source: palm/trunk/DOC/app/chapter_4.1.html @ 160

Last change on this file since 160 was 160, checked in by steinfeld, 17 years ago

Update of chapter 4.1 of the palm documentation

  • Property svn:keywords set to Id
File size: 205.7 KB
RevLine 
[116]1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
[160]2<html><head>
[116]3
4
5
6
7
[153]8
9
[116]10 
11 
12 
13 
[153]14 
15 
[116]16  <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
17
18
19
20
[153]21
22
[116]23 
24 
25 
26 
[153]27 
28 
[160]29  <title>PALM chapter 4.1</title></head>
[153]30
[116]31<body>
32
33
34
35
[153]36
37
[116]38<h3><a name="chapter4.1"></a>4.1
39Initialization parameters</h3>
40
41
42
43
44
[153]45
46
[116]47<br>
48
49
50
51
[153]52
53
[116]54<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
55
56
57
58
[153]59
60
[116]61 <tbody>
62
63
64
65
66
[153]67
68
[116]69    <tr>
70
71
72
73
[153]74
75
[116]76 <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td>
77
78
79
80
81
[153]82
83
[116]84      <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
85
86
87
88
89
[153]90
91
[116]92      <td style="vertical-align: top;"> 
93     
94     
95     
96     
[153]97     
98     
[116]99      <p><b><font size="4">Default</font></b> <br>
100
101
102
103
[153]104
105
[116]106 <b><font size="4">value</font></b></p>
107
108
109
110
[153]111
112
[116]113 </td>
114
115
116
117
118
[153]119
120
[116]121      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
122
123
124
125
126
[153]127
128
[116]129    </tr>
130
131
132
133
[153]134
135
[116]136 <tr>
137
138
139
140
[153]141
142
[116]143 <td style="vertical-align: top;">
144     
145     
146     
147     
[153]148     
149     
[116]150      <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p>
151
152
153
154
155
[153]156
157
[116]158      </td>
159
160
161
162
[153]163
164
[116]165 <td style="vertical-align: top;">L</td>
166
167
168
169
170
[153]171
172
[116]173      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
174
175
176
177
[153]178
179
[116]180 <td style="vertical-align: top;"> 
181     
182     
183     
184     
[153]185     
186     
[116]187      <p style="font-style: normal;">Near-surface adjustment of the
188mixing length to the Prandtl-layer law.&nbsp; </p>
189
190
191
192
[153]193
194
[116]195 
196     
197     
198     
199     
[153]200     
201     
[116]202      <p>Usually
203the mixing length in LES models l<sub>LES</sub>
204depends (as in PALM) on the grid size and is possibly restricted
205further in case of stable stratification and near the lower wall (see
206parameter <a href="#wall_adjustment">wall_adjustment</a>).
207With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span>
208the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi
209is calculated
210and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>,
211l<sub>PR</sub>). This usually gives a decrease of the
212mixing length at
213the bottom boundary and considers the fact that eddy sizes
214decrease in the vicinity of the wall.&nbsp; </p>
215
216
217
218
[153]219
220
[116]221 
222     
223     
224     
225     
[153]226     
227     
[116]228      <p style="font-style: normal;"><b>Warning:</b> So
229far, there is
230no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> !&nbsp; </p>
231
232
233
234
235
[153]236
237
[116]238     
239     
240     
241     
[153]242     
243     
[116]244      <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the
245Prandtl-layer being
246switched on (see <a href="#prandtl_layer">prandtl_layer</a>)
247      <span style="font-style: italic;">'(u*)** 2+neumann'</span>
248should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>),
249otherwise the near-surface value of the TKE is not in agreement with
250the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz
251should provide the same value for K<sub>m</sub>). A warning
252is given,
253if this is not the case.</p>
254
255
256
257
[153]258
259
[116]260 </td>
261
262
263
264
[153]265
266
[116]267 </tr>
268
269
270
271
[153]272
273
[116]274 <tr>
275
276
277
278
279
[153]280
281
[116]282      <td style="vertical-align: top;"> 
283     
284     
285     
286     
[153]287     
288     
[116]289      <p><a name="alpha_surface"></a><b>alpha_surface</b></p>
290
291
292
293
294
[153]295
296
[116]297      </td>
298
299
300
301
[153]302
303
[116]304 <td style="vertical-align: top;">R<br>
305
306
307
308
[153]309
310
[116]311 </td>
312
313
314
315
316
[153]317
318
[116]319      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
320
321
322
323
[153]324
325
[116]326 </td>
327
328
329
330
331
[153]332
333
[116]334      <td style="vertical-align: top;"> 
335     
336     
337     
338     
[153]339     
340     
[116]341      <p style="font-style: normal;">Inclination of the model domain
342with respect to the horizontal (in degrees).&nbsp; </p>
343
344
345
346
[153]347
348
[116]349 
350     
351     
352     
353     
[153]354     
355     
[116]356      <p style="font-style: normal;">By means of <b>alpha_surface</b>
357the model domain can be inclined in x-direction with respect to the
358horizontal. In this way flows over inclined surfaces (e.g. drainage
359flows, gravity flows) can be simulated. In case of <b>alpha_surface
360      </b>/= <span style="font-style: italic;">0</span>
361the buoyancy term
362appears both in
363the equation of motion of the u-component and of the w-component.<br>
364
365
366
367
368
[153]369
370
[116]371      </p>
372
373
374
375
[153]376
377
[116]378 
379     
380     
381     
382     
[153]383     
384     
[116]385      <p style="font-style: normal;">An inclination
386is only possible in
387case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a>
388and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p>
389
390
391
392
393
[153]394
395
[116]396     
397     
398     
399     
[153]400     
401     
[116]402      <p>Runs with inclined surface still require additional
403user-defined code as well as modifications to the default code. Please
404ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM
405developer&nbsp; group</a>.</p>
406
407
408
409
[153]410
411
[116]412 </td>
413
414
415
416
[153]417
418
[116]419 </tr>
420
421
422
423
424
[153]425
426
[116]427    <tr>
428
429
430
431
[153]432
433
[116]434 <td style="vertical-align: top;"> 
435     
436     
437     
438     
[153]439     
440     
[116]441      <p><a name="bc_e_b"></a><b>bc_e_b</b></p>
442
443
444
445
[153]446
447
[116]448 </td>
449
450
451
452
453
[153]454
455
[116]456      <td style="vertical-align: top;">C * 20</td>
457
458
459
460
[153]461
462
[116]463 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
464
465
466
467
468
[153]469
470
[116]471      <td style="vertical-align: top;"> 
472     
473     
474     
475     
[153]476     
477     
[116]478      <p style="font-style: normal;">Bottom boundary condition of the
479TKE.&nbsp; </p>
480
481
482
483
[153]484
485
[116]486 
487     
488     
489     
490     
[153]491     
492     
[116]493      <p><b>bc_e_b</b> may be
494set to&nbsp;<span style="font-style: italic;">'neumann'</span>
495or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>.
496      <b>bc_e_b</b>
497= <span style="font-style: italic;">'neumann'</span>
498yields to
499e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated
500via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span>
501also yields to
502e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated
503diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if
504a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>).
505If this is not the case, a warning is given and <b>bc_e_b</b>
506is reset
507to <span style="font-style: italic;">'neumann'</span>.&nbsp;
508      </p>
509
510
511
512
[153]513
514
[116]515 
516     
517     
518     
519     
[153]520     
521     
[116]522      <p style="font-style: normal;">At the top
523boundary a Neumann
524boundary condition is generally used: (e(nz+1) = e(nz)).</p>
525
526
527
528
[153]529
530
[116]531 </td>
532
533
534
535
536
[153]537
538
[116]539    </tr>
540
541
542
543
[153]544
545
[116]546 <tr>
547
548
549
550
[153]551
552
[116]553 <td style="vertical-align: top;">
554     
555     
556     
557     
[153]558     
559     
[116]560      <p><a name="bc_lr"></a><b>bc_lr</b></p>
561
562
563
564
565
[153]566
567
[116]568      </td>
569
570
571
572
[153]573
574
[116]575 <td style="vertical-align: top;">C * 20</td>
576
577
578
579
580
[153]581
582
[116]583      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
584
585
586
587
588
[153]589
590
[116]591      <td style="vertical-align: top;">Boundary
592condition along x (for all quantities).<br>
593
594
595
596
[153]597
598
[116]599 <br>
600
601
602
603
604
[153]605
606
[116]607By default, a cyclic boundary condition is used along x.<br>
608
609
610
611
[153]612
613
[116]614 <br>
615
616
617
618
619
[153]620
621
[116]622      <span style="font-weight: bold;">bc_lr</span> may
623also be
624assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
625(inflow from left, outflow to the right) or <span style="font-style: italic;">'radiation/dirichlet'</span>
626(inflow from
627right, outflow to the left). This requires the multi-grid method to be
628used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
629and it also requires cyclic boundary conditions along y (see&nbsp;<a href="#bc_ns">bc_ns</a>).<br>
630
631
632
633
[153]634
635
[116]636 <br>
637
638
639
640
641
[153]642
643
[116]644In case of these non-cyclic lateral boundaries, a Dirichlet condition
645is used at the inflow for all quantities (initial vertical profiles -
646see <a href="#initializing_actions">initializing_actions</a>
647- are fixed during the run) except u, to which a Neumann (zero
648gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
649gradient) condition is used for the scalars. For perturbation
650pressure Neumann (zero gradient) conditions are assumed both at the
651inflow and at the outflow.<br>
652
653
654
655
[153]656
657
[116]658 <br>
659
660
661
662
663
[153]664
665
[116]666When using non-cyclic lateral boundaries, a filter is applied to the
667velocity field in the vicinity of the outflow in order to suppress any
668reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a>
669and <a href="#outflow_damping_width">outflow_damping_width</a>).<br>
670
671
672
673
674
[153]675
676
[116]677      <br>
678
679
680
681
682
[153]683
684
[116]685In order to maintain a turbulent state of the flow, it may be
686neccessary to continuously impose perturbations on the horizontal
687velocity field in the vicinity of the inflow throughout the whole run.
