | 360 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 361 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 362 | ! |
---|
| 363 | !-- u-component |
---|
| 364 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
[1001] | 365 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 366 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
| 367 | ) * ddzw(k) |
---|
[1] | 368 | ! |
---|
| 369 | !-- v-component |
---|
[1001] | 370 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 371 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 372 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
| 373 | ) * ddzw(k) |
---|
[1] | 374 | ENDDO |
---|
| 375 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 376 | DO k = nzb_diff, nzt |
---|
| 377 | ! |
---|
[2696] | 378 | !-- TKE and dissipation rate |
---|
[1353] | 379 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 380 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 381 | IF ( .NOT. humidity ) THEN |
---|
[1] | 382 | pt_0 = pt_init(k) |
---|
| 383 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 384 | ELSE |
---|
[1353] | 385 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 386 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 387 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 388 | pt_init(k-1) * q_init(k-1) ) & |
---|
| 389 | ) * dd2zu(k) |
---|
[1] | 390 | ENDIF |
---|
| 391 | |
---|
[2696] | 392 | ! |
---|
| 393 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 394 | !-- dissipation rate |
---|
[1] | 395 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[3083] | 396 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 397 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2918] | 398 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) & |
---|
[2696] | 399 | ) * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 400 | ENDIF |
---|
[2696] | 401 | ! |
---|
| 402 | !-- TKE |
---|
[1] | 403 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 404 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 405 | ) & |
---|
| 406 | - g / pt_0 * kh1d(k) * flux & |
---|
| 407 | + ( & |
---|
[1001] | 408 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 409 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[3083] | 410 | ) * ddzw(k) / sig_e & |
---|
[2696] | 411 | - diss1d(k) |
---|
| 412 | |
---|
| 413 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 414 | ! |
---|
| 415 | !-- dissipation rate |
---|
[3083] | 416 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 417 | alpha_buoyancy = 1.0_wp - l1d(k) / lambda |
---|
| 418 | ELSE |
---|
| 419 | alpha_buoyancy = 1.0_wp - ( 1.0_wp + ( c_2 - 1.0_wp ) & |
---|
| 420 | / ( c_2 - c_1 ) ) & |
---|
| 421 | * l1d(k) / lambda |
---|
| 422 | ENDIF |
---|
[3135] | 423 | c_3 = ( c_1 - c_2 ) * alpha_buoyancy + 1.0_wp |
---|
[3083] | 424 | te_diss(k) = ( km1d(k) * & |
---|
[2696] | 425 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 426 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
[3083] | 427 | ) * ( c_1 + (c_2 - c_1) * l1d(k) / lambda ) & |
---|
[2696] | 428 | - g / pt_0 * kh1d(k) * flux * c_3 & |
---|
[3083] | 429 | - c_2 * diss1d(k) & |
---|
| 430 | ) * diss1d(k) / ( e1d(k) + 1.0E-20_wp ) & |
---|
| 431 | + ( kmzp * ( diss1d(k+1) - diss1d(k) ) & |
---|
[2696] | 432 | * ddzu(k+1) & |
---|
| 433 | - kmzm * ( diss1d(k) - diss1d(k-1) ) & |
---|
| 434 | * ddzu(k) & |
---|
[3083] | 435 | ) * ddzw(k) / sig_diss |
---|
[2696] | 436 | |
---|
| 437 | ENDIF |
---|
| 438 | |
---|
[1] | 439 | ENDDO |
---|
| 440 | ENDIF |
---|
| 441 | |
---|
| 442 | ! |
---|
[2696] | 443 | !-- Tendency terms at the top of the constant-flux layer. |
---|
[4449] | 444 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 445 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
[1691] | 446 | IF ( constant_flux_layer ) THEN |
---|
[1] | 447 | |
---|
| 448 | k = nzb+1 |
---|
[1353] | 449 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 450 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 451 | IF ( .NOT. humidity ) THEN |
---|
[1] | 452 | pt_0 = pt_init(k) |
---|
| 453 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 454 | ELSE |
---|