688This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>.
689The horizontal range to which these perturbations are applied is
690controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a>
691and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>.
692The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>,
693      <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,
694and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>.
695The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br>
696
697
698
699
700
[153]701
702
[116]703      <br>
704
705
706
707
708
[153]709
710
[116]711In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver
712at_all_substeps</a> = .T. should be used.<br>
713
714
715
716
[153]717
718
[116]719 <br>
720
721
722
723
[153]724
725
[116]726 <span style="font-weight: bold;">Note:</span><br>
727
728
729
730
731
[153]732
733
[116]734Using non-cyclic lateral boundaries requires very sensitive adjustments
735of the inflow (vertical profiles) and the bottom boundary conditions,
736e.g. a surface heating should not be applied near the inflow boundary
737because this may significantly disturb the inflow. Please check the
738model results very carefully.</td>
739
740
741
742
[153]743
744
[116]745 </tr>
746
747
748
749
[153]750
751
[116]752 <tr>
753
754
755
756
[153]757
758
[116]759 <td style="vertical-align: top;"> 
760     
761     
762     
763     
[153]764     
765     
[116]766      <p><a name="bc_ns"></a><b>bc_ns</b></p>
767
768
769
770
771
[153]772
773
[116]774      </td>
775
776
777
778
[153]779
780
[116]781 <td style="vertical-align: top;">C * 20</td>
782
783
784
785
786
[153]787
788
[116]789      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
790
791
792
793
794
[153]795
796
[116]797      <td style="vertical-align: top;">Boundary
798condition along y (for all quantities).<br>
799
800
801
802
[153]803
804
[116]805 <br>
806
807
808
809
810
[153]811
812
[116]813By default, a cyclic boundary condition is used along y.<br>
814
815
816
817
[153]818
819
[116]820 <br>
821
822
823
824
825
[153]826
827
[116]828      <span style="font-weight: bold;">bc_ns</span> may
829also be
830assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
831(inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'radiation/dirichlet'</span>
832(inflow from front ("south"), outflow to the rear ("north")). This
833requires the multi-grid
834method to be used for solving the Poisson equation for perturbation
835pressure (see <a href="chapter_4.2.html#psolver">psolver</a>)
836and it also requires cyclic boundary conditions along x (see<br>
837
838
839
840
[153]841
842
[116]843 <a href="#bc_lr">bc_lr</a>).<br>
844
845
846
847
[153]848
849
[116]850 <br>
851
852
853
854
855
[153]856
857
[116]858In case of these non-cyclic lateral boundaries, a Dirichlet condition
859is used at the inflow for all quantities (initial vertical profiles -
860see <a href="chapter_4.1.html#initializing_actions">initializing_actions</a>
861- are fixed during the run) except u, to which a Neumann (zero
862gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
863gradient) condition is used for the scalars. For perturbation
864pressure Neumann (zero gradient) conditions are assumed both at the
865inflow and at the outflow.<br>
866
867
868
869
[153]870
871
[116]872 <br>
873
874
875
876
877
[153]878
879
[116]880For further details regarding non-cyclic lateral boundary conditions
881see <a href="#bc_lr">bc_lr</a>.</td>
882
883
884
885
[153]886
887
[116]888 </tr>
889
890
891
892
893
[153]894
895
[116]896    <tr>
897
898
899
900
[153]901
902
[116]903 <td style="vertical-align: top;"> 
904     
905     
906     
907     
[153]908     
909     
[116]910      <p><a name="bc_p_b"></a><b>bc_p_b</b></p>
911
912
913
914
[153]915
916
[116]917 </td>
918
919
920
921
922
[153]923
924
[116]925      <td style="vertical-align: top;">C * 20</td>
926
927
928
929
[153]930
931
[116]932 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
933
934
935
936
937
[153]938
939
[116]940      <td style="vertical-align: top;"> 
941     
942     
943     
944     
[153]945     
946     
[116]947      <p style="font-style: normal;">Bottom boundary condition of the
948perturbation pressure.&nbsp; </p>
949
950
951
952
[153]953
954
[116]955 
956     
957     
958     
959     
[153]960     
961     
[116]962      <p>Allowed values
963are <span style="font-style: italic;">'dirichlet'</span>,
964      <span style="font-style: italic;">'neumann'</span>
965and <span style="font-style: italic;">'neumann+inhomo'</span>.&nbsp;
966      <span style="font-style: italic;">'dirichlet'</span>
967sets
968p(k=0)=0.0,&nbsp; <span style="font-style: italic;">'neumann'</span>
969sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span>
970corresponds to an extended Neumann boundary condition where heat flux
971or temperature inhomogeneities near the
972surface (pt(k=1))&nbsp; are additionally regarded (see Shen and
973LeClerc
974(1995, Q.J.R. Meteorol. Soc.,
9751209)). This condition is only permitted with the Prandtl-layer
976switched on (<a href="#prandtl_layer">prandtl_layer</a>),
977otherwise the run is terminated.&nbsp; </p>
978
979
980
981
[153]982
983
[116]984 
985     
986     
987     
988     
[153]989     
990     
[116]991      <p>Since
992at the bottom boundary of the model the vertical
993velocity
994disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>)
995dp/dz = 0 should
996be used, which leaves the vertical component w unchanged when the
997pressure solver is applied. Simultaneous use of the Neumann boundary
998conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>)
999usually yields no consistent solution for the perturbation pressure and
1000should be avoided.</p>
1001
1002
1003
1004
[153]1005
1006
[116]1007 </td>
1008
1009
1010
1011
[153]1012
1013
[116]1014 </tr>
1015
1016
1017
1018
[153]1019
1020
[116]1021 <tr>
1022
1023
1024
1025
[153]1026
1027
[116]1028 <td style="vertical-align: top;"> 
1029     
1030     
1031     
1032     
[153]1033     
1034     
[116]1035      <p><a name="bc_p_t"></a><b>bc_p_t</b></p>
1036
1037
1038
1039
1040
[153]1041
1042
[116]1043      </td>
1044
1045
1046
1047
[153]1048
1049
[116]1050 <td style="vertical-align: top;">C * 20</td>
1051
1052
1053
1054
1055
[153]1056
1057
[116]1058      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1059
1060
1061
1062
1063
[153]1064
1065
[116]1066      <td style="vertical-align: top;"> 
1067     
1068     
1069     
1070     
[153]1071     
1072     
[116]1073      <p style="font-style: normal;">Top boundary condition of the
1074perturbation pressure.&nbsp; </p>
1075
1076
1077
1078
[153]1079
1080
[116]1081 
1082     
1083     
1084     
1085     
[153]1086     
1087     
[116]1088      <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span>
1089(p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span>
1090(p(k=nz+1)=p(k=nz)).&nbsp; </p>
1091
1092
1093
1094
[153]1095
1096
[116]1097 
1098     
1099     
1100     
1101     
[153]1102     
1103     
[116]1104      <p>Simultaneous use
1105of Neumann boundary conditions both at the
1106top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>)
1107usually yields no consistent solution for the perturbation pressure and
1108should be avoided. Since at the bottom boundary the Neumann
1109condition&nbsp; is a good choice (see <a href="#bc_p_b">bc_p_b</a>),
1110a Dirichlet condition should be set at the top boundary.</p>
1111
1112
1113
1114
[153]1115
1116
[116]1117 </td>
1118
1119
1120
1121
1122
[153]1123
1124
[116]1125    </tr>
1126
1127
1128
1129
[153]1130
1131
[116]1132 <tr>
1133
1134
1135
1136
[153]1137
1138
[116]1139 <td style="vertical-align: top;">
1140     
1141     
1142     
1143     
[153]1144     
1145     
[116]1146      <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p>
1147
1148
1149
1150
1151
[153]1152
1153
[116]1154      </td>
1155
1156
1157
1158
[153]1159
1160
[116]1161 <td style="vertical-align: top;">C*20</td>
1162
1163
1164
1165
1166
[153]1167
1168
[116]1169      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1170
1171
1172
1173
1174
[153]1175
1176
[116]1177      <td style="vertical-align: top;"> 
1178     
1179     
1180     
1181     
[153]1182     
1183     
[116]1184      <p style="font-style: normal;">Bottom boundary condition of the
1185potential temperature.&nbsp; </p>
1186
1187
1188
1189
[153]1190
1191
[116]1192 
1193     
1194     
1195     
1196     
[153]1197     
1198     
[116]1199      <p>Allowed values
1200are <span style="font-style: italic;">'dirichlet'</span>
1201(pt(k=0) = const. = <a href="#pt_surface">pt_surface</a>
1202+ <a href="#pt_surface_initial_change">pt_surface_initial_change</a>;
1203the user may change this value during the run using user-defined code)
1204and <span style="font-style: italic;">'neumann'</span>
1205(pt(k=0)=pt(k=1)).&nbsp; <br>
1206
1207
1208
1209
1210
[153]1211
1212
[116]1213When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b>
1214= <span style="font-style: italic;">'neumann'</span>
1215must be used, because otherwise the resolved scale may contribute to
1216the surface flux so that a constant value cannot be guaranteed.</p>
1217
1218
1219
1220
[153]1221
1222
[116]1223     
1224     
1225     
1226     
[153]1227     
1228     
[116]1229      <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable,&nbsp;<a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p>
1230
1231
1232
1233
1234
[153]1235
1236
[116]1237      </td>
1238
1239
1240
1241
[153]1242
1243
[116]1244 </tr>
1245
1246
1247
1248
[153]1249
1250
[116]1251 <tr>
1252
1253
1254
1255
[153]1256
1257
[116]1258 <td style="vertical-align: top;"> 
1259     
1260     
1261     
1262     
[153]1263     
1264     
[116]1265      <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p>
1266
1267
1268
1269
1270
[153]1271
1272
[116]1273      </td>
1274
1275
1276
1277
[153]1278
1279
[116]1280 <td style="vertical-align: top;">C * 20</td>
1281
1282
1283
1284
1285
[153]1286
1287
[116]1288      <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td>
1289
1290
1291
1292
1293
[153]1294
1295
[116]1296      <td style="vertical-align: top;"> 
1297     
1298     
1299     
1300     
[153]1301     
1302     
[116]1303      <p style="font-style: normal;">Top boundary condition of the
1304potential temperature.&nbsp; </p>
1305
1306
1307
1308
[153]1309
1310
[116]1311 
1312     
1313     
1314     
1315     
[153]1316     
1317     
[116]1318      <p>Allowed are the
1319values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1)
1320does not change during the run), <span style="font-style: italic;">'neumann'</span>
1321(pt(k=nz+1)=pt(k=nz)), and <span style="font-style: italic;">'initial_gradient'</span>.
1322With the 'initial_gradient'-condition the value of the temperature
1323gradient at the top is
1324calculated from the initial
1325temperature profile (see <a href="#pt_surface">pt_surface</a>,
1326      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)
1327by bc_pt_t_val = (pt_init(k=nz+1) -
1328pt_init(k=nz)) / dzu(nz+1).<br>
1329
1330
1331
1332
1333
[153]1334
1335
[116]1336Using this value (assumed constant during the
1337run) the temperature boundary values are calculated as&nbsp; </p>
1338
1339
1340
1341
1342
[153]1343
1344
[116]1345     
1346     
1347     
1348     
[153]1349     
1350     
[116]1351      <ul>
1352
1353
1354
1355
[153]1356
1357
[116]1358 
1359       
1360       
1361       
1362       
[153]1363       
1364       
[116]1365        <p style="font-style: normal;">pt(k=nz+1) =
1366pt(k=nz) +
1367bc_pt_t_val * dzu(nz+1)</p>
1368
1369
1370
1371
[153]1372
1373
[116]1374 
1375     
1376     
1377     
1378     
[153]1379     
1380     
[116]1381      </ul>
1382
1383
1384
1385
[153]1386
1387
[116]1388 
1389     
1390     
1391     
1392     
[153]1393     
1394     
[116]1395      <p style="font-style: normal;">(up to k=nz the prognostic
1396equation for the temperature is solved).<br>
1397
1398
1399
1400
1401
[153]1402
1403
[116]1404When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>),
1405      <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span>
1406must be used, because otherwise the resolved scale may contribute to
1407the top flux so that a constant value cannot be guaranteed.</p>
1408
1409
1410
1411
[153]1412
1413
[116]1414 </td>
1415
1416
1417
1418
1419
[153]1420
1421
[116]1422    </tr>
1423
1424
1425
1426
[153]1427
1428
[116]1429 <tr>
1430
1431
1432
1433
[153]1434
1435
[116]1436 <td style="vertical-align: top;">
1437     
1438     
1439     
1440     
[153]1441     
1442     
[116]1443      <p><a name="bc_q_b"></a><b>bc_q_b</b></p>
1444
1445
1446
1447
1448
[153]1449
1450
[116]1451      </td>
1452
1453
1454
1455
[153]1456
1457
[116]1458 <td style="vertical-align: top;">C * 20</td>
1459
1460
1461
1462
1463
[153]1464
1465
[116]1466      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1467
1468
1469
1470
1471
[153]1472
1473
[116]1474      <td style="vertical-align: top;"> 
1475     
1476     
1477     
1478     
[153]1479     
1480     
[116]1481      <p style="font-style: normal;">Bottom boundary condition of the
1482specific humidity / total water content.&nbsp; </p>
1483
1484
1485
1486
[153]1487
1488
[116]1489 
1490     
1491     
1492     
1493     
[153]1494     
1495     
[116]1496      <p>Allowed
1497values are <span style="font-style: italic;">'dirichlet'</span>
1498(q(k=0) = const. = <a href="#q_surface">q_surface</a>
1499+ <a href="#q_surface_initial_change">q_surface_initial_change</a>;
1500the user may change this value during the run using user-defined code)
1501and <span style="font-style: italic;">'neumann'</span>
1502(q(k=0)=q(k=1)).&nbsp; <br>
1503
1504
1505
1506
1507
[153]1508
1509
[116]1510When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b>
1511= <span style="font-style: italic;">'neumann'</span>
1512must be used, because otherwise the resolved scale may contribute to
1513the surface flux so that a constant value cannot be guaranteed.</p>
1514
1515
1516
1517
1518
[153]1519
1520
[116]1521      </td>
1522
1523
1524
1525
[153]1526
1527
[116]1528 </tr>
1529
1530
1531
1532
[153]1533
1534
[116]1535 <tr>
1536
1537
1538
1539
[153]1540
1541
[116]1542 <td style="vertical-align: top;"> 
1543     
1544     
1545     
1546     
[153]1547     
1548     
[116]1549      <p><a name="bc_q_t"></a><b>bc_q_t</b></p>
1550
1551
1552
1553
1554
[153]1555
1556
[116]1557      </td>
1558
1559
1560
1561
[153]1562
1563
[116]1564 <td style="vertical-align: top;"><span style="font-style: italic;">C
1565* 20</span></td>
1566
1567
1568
1569
[153]1570
1571
[116]1572 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1573
1574
1575
1576
1577
[153]1578
1579
[116]1580      <td style="vertical-align: top;"> 
1581     
1582     
1583     
1584     
[153]1585     
1586     
[116]1587      <p style="font-style: normal;">Top boundary condition of the
1588specific humidity / total water content.&nbsp; </p>
1589
1590
1591
1592
[153]1593
1594
[116]1595 
1596     
1597     
1598     
1599     
[153]1600     
1601     
[116]1602      <p>Allowed
1603are the values <span style="font-style: italic;">'dirichlet'</span>
1604(q(k=nz) and q(k=nz+1) do
1605not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1606With the Neumann boundary
1607condition the value of the humidity gradient at the top is calculated
1608from the
1609initial humidity profile (see <a href="#q_surface">q_surface</a>,
1610      <a href="#q_vertical_gradient">q_vertical_gradient</a>)
1611by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br>
1612
1613
1614
1615
1616
[153]1617
1618
[116]1619Using this value (assumed constant during the run) the humidity
1620boundary values
1621are calculated as&nbsp; </p>
1622
1623
1624
1625
[153]1626
1627
[116]1628 
1629     
1630     
1631     
1632     
[153]1633     
1634     
[116]1635      <ul>
1636
1637
1638
1639
[153]1640
1641
[116]1642 
1643       
1644       
1645       
1646       
[153]1647       
1648       
[116]1649        <p style="font-style: normal;">q(k=nz+1) =q(k=nz) +
1650bc_q_t_val * dzu(nz+1)</p>
1651
1652
1653
1654
[153]1655
1656
[116]1657 
1658     
1659     
1660     
1661     
[153]1662     
1663     
[116]1664      </ul>
1665
1666
1667
1668
[153]1669
1670
[116]1671 
1672     
1673     
1674     
1675     