[1353] | 455 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 456 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 457 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 458 | pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 459 | ) * dd2zu(k) |
---|
| 460 | ENDIF |
---|
| 461 | |
---|
[2696] | 462 | ! |
---|
| 463 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 464 | !-- dissipation rate |
---|
[1] | 465 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[3083] | 466 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 467 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2918] | 468 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) ) & |
---|
[2696] | 469 | * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 470 | ENDIF |
---|
| 471 | |
---|
| 472 | ! |
---|
| 473 | !-- u-component |
---|
[1001] | 474 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 475 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 476 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 477 | ! |
---|
| 478 | !-- v-component |
---|
[1001] | 479 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 480 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 481 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 482 | ! |
---|
| 483 | !-- TKE |
---|
[2696] | 484 | IF ( .NOT. dissipation_1d == 'prognostic' ) THEN |
---|
[3083] | 485 | !> @query why integrate over 2dz |
---|
| 486 | !> Why is it allowed to integrate over two delta-z for e |
---|
| 487 | !> while for u and v it is not? |
---|
| 488 | !> 2018-04-23, gronemeier |
---|
[2696] | 489 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 490 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 491 | ) & |
---|
| 492 | - g / pt_0 * kh1d(k) * flux & |
---|
| 493 | + ( & |
---|
| 494 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 495 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[3083] | 496 | ) * ddzw(k) / sig_e & |
---|
[2696] | 497 | - diss1d(k) |
---|
| 498 | ENDIF |
---|
| 499 | |
---|
[1] | 500 | ENDIF |
---|
| 501 | |
---|
| 502 | ! |
---|
| 503 | !-- Prognostic equations for all 1D variables |
---|
| 504 | DO k = nzb+1, nzt |
---|
| 505 | |
---|
[1001] | 506 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 507 | tsc(3) * te_um(k) ) |
---|
| 508 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 509 | tsc(3) * te_vm(k) ) |
---|
[1] | 510 | |
---|
| 511 | ENDDO |
---|
| 512 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2696] | 513 | |
---|
[1] | 514 | DO k = nzb+1, nzt |
---|
[1001] | 515 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 516 | tsc(3) * te_em(k) ) |
---|
[2696] | 517 | ENDDO |
---|
[1] | 518 | |
---|
| 519 | ! |
---|
| 520 | !-- Eliminate negative TKE values, which can result from the |
---|
| 521 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 522 | !-- value is reduced to 10 percent of its old value. |
---|
[1353] | 523 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[3083] | 524 | |
---|
| 525 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 526 | DO k = nzb+1, nzt |
---|
| 527 | diss1d_p(k) = diss1d(k) + dt_1d * ( tsc(2) * te_diss(k) + & |
---|
| 528 | tsc(3) * te_dissm(k) ) |
---|
| 529 | ENDDO |
---|
| 530 | WHERE ( diss1d_p < 0.0_wp ) diss1d_p = 0.1_wp * diss1d |
---|
| 531 | ENDIF |
---|
[1] | 532 | ENDIF |
---|
| 533 | |
---|
| 534 | ! |
---|
| 535 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 536 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 537 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 538 | |
---|
| 539 | DO k = nzb+1, nzt |
---|
| 540 | te_um(k) = te_u(k) |
---|
| 541 | te_vm(k) = te_v(k) |
---|
| 542 | ENDDO |
---|
| 543 | |
---|
| 544 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 545 | DO k = nzb+1, nzt |
---|
| 546 | te_em(k) = te_e(k) |
---|
| 547 | ENDDO |
---|
[2696] | 548 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 549 | DO k = nzb+1, nzt |
---|
| 550 | te_dissm(k) = te_diss(k) |
---|
| 551 | ENDDO |
---|
| 552 | ENDIF |
---|
[1] | 553 | ENDIF |
---|
| 554 | |
---|
| 555 | ELSEIF ( intermediate_timestep_count < & |
---|
| 556 | intermediate_timestep_count_max ) THEN |
---|
| 557 | |