[153]1676     
1677     
[116]1678      <p style="font-style: normal;">(up tp k=nz the prognostic
1679equation for q is solved). </p>
1680
1681
1682
1683
[153]1684
1685
[116]1686 </td>
1687
1688
1689
1690
[153]1691
1692
[116]1693 </tr>
1694
1695
1696
1697
[153]1698
1699
[116]1700 <tr>
1701
1702
1703
1704
1705
[153]1706
1707
[116]1708      <td style="vertical-align: top;"> 
1709     
1710     
1711     
1712     
[153]1713     
1714     
[116]1715      <p><a name="bc_s_b"></a><b>bc_s_b</b></p>
1716
1717
1718
1719
[153]1720
1721
[116]1722 </td>
1723
1724
1725
1726
1727
[153]1728
1729
[116]1730      <td style="vertical-align: top;">C * 20</td>
1731
1732
1733
1734
[153]1735
1736
[116]1737 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1738
1739
1740
1741
1742
[153]1743
1744
[116]1745      <td style="vertical-align: top;"> 
1746     
1747     
1748     
1749     
[153]1750     
1751     
[116]1752      <p style="font-style: normal;">Bottom boundary condition of the
1753scalar concentration.&nbsp; </p>
1754
1755
1756
1757
[153]1758
1759
[116]1760 
1761     
1762     
1763     
1764     
[153]1765     
1766     
[116]1767      <p>Allowed values
1768are <span style="font-style: italic;">'dirichlet'</span>
1769(s(k=0) = const. = <a href="#s_surface">s_surface</a>
1770+ <a href="#s_surface_initial_change">s_surface_initial_change</a>;
1771the user may change this value during the run using user-defined code)
1772and <span style="font-style: italic;">'neumann'</span>
1773(s(k=0) =
1774s(k=1)).&nbsp; <br>
1775
1776
1777
1778
1779
[153]1780
1781
[116]1782When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b>
1783= <span style="font-style: italic;">'neumann'</span>
1784must be used, because otherwise the resolved scale may contribute to
1785the surface flux so that a constant value cannot be guaranteed.</p>
1786
1787
1788
1789
1790
[153]1791
1792
[116]1793      </td>
1794
1795
1796
1797
[153]1798
1799
[116]1800 </tr>
1801
1802
1803
1804
[153]1805
1806
[116]1807 <tr>
1808
1809
1810
1811
[153]1812
1813
[116]1814 <td style="vertical-align: top;"> 
1815     
1816     
1817     
1818     
[153]1819     
1820     
[116]1821      <p><a name="bc_s_t"></a><b>bc_s_t</b></p>
1822
1823
1824
1825
1826
[153]1827
1828
[116]1829      </td>
1830
1831
1832
1833
[153]1834
1835
[116]1836 <td style="vertical-align: top;">C * 20</td>
1837
1838
1839
1840
1841
[153]1842
1843
[116]1844      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1845
1846
1847
1848
1849
[153]1850
1851
[116]1852      <td style="vertical-align: top;"> 
1853     
1854     
1855     
1856     
[153]1857     
1858     
[116]1859      <p style="font-style: normal;">Top boundary condition of the
1860scalar concentration.&nbsp; </p>
1861
1862
1863
1864
[153]1865
1866
[116]1867 
1868     
1869     
1870     
1871     
[153]1872     
1873     
[116]1874      <p>Allowed are the
1875values <span style="font-style: italic;">'dirichlet'</span>
1876(s(k=nz) and s(k=nz+1) do
1877not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1878With the Neumann boundary
1879condition the value of the scalar concentration gradient at the top is
1880calculated
1881from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>)
1882by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br>
1883
1884
1885
1886
1887
[153]1888
1889
[116]1890Using this value (assumed constant during the run) the concentration
1891boundary values
1892are calculated as </p>
1893
1894
1895
1896
[153]1897
1898
[116]1899 
1900     
1901     
1902     
1903     
[153]1904     
1905     
[116]1906      <ul>
1907
1908
1909
1910
[153]1911
1912
[116]1913 
1914       
1915       
1916       
1917       
[153]1918       
1919       
[116]1920        <p style="font-style: normal;">s(k=nz+1) = s(k=nz) +
1921bc_s_t_val * dzu(nz+1)</p>
1922
1923
1924
1925
[153]1926
1927
[116]1928 
1929     
1930     
1931     
1932     
[153]1933     
1934     
[116]1935      </ul>
1936
1937
1938
1939
[153]1940
1941
[116]1942 
1943     
1944     
1945     
1946     
[153]1947     
1948     
[116]1949      <p style="font-style: normal;">(up to k=nz the prognostic
1950equation for the scalar concentration is
1951solved).</p>
1952
1953
1954
1955
[153]1956
1957
[116]1958 </td>
1959
1960
1961
1962
[153]1963
1964
[116]1965 </tr>
1966
1967
1968
1969
[153]1970
1971
[116]1972 <tr>
1973
1974
1975
1976
[153]1977
1978
[116]1979      <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td>
1980
1981
1982
1983
[153]1984
1985
[116]1986      <td style="vertical-align: top;">C * 20</td>
1987
1988
1989
1990
[153]1991
1992
[116]1993      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1994
1995
1996
1997
[153]1998
1999
[116]2000      <td style="vertical-align: top;">
2001     
2002     
2003     
2004     
[153]2005     
2006     
[116]2007      <p style="font-style: normal;">Top boundary condition of the salinity.&nbsp; </p>
2008
2009
2010
2011
[153]2012
2013
[116]2014 
2015     
2016     
2017     
2018     
[153]2019     
2020     
[116]2021      <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p>
2022
2023
2024
2025
[153]2026
2027
[116]2028     
2029     
2030     
2031     
[153]2032     
2033     
[116]2034      <p style="font-style: normal;">Allowed are the
2035values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1)
2036does not change during the run) and <span style="font-style: italic;">'neumann'</span>
2037(sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>.&nbsp;<br>
2038
2039
2040
2041
[153]2042
2043
[116]2044      <br>
2045
2046
2047
2048
2049
[153]2050
2051
[116]2052When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>),
2053      <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span>
2054must be used, because otherwise the resolved scale may contribute to
2055the top flux so that a constant value cannot be guaranteed.</p>
2056
2057
2058
2059
[153]2060
2061
[116]2062      </td>
2063
2064
2065
2066
[153]2067
2068
[116]2069    </tr>
2070
2071
2072
2073
[153]2074
2075
[116]2076    <tr>
2077
2078
2079
2080
[153]2081
2082
[116]2083 <td style="vertical-align: top;"> 
2084     
2085     
2086     
2087     
[153]2088     
2089     
[116]2090      <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p>
2091
2092
2093
2094
2095
[153]2096
2097
[116]2098      </td>
2099
2100
2101
2102
[153]2103
2104
[116]2105 <td style="vertical-align: top;">C * 20</td>
2106
2107
2108
2109
2110
[153]2111
2112
[116]2113      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2114
2115
2116
2117
2118
[153]2119
2120
[116]2121      <td style="vertical-align: top;"> 
2122     
2123     
2124     
2125     
[153]2126     
2127     
[116]2128      <p style="font-style: normal;">Bottom boundary condition of the
2129horizontal velocity components u and v.&nbsp; </p>
2130
2131
2132
2133
[153]2134
2135
[116]2136 
2137     
2138     
2139     
2140     
[153]2141     
2142     
[116]2143      <p>Allowed
2144values are <span style="font-style: italic;">'dirichlet' </span>and
2145      <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>
2146= <span style="font-style: italic;">'dirichlet'</span>
2147yields the
2148no-slip condition with u=v=0 at the bottom. Due to the staggered grid
2149u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a>
2150(below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 *
2151dz. u=v=0 at the bottom is guaranteed using mirror boundary
2152condition:&nbsp; </p>
2153
2154
2155
2156
[153]2157
2158
[116]2159 
2160     
2161     
2162     
2163     
[153]2164     
2165     
[116]2166      <ul>
2167
2168
2169
2170
[153]2171
2172
[116]2173 
2174       
2175       
2176       
2177       
[153]2178       
2179       
[116]2180        <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = -
2181v(k=1)</p>
2182
2183
2184
2185
[153]2186
2187
[116]2188 
2189     
2190     
2191     
2192     
[153]2193     
2194     
[116]2195      </ul>
2196
2197
2198
2199
[153]2200
2201
[116]2202 
2203     
2204     
2205     
2206     
[153]2207     
2208     
[116]2209      <p style="font-style: normal;">The
2210Neumann boundary condition
2211yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) =
2212v(k=1).
2213With Prandtl - layer switched on, the free-slip condition is not
2214allowed (otherwise the run will be terminated)<font color="#000000">.</font></p>
2215
2216
2217
2218
2219
[153]2220
2221
[116]2222      </td>
2223
2224
2225
2226
[153]2227
2228
[116]2229 </tr>
2230
2231
2232
2233
[153]2234
2235
[116]2236 <tr>
2237
2238
2239
2240
[153]2241
2242
[116]2243 <td style="vertical-align: top;"> 
2244     
2245     
2246     
2247     
[153]2248     
2249     
[116]2250      <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p>
2251
2252
2253
2254
2255
[153]2256
2257
[116]2258      </td>
2259
2260
2261
2262
[153]2263
2264
[116]2265 <td style="vertical-align: top;">C * 20</td>
2266
2267
2268
2269
2270
[153]2271
2272
[116]2273      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2274
2275
2276
2277
2278
[153]2279
2280
[116]2281      <td style="vertical-align: top;"> 
2282     
2283     
2284     
2285     
[153]2286     
2287     
[116]2288      <p style="font-style: normal;">Top boundary condition of the
2289horizontal velocity components u and v.&nbsp; </p>
2290
2291
2292
2293
[153]2294
2295
[116]2296 
2297     
2298     
2299     
2300     
[153]2301     
2302     
[116]2303      <p>Allowed
[132]2304values are <span style="font-style: italic;">'dirichlet'</span>, <span style="font-style: italic;">'dirichlet_0'</span>
[116]2305and <span style="font-style: italic;">'neumann'</span>.
2306The
2307Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) =
2308vg(nz+1),
2309Neumann condition yields the free-slip condition with u(k=nz+1) =
2310u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations
[132]2311for the velocities are solved). The special condition&nbsp;<span style="font-style: italic;">'dirichlet_0'</span> can be used for channel flow, it yields the no-slip condition u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) =
2312vg(nz+1) = 0.</p>
[116]2313
2314
2315
2316
[153]2317
2318
[116]2319     
2320     
2321     
2322     
[153]2323     
2324     
[116]2325      <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a>&nbsp;is internally set ('neumann') and does not need to be prescribed.</p>
2326
2327
2328
2329
[153]2330
2331
[116]2332 </td>
2333
2334
2335
2336
[153]2337
2338
[116]2339 </tr>
2340
2341
2342
2343
[153]2344
2345
[116]2346 <tr>
2347
2348
2349
2350
[153]2351
2352
[116]2353      <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td>
2354
2355
2356
2357
[153]2358
2359
[116]2360      <td style="vertical-align: top;">R</td>
2361
2362
2363
2364
[153]2365
2366
[116]2367      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
2368
2369
2370
2371
[153]2372
2373
[116]2374      <td style="vertical-align: top;">
2375     
2376     
2377     
2378     
[153]2379     
2380     
[116]2381      <p>Kinematic salinity flux near the surface (in psu m/s).&nbsp;</p>
2382
2383
2384
2385
[153]2386
2387
[116]2388This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
2389     
2390     
2391     
2392     
[153]2393     
2394     
[116]2395      <p>The
2396respective salinity flux value is used
2397as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
2398condition must be used for the salinity, which is currently the only available condition.<br>
2399
2400
2401
2402
[153]2403
2404
[116]2405 </p>
2406
2407
2408
2409
[153]2410
2411
[116]2412 </td>
2413
2414
2415
2416
[153]2417
2418
[116]2419    </tr>
2420
2421
2422
2423
[153]2424
2425
[116]2426    <tr>
2427
2428
2429
2430
2431
[153]2432
2433
[116]2434      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td>
2435
2436
2437
2438
2439
[153]2440
2441
[116]2442      <td style="vertical-align: top;">R</td>
2443
2444
2445
2446
[153]2447
2448
[116]2449 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2450
2451
2452
2453
[153]2454
2455
[116]2456 <td>Height
2457of a single building in m.<br>
2458
2459
2460
2461
[153]2462
2463
[116]2464 <br>
2465
2466
2467
2468
[153]2469
2470
[116]2471 <span style="font-weight: bold;">building_height</span> must
2472be less than the height of the model domain. This parameter requires
2473the use of&nbsp;<a href="#topography">topography</a>
2474= <span style="font-style: italic;">'single_building'</span>.</td>
2475
2476
2477
2478
2479
[153]2480
2481
[116]2482    </tr>
2483
2484
2485
2486
[153]2487
2488
[116]2489 <tr>
2490
2491
2492
2493
[153]2494
2495
[116]2496 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td>
2497
2498
2499
2500
2501
[153]2502
2503
[116]2504      <td style="vertical-align: top;">R</td>
2505
2506
2507
2508
[153]2509
2510
[116]2511 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2512
2513
2514
2515
[153]2516
2517
[116]2518 <td><span style="font-style: italic;"></span>Width of a single
2519building in m.<br>
2520
2521
2522
2523
[153]2524
2525
[116]2526 <br>
2527
2528
2529
2530
2531
[153]2532
2533
[116]2534Currently, <span style="font-weight: bold;">building_length_x</span>
2535must be at least <span style="font-style: italic;">3
2536*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a>
2537      </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>.
2538This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2539= <span style="font-style: italic;">'single_building'</span>.</td>
2540
2541
2542
2543
2544
[153]2545
2546
[116]2547    </tr>
2548
2549
2550
2551
[153]2552
2553
[116]2554 <tr>
2555
2556
2557
2558
[153]2559
2560
[116]2561 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td>
2562
2563
2564
2565
2566
[153]2567
2568
[116]2569      <td style="vertical-align: top;">R</td>
2570
2571
2572
2573
[153]2574
2575
[116]2576 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2577
2578
2579
2580
[153]2581
2582
[116]2583 <td>Depth
2584of a single building in m.<br>
2585
2586
2587
2588
[153]2589
2590
[116]2591 <br>
2592
2593
2594
2595
2596
[153]2597
2598
[116]2599Currently, <span style="font-weight: bold;">building_length_y</span>
2600must be at least <span style="font-style: italic;">3
2601*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a></span>. This parameter requires
2602the use of&nbsp;<a href="#topography">topography</a>
2603= <span style="font-style: italic;">'single_building'</span>.</td>
2604
2605
2606
2607
2608
[153]2609
2610
[116]2611    </tr>
2612
2613
2614
2615
[153]2616
2617
[116]2618 <tr>
2619
2620
2621
2622
[153]2623
2624
[116]2625 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td>
2626
2627
2628
2629
2630
[153]2631
2632
[116]2633      <td style="vertical-align: top;">R</td>
2634
2635
2636
2637
[153]2638
2639
[116]2640 <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td>
2641
2642
2643
2644
2645
[153]2646
2647
[116]2648      <td>x-coordinate of the left building wall (distance between the
2649left building wall and the left border of the model domain) in m.<br>
2650
2651
2652
2653
2654
[153]2655
2656
[116]2657      <br>
2658
2659
2660
2661
2662
[153]2663
2664
[116]2665Currently, <span style="font-weight: bold;">building_wall_left</span>
2666must be at least <span style="font-style: italic;">1
2667*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a>&nbsp;
2668- 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a></span>.
2669This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2670= <span style="font-style: italic;">'single_building'</span>.<br>
2671
2672
2673
2674
2675
[153]2676
2677
[116]2678      <br>
2679
2680
2681
2682
2683
[153]2684
2685
[116]2686The default value&nbsp;<span style="font-weight: bold;">building_wall_left</span>
2687= <span style="font-style: italic;">( ( <a href="#nx">nx</a>&nbsp;+
26881 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a> ) / 2</span>
[134]2689centers the building in x-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
[116]2690
2691
2692
2693
[153]2694
2695
[116]2696 </tr>
2697
2698
2699
2700
[153]2701
2702
[116]2703 <tr>
2704
2705
2706
2707
2708
[153]2709
2710
[116]2711      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td>
2712
2713
2714
2715
2716
[153]2717
2718
[116]2719      <td style="vertical-align: top;">R</td>
2720
2721
2722
2723
[153]2724
2725
[116]2726 <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td>
2727
2728
2729
2730
2731
[153]2732
2733
[116]2734      <td>y-coordinate of the South building wall (distance between the
2735South building wall and the South border of the model domain) in m.<br>
2736
2737
2738
2739
2740
[153]2741
2742
[116]2743      <br>
2744
2745
2746
2747
2748
[153]2749
2750
[116]2751Currently, <span style="font-weight: bold;">building_wall_south</span>
2752must be at least <span style="font-style: italic;">1
2753*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a>&nbsp;
2754- 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a></span>.