---|
| 558 | DO k = nzb+1, nzt |
---|
[1353] | 559 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 560 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 561 | ENDDO |
---|
| 562 | |
---|
| 563 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 564 | DO k = nzb+1, nzt |
---|
[1353] | 565 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 566 | ENDDO |
---|
[2696] | 567 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 568 | DO k = nzb+1, nzt |
---|
[3083] | 569 | te_dissm(k) = -9.5625_wp * te_diss(k) & |
---|
| 570 | + 5.3125_wp * te_dissm(k) |
---|
[2696] | 571 | ENDDO |
---|
| 572 | ENDIF |
---|
[1] | 573 | ENDIF |
---|
| 574 | |
---|
| 575 | ENDIF |
---|
| 576 | ENDIF |
---|
| 577 | |
---|
| 578 | ! |
---|
| 579 | !-- Boundary conditions for the prognostic variables. |
---|
[4449] | 580 | !-- At the top boundary (nzt+1) u, v, e, and diss keep their initial |
---|
[2696] | 581 | !-- values (ug(nzt+1), vg(nzt+1), 0, 0). |
---|
[2334] | 582 | !-- At the bottom boundary, Dirichlet condition is used for u and v (0) |
---|
[2696] | 583 | !-- and Neumann condition for e and diss (e(nzb)=e(nzb+1)). |
---|
[1353] | 584 | u1d_p(nzb) = 0.0_wp |
---|
| 585 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 586 | |
---|
[1] | 587 | ! |
---|
| 588 | !-- Swap the time levels in preparation for the next time step. |
---|
| 589 | u1d = u1d_p |
---|
| 590 | v1d = v1d_p |
---|
| 591 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 592 | e1d = e1d_p |
---|
[2696] | 593 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 594 | diss1d = diss1d_p |
---|
| 595 | ENDIF |
---|
[1] | 596 | ENDIF |
---|
| 597 | |
---|
| 598 | ! |
---|
| 599 | !-- Compute diffusion quantities |
---|
| 600 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 601 | |
---|
| 602 | ! |
---|
[2696] | 603 | !-- First compute the vertical fluxes in the constant-flux layer |
---|
[1691] | 604 | IF ( constant_flux_layer ) THEN |
---|
[1] | 605 | ! |
---|
| 606 | !-- Compute theta* using Rif numbers of the previous time step |
---|
[2334] | 607 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 608 | ! |
---|
| 609 | !-- Stable stratification |
---|
[1353] | 610 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 611 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 612 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 613 | ) |
---|
| 614 | ELSE |
---|
| 615 | ! |
---|
| 616 | !-- Unstable stratification |
---|
[1353] | 617 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 618 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 619 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 620 | |
---|
| 621 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 622 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 623 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 624 | ENDIF |
---|
| 625 | |
---|
[1691] | 626 | ENDIF ! constant_flux_layer |
---|
[3083] | 627 | !> @todo combine if clauses |
---|
| 628 | !> The previous and following if clauses can be combined into a |
---|
| 629 | !> single clause |
---|
| 630 | !> 2018-04-23, gronemeier |
---|
[1] | 631 | ! |
---|
| 632 | !-- Compute the Richardson-flux numbers, |
---|
[4449] | 633 | !-- first at the top of the constant-flux layer using u* of the |
---|
[2696] | 634 | !-- previous time step (+1E-30, if u* = 0), then in the remaining area. |
---|
| 635 | !-- There the rif-numbers of the previous time step are used. |
---|
[1] | 636 | |
---|
[1691] | 637 | IF ( constant_flux_layer ) THEN |
---|
[75] | 638 | IF ( .NOT. humidity ) THEN |
---|
[1] | 639 | pt_0 = pt_init(nzb+1) |
---|
| 640 | flux = ts1d |
---|
| 641 | ELSE |
---|
[1353] | 642 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 643 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 644 | ENDIF |
---|
| 645 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
[1353] | 646 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 647 | ENDIF |
---|
| 648 | |
---|
| 649 | DO k = nzb_diff, nzt |
---|
[75] | 650 | IF ( .NOT. humidity ) THEN |
---|
[1] | 651 | pt_0 = pt_init(k) |
---|
| 652 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 653 | ELSE |
---|