2755This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2756= <span style="font-style: italic;">'single_building'</span>.<br>
2757
2758
2759
2760
2761
[153]2762
2763
[116]2764      <br>
2765
2766
2767
2768
2769
[153]2770
2771
[116]2772The default value&nbsp;<span style="font-weight: bold;">building_wall_south</span>
2773= <span style="font-style: italic;">( ( <a href="#ny">ny</a>&nbsp;+
27741 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a> ) / 2</span>
[134]2775centers the building in y-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
[116]2776
2777
2778
2779
[153]2780
2781
[116]2782 </tr>
2783
2784
2785
2786
[153]2787
2788
2789 <tr>
2790
[160]2791      <td style="vertical-align: top;"><a name="canopy_mode"></a><span style="font-weight: bold;">canopy_mode</span></td>
[153]2792
[160]2793      <td style="vertical-align: top;">C * 20</td>
[153]2794
[160]2795      <td style="vertical-align: top;"><span style="font-style: italic;">'block'</span></td>
[153]2796
[160]2797      <td style="vertical-align: top;">Canopy mode.<br>
[153]2798
2799      <br>
2800
2801      <font color="#000000">
[138]2802Besides using the default value, that will create a horizontally
2803homogeneous plant canopy that extends over the total horizontal
2804extension of the model domain, the user may add code to the user
2805interface subroutine <a href="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</a>
[153]2806to allow further canopy&nbsp;modes. <br>
[116]2807
[153]2808      <br>
[116]2809
[153]2810The setting of <a href="#canopy_mode">canopy_mode</a> becomes only active, if&nbsp;<a href="#plant_canopy">plant_canopy</a> has been set <span style="font-style: italic;">.T.</span> and a non-zero <a href="#drag_coefficient">drag_coefficient</a> has been defined.</font></td>
[116]2811
[153]2812    </tr>
[116]2813
[153]2814    <tr>
[116]2815
[153]2816
2817
2818
2819
2820
2821
[116]2822      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br>
2823
2824
2825
2826
2827
[153]2828
2829
[116]2830      </td>
2831
2832
2833
2834
[153]2835
2836
[116]2837 <td style="vertical-align: top;">L<br>
2838
2839
2840
2841
[153]2842
2843
[116]2844 </td>
2845
2846
2847
2848
2849
[153]2850
2851
[116]2852      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br>
2853
2854
2855
2856
[153]2857
2858
[116]2859 </td>
2860
2861
2862
2863
2864
[153]2865
2866
[116]2867      <td style="vertical-align: top;">Parameter to switch on
2868usage of cloud droplets.<br>
2869
2870
2871
2872
[153]2873
2874
[116]2875 <br>
2876
2877
2878
2879
2880
2881
2882
[153]2883      <span style="font-weight: bold;"></span><span style="font-family: monospace;"></span>
[116]2884
2885
[153]2886
2887
[116]2888Cloud droplets require to use&nbsp;particles (i.e. the NAMELIST group <span style="font-family: Courier New,Courier,monospace;">particles_par</span> has to be included in the parameter file<span style="font-family: monospace;"></span>). Then each particle is a representative for a certain number of droplets. The droplet
2889features (number of droplets, initial radius, etc.) can be steered with
2890the&nbsp; respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>).
2891The real number of initial droplets in a grid cell is equal to the
2892initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
2893      <span lang="en-GB"><font face="Thorndale, serif">and
2894      </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)
2895times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br>
2896
2897
2898
2899
2900
[153]2901
2902
[116]2903      <br>
2904
2905
2906
2907
2908
[153]2909
2910
[116]2911In case of using cloud droplets, the default condensation scheme in
2912PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a>
2913must be set <span style="font-style: italic;">.F.</span>.<br>
2914
2915
2916
2917
2918
[153]2919
2920
[116]2921      </td>
2922
2923
2924
2925
[153]2926
2927
[116]2928 </tr>
2929
2930
2931
2932
[153]2933
2934
[116]2935 <tr>
2936
2937
2938
2939
[153]2940
2941
[116]2942 <td style="vertical-align: top;"> 
2943     
2944     
2945     
2946     
[153]2947     
2948     
[116]2949      <p><a name="cloud_physics"></a><b>cloud_physics</b></p>
2950
2951
2952
2953
2954
[153]2955
2956
[116]2957      </td>
2958
2959
2960
2961
[153]2962
2963
[116]2964 <td style="vertical-align: top;">L<br>
2965
2966
2967
2968
[153]2969
2970
[116]2971 </td>
2972
2973
2974
2975
2976
[153]2977
2978
[116]2979      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
2980
2981
2982
2983
[153]2984
2985
[116]2986 <td style="vertical-align: top;"> 
2987     
2988     
2989     
2990     
[153]2991     
2992     
[116]2993      <p>Parameter to switch
2994on the condensation scheme.&nbsp; </p>
2995
2996
2997
2998
2999
[153]3000
3001
[116]3002For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations
3003for the
3004liquid water&nbsp;
3005content and the liquid water potential temperature are solved instead
3006of those for specific humidity and potential temperature. Note
3007that a grid volume is assumed to be either completely saturated or
3008completely
3009unsaturated (0%-or-100%-scheme). A simple precipitation scheme can
3010additionally be switched on with parameter <a href="#precipitation">precipitation</a>.
3011Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br>
3012
3013
3014
3015
[153]3016
3017
[116]3018 <b><br>
3019
3020
3021
3022
3023
[153]3024
3025
[116]3026cloud_physics =</b> <span style="font-style: italic;">.TRUE.
3027      </span>requires&nbsp;<a href="#humidity">humidity</a>
3028=<span style="font-style: italic;"> .TRUE.</span> .<br>
3029
3030
3031
3032
3033
[153]3034
3035
[116]3036Detailed information about the condensation scheme is given in the
3037description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud
3038physics module</a> (pdf-file, only in German).<br>
3039
3040
3041
3042
[153]3043
3044
[116]3045 <br>
3046
3047
3048
3049
3050
[153]3051
3052
[116]3053This condensation scheme is not allowed if cloud droplets are simulated
3054explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br>
3055
3056
3057
3058
3059
[153]3060
3061
[116]3062      </td>
3063
3064
3065
3066
[153]3067
3068
[116]3069 </tr>
3070
3071
3072
3073
[153]3074
3075
[116]3076 <tr>
3077
3078
3079
3080
[153]3081
3082
[116]3083 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td>
3084
3085
3086
3087
3088
[153]3089
3090
[116]3091      <td style="vertical-align: top;">L</td>
3092
3093
3094
3095
[153]3096
3097
[116]3098 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3099
3100
3101
3102
[153]3103
3104
[116]3105 <td>Conservation
3106of volume flow in x- and y-direction.<br>
3107
3108
3109
3110
[153]3111
3112
[116]3113 <br>
3114
3115
3116
3117
[153]3118
3119
[116]3120 <span style="font-weight: bold;">conserve_volume_flow</span>
3121= <span style="font-style: italic;">.TRUE.</span>
3122guarantees that the volume flow through the xz- or yz-cross-section of
3123the total model domain remains constant (equal to the initial value at
3124t=0) throughout the run.<br>
3125
3126
3127
3128
3129
[153]3130
3131
[116]3132      </td>
3133
3134
3135
3136
[153]3137
3138
[116]3139 </tr>
3140
3141
3142
3143
[153]3144
3145
[116]3146 <tr>
3147
[160]3148      <td style="vertical-align: top;"><a name="cthf"></a><span style="font-weight: bold;">cthf</span></td>
[116]3149
[160]3150      <td style="vertical-align: top;">R</td>
[116]3151
[160]3152      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[116]3153
[160]3154      <td style="vertical-align: top;">Average heat flux that is prescribed at the top of the plant canopy.<br>