[1353] | 654 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[1] | 655 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
[2337] | 656 | + 0.61_wp & |
---|
| 657 | * ( pt_init(k+1) * q_init(k+1) & |
---|
| 658 | - pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 659 | ) * dd2zu(k) |
---|
| 660 | ENDIF |
---|
[1353] | 661 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 662 | rif1d(k) = g / pt_0 * flux / & |
---|
| 663 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 664 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 665 | + 1E-30_wp & |
---|
[1] | 666 | ) |
---|
| 667 | ELSE |
---|
[1353] | 668 | rif1d(k) = g / pt_0 * flux / & |
---|
| 669 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 670 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 671 | + 1E-30_wp & |
---|
| 672 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 673 | ENDIF |
---|
| 674 | ENDDO |
---|
| 675 | ! |
---|
| 676 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 677 | !-- range. It is exceeded excessively for very small velocities |
---|
| 678 | !-- (u,v --> 0). |
---|
[2059] | 679 | WHERE ( rif1d < -5.0_wp ) rif1d = -5.0_wp |
---|
| 680 | WHERE ( rif1d > 1.0_wp ) rif1d = 1.0_wp |
---|
[1] | 681 | |
---|
| 682 | ! |
---|
| 683 | !-- Compute u* from the absolute velocity value |
---|
[1691] | 684 | IF ( constant_flux_layer ) THEN |
---|
[1] | 685 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 686 | |
---|
[1353] | 687 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 688 | ! |
---|
| 689 | !-- Stable stratification |
---|
| 690 | us1d = kappa * uv_total / ( & |
---|
[1353] | 691 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
[1] | 692 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 693 | ) |
---|
| 694 | ELSE |
---|
| 695 | ! |
---|
| 696 | !-- Unstable stratification |
---|
[1353] | 697 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
| 698 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 699 | zu(nzb+1) * z01d ) ) |
---|
[2337] | 700 | us1d = kappa * uv_total / ( & |
---|
| 701 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 702 | (1.0_wp+a) ) + & |
---|
| 703 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 704 | ) |
---|
[1] | 705 | ENDIF |
---|
| 706 | |
---|
| 707 | ! |
---|
| 708 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 709 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 710 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 711 | |
---|
| 712 | ! |
---|
[4449] | 713 | !-- Boundary condition for the turbulent kinetic energy and |
---|
[2696] | 714 | !-- dissipation rate at the top of the constant-flux layer. |
---|
[1] | 715 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 716 | !-- compatibility with the 3D model. |
---|
| 717 | IF ( ibc_e_b == 2 ) THEN |
---|
[3083] | 718 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
[1] | 719 | ENDIF |
---|
[2696] | 720 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
[3083] | 721 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
[2696] | 722 | diss1d(nzb+1) = us1d**3 / ( kappa * zu(nzb+1) ) |
---|
| 723 | diss1d(nzb) = diss1d(nzb+1) |
---|
| 724 | ENDIF |
---|
[1] | 725 | e1d(nzb) = e1d(nzb+1) |
---|
| 726 | |
---|
[1960] | 727 | IF ( humidity ) THEN |
---|
[1] | 728 | ! |
---|
[4449] | 729 | !-- Compute q* |
---|
[2334] | 730 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 731 | ! |
---|
[1960] | 732 | !-- Stable stratification |
---|
| 733 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
[1353] | 734 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 735 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 736 | ) |
---|
[1960] | 737 | ELSE |
---|
[1] | 738 | ! |
---|
[1960] | 739 | !-- Unstable stratification |
---|
| 740 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 741 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 742 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 743 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 744 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 745 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
| 746 | ENDIF |
---|
[1] | 747 | ELSE |
---|
[1353] | 748 | qs1d = 0.0_wp |
---|
[2337] | 749 | ENDIF |
---|
[1] | 750 | |
---|
[1691] | 751 | ENDIF ! constant_flux_layer |
---|
[1] | 752 | |
---|
| 753 | ! |
---|
[2337] | 754 | !-- Compute the diabatic mixing length. The unstable stratification |
---|
| 755 | !-- must not be considered for l1d (km1d) as it is already considered |
---|
| 756 | !-- in the dissipation of TKE via l1d_diss. Otherwise, km1d would be |
---|
| 757 | !-- too large. |
---|
[3083] | 758 | IF ( dissipation_1d /= 'prognostic' ) THEN |
---|
| 759 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 760 | DO k = nzb+1, nzt |
---|
| 761 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 762 | l1d(k) = l1d_init(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
| 763 | l1d_diss(k) = l1d(k) |
---|
| 764 | ELSE |
---|
| 765 | l1d(k) = l1d_init(k) |
---|
| 766 | l1d_diss(k) = l1d_init(k) * & |
---|
| 767 | SQRT( 1.0_wp - 16.0_wp * rif1d(k) ) |
---|
| 768 | ENDIF |
---|
| 769 | ENDDO |
---|
| 770 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 771 | DO k = nzb+1, nzt |
---|
| 772 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 773 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
| 774 | l_stable = 0.76_wp * SQRT( e1d(k) ) & |
---|
| 775 | / SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
| 776 | ELSE |
---|
| 777 | l_stable = l1d_init(k) |
---|
| 778 | ENDIF |
---|
| 779 | l1d(k) = MIN( l1d_init(k), l_stable ) |
---|
[2337] | 780 | l1d_diss(k) = l1d(k) |
---|
[3083] | 781 | ENDDO |
---|
| 782 | ENDIF |
---|
| 783 | ELSE |
---|
[1] | 784 | DO k = nzb+1, nzt |
---|
[3083] | 785 | l1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) & |
---|
| 786 | / ( diss1d(k) + 1.0E-30_wp ) |
---|
[1] | 787 | ENDDO |
---|
| 788 | ENDIF |
---|
| 789 | |
---|
| 790 | ! |
---|
| 791 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 792 | !-- corresponding Prandtl-layer relationship and according to |
---|
[2337] | 793 | !-- Prandtl-Kolmogorov, respectively |
---|
[1691] | 794 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 795 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
| 796 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 797 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
[1] | 798 | ELSE |
---|
[1353] | 799 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 800 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
[1] | 801 | ENDIF |
---|
| 802 | ENDIF |
---|
[3083] | 803 | |
---|
[2696] | 804 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 805 | DO k = nzb_diff, nzt |
---|
| 806 | km1d(k) = c_mu * e1d(k)**2 / ( diss1d(k) + 1.0E-30_wp ) |
---|
| 807 | ENDDO |
---|
| 808 | ELSE |
---|
| 809 | DO k = nzb_diff, nzt |
---|
[3083] | 810 | km1d(k) = c_0 * SQRT( e1d(k) ) * l1d(k) |
---|
[2696] | 811 | ENDDO |
---|
| 812 | ENDIF |
---|
[1] | 813 | |
---|
| 814 | ! |
---|
| 815 | !-- Add damping layer |
---|
| 816 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 817 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 818 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 819 | ENDDO |
---|
| 820 | |
---|
| 821 | ! |
---|
| 822 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 823 | !-- kh = phim / phih * km |
---|
| 824 | DO k = nzb+1, nzt |
---|
[1353] | 825 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 826 | kh1d(k) = km1d(k) |
---|
| 827 | ELSE |
---|
[1353] | 828 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 829 | ENDIF |
---|
| 830 | ENDDO |
---|
| 831 | |
---|
| 832 | ENDIF ! .NOT. constant_diffusion |
---|
| 833 | |
---|
| 834 | ENDDO ! intermediate step loop |
---|
| 835 | |
---|
| 836 | ! |
---|
| 837 | !-- Increment simulated time and output times |
---|
| 838 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 839 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 840 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 841 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 842 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 843 | |
---|
| 844 | ! |
---|
| 845 | !-- Determine and print out quantities for run control |
---|
| 846 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 847 | CALL run_control_1d |
---|