[153]3155
3156
3157      <br>
3158
3159
3160If <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>, the user can prescribe a heat flux at the top of the plant canopy.<br>
3161
3162
3163It is assumed that solar radiation penetrates the canopy and warms the
3164foliage which, in turn, warms the air in contact with it. <br>
3165
3166
3167Note: Instead of using the value prescribed by <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#surface_heatflux">surface_heatflux</a>,
3168the near surface heat flux is determined from an exponential function
3169that is dependent on the cumulative leaf_area_index (Shaw and Schumann
3170(1992, Boundary Layer Meteorol., 61, 47-64)).</td>
3171
3172    </tr>
3173
3174    <tr>
3175
3176
3177
3178
3179
3180
[116]3181 <td style="vertical-align: top;"> 
3182     
3183     
3184     
3185     
[153]3186     
3187     
[116]3188      <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p>
3189
3190
3191
3192
3193
[153]3194
3195
[116]3196      </td>
3197
3198
3199
3200
[153]3201
3202
[116]3203 <td style="vertical-align: top;">L</td>
3204
3205
3206
3207
3208
[153]3209
3210
[116]3211      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td>
3212
3213
3214
3215
[153]3216
3217
[116]3218 <td style="vertical-align: top;"> 
3219     
3220     
3221     
3222     
[153]3223     
3224     
[116]3225      <p>Cuts off of
3226so-called overshoots, which can occur with the
3227upstream-spline scheme.&nbsp; </p>
3228
3229
3230
3231
[153]3232
3233
[116]3234 
3235     
3236     
3237     
3238     
[153]3239     
3240     
[116]3241      <p><font color="#000000">The cubic splines tend to overshoot in
3242case of discontinuous changes of variables between neighbouring grid
3243points.</font><font color="#ff0000"> </font><font color="#000000">This
3244may lead to errors in calculating the advection tendency.</font>
3245Choice
3246of <b>cut_spline_overshoot</b> = <i>.TRUE.</i>
3247(switched on by
3248default)
3249allows variable values not to exceed an interval defined by the
3250respective adjacent grid points. This interval can be adjusted
3251seperately for every prognostic variable (see initialization parameters
3252      <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,
3253etc.). This might be necessary in case that the
3254default interval has a non-tolerable effect on the model
3255results.&nbsp; </p>
3256
3257
3258
3259
[153]3260
3261
[116]3262 
3263     
3264     
3265     
3266     
[153]3267     
3268     
[116]3269      <p>Overshoots may also be removed
3270using the parameters <a href="#ups_limit_e">ups_limit_e</a>,
3271      <a href="#ups_limit_pt">ups_limit_pt</a>,
3272etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p>
3273
3274
3275
3276
3277
[153]3278
3279
[116]3280      </td>
3281
3282
3283
3284
[153]3285
3286
[116]3287 </tr>
3288
3289
3290
3291
[153]3292
3293
[116]3294 <tr>
3295
3296
3297
3298
[153]3299
3300
[116]3301 <td style="vertical-align: top;"> 
3302     
3303     
3304     
3305     
[153]3306     
3307     
[116]3308      <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p>
3309
3310
3311
3312
3313
[153]3314
3315
[116]3316      </td>
3317
3318
3319
3320
[153]3321
3322
[116]3323 <td style="vertical-align: top;">R</td>
3324
3325
3326
3327
3328
[153]3329
3330
[116]3331      <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td>
3332
3333
3334
3335
3336
[153]3337
3338
[116]3339      <td style="vertical-align: top;"> 
3340     
3341     
3342     
3343     
[153]3344     
3345     
[116]3346      <p>Height where
3347the damping layer begins in the 1d-model
3348(in m).&nbsp; </p>
3349
3350
3351
3352
[153]3353
3354
[116]3355 
3356     
3357     
3358     
3359     
[153]3360     
3361     
[116]3362      <p>This parameter is used to
3363switch on a damping layer for the
33641d-model, which is generally needed for the damping of inertia
3365oscillations. Damping is done by gradually increasing the value
3366of the eddy diffusivities about 10% per vertical grid level
3367(starting with the value at the height given by <b>damp_level_1d</b>,
3368or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1)
3369=
33701.1 * K<sub>m</sub>(k).
3371The values of K<sub>m</sub> are limited to 10 m**2/s at
3372maximum.&nbsp; <br>
3373
3374
3375
3376
3377
[153]3378
3379
[116]3380This parameter only comes into effect if the 1d-model is switched on
3381for
3382the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a>
3383= <span style="font-style: italic;">'set_1d-model_profiles'</span>.
3384      <br>
3385
3386
3387
3388
[153]3389
3390
[116]3391 </p>
3392
3393
3394
3395
[153]3396
3397
[116]3398 </td>
3399
3400
3401
3402
[153]3403
3404
[116]3405 </tr>
3406
3407
3408
3409
[153]3410
3411
[116]3412 <tr>
3413
3414
3415
3416
[153]3417
3418
[116]3419 <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br>
3420
3421
3422
3423
3424
[153]3425
3426
[116]3427      </td>
3428
3429
3430
3431
[153]3432
3433
[116]3434 <td style="vertical-align: top;">C*20<br>
3435
3436
3437
3438
3439
[153]3440
3441
[116]3442      </td>
3443
3444
3445
3446
[153]3447
3448
[116]3449 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
3450
3451
3452
3453
[153]3454
3455
[116]3456 <span style="font-style: italic;">model'</span><br>
3457
3458
3459
3460
[153]3461
3462
[116]3463 </td>
3464
3465
3466
3467
3468
[153]3469
3470
[116]3471      <td style="vertical-align: top;">Calculation method for
3472the energy dissipation term in the TKE equation of the 1d-model.<br>
3473
3474
3475
3476
3477
[153]3478
3479
[116]3480      <br>
3481
3482
3483
3484
3485
[153]3486
3487
[116]3488By default the dissipation is calculated as in the 3d-model using diss
3489= (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br>
3490
3491
3492
3493
[153]3494
3495
[116]3496 <br>
3497
3498
3499
3500
3501
[153]3502
3503
[116]3504Setting <span style="font-weight: bold;">dissipation_1d</span>
3505= <span style="font-style: italic;">'detering'</span>
3506forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br>
3507
3508
3509
3510
3511
[153]3512
3513
[116]3514      </td>
3515
3516
3517
3518
[153]3519
3520
[116]3521 </tr>
3522
3523
3524
3525
3526
3527
3528
[153]3529    <tr>
[116]3530
[160]3531      <td style="vertical-align: top;"><a name="drag_coefficient"></a><span style="font-weight: bold;">drag_coefficient</span></td>
[116]3532
[160]3533      <td style="vertical-align: top;">R</td>
[153]3534
[160]3535      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[153]3536
[160]3537      <td style="vertical-align: top;">Drag coefficient used in the plant canopy model.<br>
[153]3538
3539      <br>
3540
3541This parameter has to be non-zero, if the parameter <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>.</td>
3542
3543    </tr>
3544
3545    <tr>
3546
3547
3548
3549
3550
3551
[116]3552 <td style="vertical-align: top;"> 
3553     
3554     
3555     
3556     
[153]3557     
3558     
[116]3559      <p><a name="dt"></a><b>dt</b></p>
3560
3561
3562
3563
[153]3564
3565
[116]3566 </td>
3567
3568
3569
3570
3571
[153]3572
3573
[116]3574      <td style="vertical-align: top;">R</td>
3575
3576
3577
3578
[153]3579
3580
[116]3581 <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td>
3582
3583
3584
3585
3586
[153]3587
3588
[116]3589      <td style="vertical-align: top;"> 
3590     
3591     
3592     
3593     
[153]3594     
3595     
[116]3596      <p>Time step for
3597the 3d-model (in s).&nbsp; </p>
3598
3599
3600
3601
[153]3602
3603
[116]3604 
3605     
3606     
3607     
3608     
[153]3609     
3610     
[116]3611      <p>By default, (i.e.