| 848 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 849 | ENDIF |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- Profile output on file |
---|
| 853 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 854 | CALL print_1d_model |
---|
| 855 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 856 | ENDIF |
---|
| 857 | |
---|
| 858 | ! |
---|
| 859 | !-- Determine size of next time step |
---|
| 860 | CALL timestep_1d |
---|
| 861 | |
---|
| 862 | ENDDO ! time loop |
---|
[4449] | 863 | ! |
---|
| 864 | !-- Set intermediate_timestep_count back to zero. This is required e.g. for |
---|
| 865 | !-- initial calls of calc_mean_profile. |
---|
| 866 | intermediate_timestep_count = 0 |
---|
[1] | 867 | |
---|
| 868 | END SUBROUTINE time_integration_1d |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | !------------------------------------------------------------------------------! |
---|
| 872 | ! Description: |
---|
| 873 | ! ------------ |
---|
[1682] | 874 | !> Compute and print out quantities for run control of the 1D model. |
---|
[1] | 875 | !------------------------------------------------------------------------------! |
---|
[4449] | 876 | |
---|
[1682] | 877 | SUBROUTINE run_control_1d |
---|
[1] | 878 | |
---|
[1682] | 879 | |
---|
[1] | 880 | IMPLICIT NONE |
---|
| 881 | |
---|
[2338] | 882 | INTEGER(iwp) :: k !< loop index |
---|
[4449] | 883 | |
---|
[2338] | 884 | REAL(wp) :: alpha !< angle of wind vector at top of constant-flux layer |
---|
| 885 | REAL(wp) :: energy !< kinetic energy |
---|
| 886 | REAL(wp) :: umax !< maximum of u |
---|
| 887 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
| 888 | REAL(wp) :: vmax !< maximum of v |
---|
[1] | 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Output |
---|
| 892 | IF ( myid == 0 ) THEN |
---|
| 893 | ! |
---|
| 894 | !-- If necessary, write header |
---|
| 895 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 896 | CALL check_open( 15 ) |
---|
[1] | 897 | WRITE ( 15, 100 ) |
---|
| 898 | run_control_header_1d = .TRUE. |
---|
| 899 | ENDIF |
---|
| 900 | |
---|
| 901 | ! |
---|
| 902 | !-- Compute control quantities |
---|
| 903 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 904 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 905 | DO k = nzb+1, nzt+1 |
---|
| 906 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 907 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 908 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 909 | ENDDO |
---|
[1322] | 910 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 911 | |
---|
| 912 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1691] | 913 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
[1346] | 914 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 915 | ELSE |
---|
| 916 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 917 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 918 | ENDIF |
---|
[1353] | 919 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 920 | |
---|
| 921 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 922 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 923 | ! |
---|
| 924 | !-- Write buffer contents to disc immediately |
---|
[1808] | 925 | FLUSH( 15 ) |
---|
[1] | 926 | |
---|
| 927 | ENDIF |
---|
| 928 | |
---|
| 929 | ! |
---|
| 930 | !-- formats |
---|
[2299] | 931 | 100 FORMAT (///'1D run control output:'/ & |
---|
[1] | 932 | &'------------------------------'// & |
---|
[2965] | 933 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
[1] | 934 | &'-------------------------------------------------------------') |
---|
[2965] | 935 | 101 FORMAT (I7,1X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
[1] | 936 | |
---|
| 937 | |
---|
| 938 | END SUBROUTINE run_control_1d |
---|
| 939 | |
---|
| 940 | |
---|
| 941 | |
---|
| 942 | !------------------------------------------------------------------------------! |
---|
| 943 | ! Description: |
---|
| 944 | ! ------------ |
---|
[1682] | 945 | !> Compute the time step w.r.t. the diffusion criterion |
---|
[1] | 946 | !------------------------------------------------------------------------------! |
---|
[4449] | 947 | |
---|
[1682] | 948 | SUBROUTINE timestep_1d |
---|
[1] | 949 | |
---|
| 950 | IMPLICIT NONE |
---|
| 951 | |
---|
[2338] | 952 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 953 | |
---|
[2338] | 954 | REAL(wp) :: dt_diff !< time step accorind to diffusion criterion |
---|
[3083] | 955 | REAL(wp) :: dt_old !< previous time step |
---|
[2338] | 956 | REAL(wp) :: fac !< factor of criterion |
---|
| 957 | REAL(wp) :: value !< auxiliary variable |
---|
[1] | 958 | |
---|
| 959 | ! |
---|
[3083] | 960 | !-- Save previous time step |
---|
| 961 | dt_old = dt_1d |
---|
| 962 | |
---|
| 963 | ! |
---|
[1] | 964 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 965 | !-- criterion. At nzb+1 the half grid length is used. |
---|
[3083] | 966 | fac = 0.125 |
---|
[1] | 967 | dt_diff = dt_max_1d |
---|
| 968 | DO k = nzb+2, nzt |
---|
[1353] | 969 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 970 | dt_diff = MIN( value, dt_diff ) |
---|
| 971 | ENDDO |
---|
[1353] | 972 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 973 | dt_1d = MIN( value, dt_diff ) |
---|
| 974 | |
---|
| 975 | ! |
---|
[3083] | 976 | !-- Limit the new time step to a maximum of 10 times the previous time step |
---|
| 977 | dt_1d = MIN( dt_old * 10.0_wp, dt_1d ) |
---|
| 978 | |
---|
| 979 | ! |
---|
[1] | 980 | !-- Set flag when the time step becomes too small |
---|
[3083] | 981 | IF ( dt_1d < ( 1.0E-15_wp * dt_max_1d ) ) THEN |
---|
[1] | 982 | stop_dt_1d = .TRUE. |
---|
[254] | 983 | |
---|
[3046] | 984 | WRITE( message_string, * ) 'timestep has exceeded the lower limit&', & |
---|
[254] | 985 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 986 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
[4449] | 987 | |
---|
[1] | 988 | ENDIF |
---|
| 989 | |
---|
| 990 | END SUBROUTINE timestep_1d |
---|
| 991 | |
---|
| 992 | |
---|
| 993 | |
---|
| 994 | !------------------------------------------------------------------------------! |
---|
| 995 | ! Description: |
---|
| 996 | ! ------------ |
---|
[1682] | 997 | !> List output of profiles from the 1D-model |
---|
[1] | 998 | !------------------------------------------------------------------------------! |
---|
[4449] | 999 | |
---|
[1682] | 1000 | SUBROUTINE print_1d_model |
---|
[1] | 1001 | |
---|
| 1002 | IMPLICIT NONE |
---|
| 1003 | |
---|
[2338] | 1004 | INTEGER(iwp) :: k !< loop parameter |
---|
[1] | 1005 | |
---|
[2338] | 1006 | LOGICAL, SAVE :: write_first = .TRUE. !< flag for writing header |
---|
[1] | 1007 | |
---|
| 1008 | |
---|
| 1009 | IF ( myid == 0 ) THEN |
---|
| 1010 | ! |
---|
| 1011 | !-- Open list output file for profiles from the 1D-model |
---|
| 1012 | CALL check_open( 17 ) |
---|
| 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Write Header |
---|
[2338] | 1016 | IF ( write_first ) THEN |
---|
| 1017 | WRITE ( 17, 100 ) TRIM( run_description_header ) |
---|
| 1018 | write_first = .FALSE. |
---|
| 1019 | ENDIF |
---|
[1] | 1020 | |
---|
| 1021 | ! |
---|
| 1022 | !-- Write the values |
---|
[2338] | 1023 | WRITE ( 17, 104 ) TRIM( simulated_time_chr ) |
---|
| 1024 | WRITE ( 17, 101 ) |
---|
[1] | 1025 | WRITE ( 17, 102 ) |
---|
| 1026 | WRITE ( 17, 101 ) |
---|
| 1027 | DO k = nzt+1, nzb, -1 |
---|
| 1028 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
[2696] | 1029 | rif1d(k), km1d(k), kh1d(k), l1d(k), diss1d(k) |
---|
[1] | 1030 | ENDDO |
---|
| 1031 | WRITE ( 17, 101 ) |
---|
| 1032 | WRITE ( 17, 102 ) |
---|
| 1033 | WRITE ( 17, 101 ) |
---|
| 1034 | |
---|
| 1035 | ! |
---|
| 1036 | !-- Write buffer contents to disc immediately |
---|
[1808] | 1037 | FLUSH( 17 ) |
---|
[1] | 1038 | |
---|
| 1039 | ENDIF |
---|
| 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- Formats |
---|
[2338] | 1043 | 100 FORMAT ('# ',A/'#',10('-')/'# 1d-model profiles') |
---|
| 1044 | 104 FORMAT (//'# Time: ',A) |
---|
[2696] | 1045 | 101 FORMAT ('#',111('-')) |
---|
| 1046 | 102 FORMAT ('# k zu u v pt e ', & |
---|
| 1047 | 'rif Km Kh l diss ') |
---|
| 1048 | 103 FORMAT (1X,I4,1X,F7.1,9(1X,E10.3)) |
---|
[1] | 1049 | |
---|
| 1050 | |
---|
| 1051 | END SUBROUTINE print_1d_model |
---|
[2338] | 1052 | |
---|
| 1053 | |
---|
[3045] | 1054 | END MODULE |
---|