3612if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>)
3613the value of the time step is calculating after each time step
3614(following the time step criteria) and
3615used for the next step.</p>
3616
3617
3618
3619
[153]3620
3621
[116]3622 
3623     
3624     
3625     
3626     
[153]3627     
3628     
[116]3629      <p>If the user assigns <b>dt</b>
3630a value, then the time step is
3631fixed to this value throughout the whole run (whether it fulfills the
3632time step
3633criteria or not). However, changes are allowed for restart runs,
3634because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run
3635parameter</a>.&nbsp; </p>
3636
3637
3638
3639
[153]3640
3641
[116]3642 
3643     
3644     
3645     
3646     
[153]3647     
3648     
[116]3649      <p>In case that the
3650calculated time step meets the condition<br>
3651
3652
3653
3654
[153]3655
3656
[116]3657 </p>
3658
3659
3660
3661
[153]3662
3663
[116]3664 
3665     
3666     
3667     
3668     
[153]3669     
3670     
[116]3671      <ul>
3672
3673
3674
3675
3676
[153]3677
3678
[116]3679       
3680       
3681       
3682       
[153]3683       
3684       
[116]3685        <p><b>dt</b> &lt; 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max
3686= 20.0)</p>
3687
3688
3689
3690
[153]3691
3692
[116]3693 
3694     
3695     
3696     
3697     
[153]3698     
3699     
[116]3700      </ul>
3701
3702
3703
3704
[153]3705
3706
[116]3707 
3708     
3709     
3710     
3711     
[153]3712     
3713     
[116]3714      <p>the simulation will be
3715aborted. Such situations usually arise
3716in case of any numerical problem / instability which causes a
3717non-realistic increase of the wind speed.&nbsp; </p>
3718
3719
3720
3721
[153]3722
3723
[116]3724 
3725     
3726     
3727     
3728     
[153]3729     
3730     
[116]3731      <p>A
3732small time step due to a large mean horizontal windspeed
3733speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
3734in order to spare CPU time.<br>
3735
3736
3737
3738
[153]3739
3740
[116]3741 </p>
3742
3743
3744
3745
[153]3746
3747
[116]3748 
3749     
3750     
3751     
3752     
[153]3753     
3754     
[116]3755      <p>If the
3756leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>)
3757a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a>
3758* dt_crit where dt_crit is the maximum timestep allowed by the CFL and
3759diffusion condition. Next it is examined whether dt_new exceeds or
3760falls below the
3761value of the previous timestep by at
3762least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span>
3763= dt_new is immediately used for the next timestep. If it is larger,
3764then <span style="font-weight: bold;">dt </span>=
37651.02 * dt_prev
3766(previous timestep) is used as the new timestep, however the time
3767step is only increased if the last change of the time step is dated
3768back at
3769least 30 iterations. If dt_new is located in the interval mentioned
3770above, then dt
3771does not change at all. By doing so, permanent time step changes as
3772well as large
3773sudden changes (increases) in the time step are avoided.</p>
3774
3775
3776
3777
[153]3778
3779
[116]3780 </td>
3781
3782
3783
3784
3785
[153]3786
3787
[116]3788    </tr>
3789
3790
3791
3792
[153]3793
3794
[116]3795 <tr>
3796
3797
3798
3799
[153]3800
3801
[116]3802 <td style="vertical-align: top;">
3803     
3804     
3805     
3806     
[153]3807     
3808     
[116]3809      <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p>
3810
3811
3812
3813
3814
[153]3815
3816
[116]3817      </td>
3818
3819
3820
3821
[153]3822
3823
[116]3824 <td style="vertical-align: top;">R</td>
3825
3826
3827
3828
3829
[153]3830
3831
[116]3832      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
3833
3834
3835
3836
3837
[153]3838
3839
[116]3840      <td style="vertical-align: top;"> 
3841     
3842     
3843     
3844     
[153]3845     
3846     
[116]3847      <p>Temporal
3848interval of vertical profile output of the 1D-model
3849(in s).&nbsp; </p>
3850
3851
3852
3853
[153]3854
3855
[116]3856 
3857     
3858     
3859     
3860     
[153]3861     
3862     
[116]3863      <p>Data are written in ASCII
3864format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>.
3865This parameter is only in effect if the 1d-model has been switched on
3866for the
3867initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
3868= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
3869
3870
3871
3872
3873
[153]3874
3875
[116]3876      </td>
3877
3878
3879
3880
[153]3881
3882
[116]3883 </tr>
3884
3885
3886
3887
[153]3888
3889
[116]3890 <tr>
3891
3892
3893
3894
[153]3895
3896
[116]3897 <td style="vertical-align: top;"> 
3898     
3899     
3900     
3901     
[153]3902     
3903     
[116]3904      <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p>
3905
3906
3907
3908
3909
[153]3910
3911
[116]3912      </td>
3913
3914
3915
3916
[153]3917
3918
[116]3919 <td style="vertical-align: top;">R</td>
3920
3921
3922
3923
3924
[153]3925
3926
[116]3927      <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td>
3928
3929
3930
3931
[153]3932
3933
[116]3934 <td style="vertical-align: top;"> 
3935     
3936     
3937     
3938     
[153]3939     
3940     
[116]3941      <p>Temporal interval of
3942runtime control output of the 1d-model
3943(in s).&nbsp; </p>
3944
3945
3946
3947
[153]3948
3949
[116]3950 
3951     
3952     
3953     
3954     
[153]3955     
3956     
[116]3957      <p>Data are written in ASCII
3958format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
3959This parameter is only in effect if the 1d-model is switched on for the
3960initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
3961= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
3962
3963
3964
3965
3966
[153]3967
3968
[116]3969      </td>
3970
3971
3972
3973
[153]3974
3975
[116]3976 </tr>
3977
3978
3979
3980
[153]3981
3982
[116]3983 <tr>
3984
3985
3986
3987
[153]3988
3989
[116]3990 <td style="vertical-align: top;"> 
3991     
3992     
3993     
3994     
[153]3995     
3996     
[116]3997      <p><a name="dx"></a><b>dx</b></p>
3998
3999
4000
4001
4002
[153]4003
4004
[116]4005      </td>
4006
4007
4008
4009
[153]4010
4011
[116]4012 <td style="vertical-align: top;">R</td>
4013
4014
4015
4016
4017
[153]4018
4019
[116]4020      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4021
4022
4023
4024
[153]4025
4026
[116]4027 <td style="vertical-align: top;"> 
4028     
4029     
4030     
4031     
[153]4032     
4033     
[116]4034      <p>Horizontal grid
4035spacing along the x-direction (in m).&nbsp; </p>
4036
4037
4038
4039
[153]4040
4041
[116]4042 
4043     
4044     
4045     
4046     
[153]4047     
4048     
[116]4049      <p>Along
4050x-direction only a constant grid spacing is allowed.</p>
4051
4052
4053
4054
[153]4055
4056
[116]4057     
4058     
4059     
4060     
[153]4061     
4062     
[116]4063      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4064and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4065
4066
4067
4068
[153]4069
4070
[116]4071 </td>
4072
4073
4074
4075
4076
[153]4077
4078
[116]4079    </tr>
4080
4081
4082
4083
[153]4084
4085
[116]4086 <tr>
4087
4088
4089
4090
[153]4091
4092
[116]4093 <td style="vertical-align: top;">
4094     
4095     
4096     
4097     
[153]4098     
4099     
[116]4100      <p><a name="dy"></a><b>dy</b></p>
4101
4102
4103
4104
4105
[153]4106
4107
[116]4108      </td>
4109
4110
4111
4112
[153]4113
4114
[116]4115 <td style="vertical-align: top;">R</td>
4116
4117
4118
4119
4120
[153]4121
4122
[116]4123      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4124
4125
4126
4127
[153]4128
4129
[116]4130 <td style="vertical-align: top;"> 
4131     
4132     
4133     
4134     
[153]4135     
4136     
[116]4137      <p>Horizontal grid
4138spacing along the y-direction (in m).&nbsp; </p>
4139
4140
4141
4142
[153]4143
4144
[116]4145 
4146     
4147     
4148     
4149     
[153]4150     
4151     
[116]4152      <p>Along y-direction only a constant grid spacing is allowed.</p>
4153
4154
4155
4156
[153]4157
4158
[116]4159     
4160     
4161     
4162     
[153]4163     
4164     
[116]4165      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4166and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4167
4168
4169
4170
[153]4171
4172
[116]4173 </td>
4174
4175
4176
4177
4178
[153]4179
4180
[116]4181    </tr>
4182
4183
4184
4185
[153]4186
4187
[116]4188 <tr>
4189
4190
4191
4192
[153]4193
4194
[116]4195 <td style="vertical-align: top;">
4196     
4197     
4198     
4199     
[153]4200     
4201     
[116]4202      <p><a name="dz"></a><b>dz</b></p>
4203
4204
4205
4206
4207
[153]4208
4209
[116]4210      </td>
4211
4212
4213
4214
[153]4215
4216
[116]4217 <td style="vertical-align: top;">R</td>
4218
4219
4220
4221
4222
[153]4223
4224
[116]4225      <td style="vertical-align: top;"><br>
4226
4227
4228
4229
[153]4230
4231
[116]4232 </td>
4233
4234
4235
4236
[153]4237
4238
[116]4239 <td style="vertical-align: top;"> 
4240     
4241     
4242     
4243     
[153]4244     
4245     
[116]4246      <p>Vertical grid
4247spacing (in m).&nbsp; </p>
4248
4249
4250
4251
[153]4252
4253
[116]4254 
4255     
4256     
4257     
4258     
[153]4259     
4260     
[116]4261      <p>This parameter must be
4262assigned by the user, because no
4263default value is given.<br>
4264
4265
4266
4267
[153]4268
4269
[116]4270 </p>
4271
4272
4273
4274
[153]4275
4276
[116]4277 
4278     
4279     
4280     
4281     
[153]4282     
4283     
[116]4284      <p>By default, the
4285model uses constant grid spacing along z-direction, but it can be
4286stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a>
4287and <a href="#dz_stretch_factor">dz_stretch_factor</a>.
4288In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br>
4289
4290
4291
4292
[153]4293
4294
[116]4295 </p>
4296
4297
4298
4299
[153]4300
4301
[116]4302 
4303     
4304     
4305     
4306     
[153]4307     
4308     
[116]4309      <p>Assuming
4310a constant <span style="font-weight: bold;">dz</span>,
4311the scalar levels (zu) are calculated directly by:&nbsp; </p>
4312
4313
4314
4315
4316
[153]4317
4318
[116]4319     
4320     
4321     
4322     
[153]4323     
4324     
[116]4325      <ul>
4326
4327
4328
4329
[153]4330
4331
[116]4332 
4333       
4334       
4335       
4336       
[153]4337       
4338       
[116]4339        <p>zu(0) = - dz * 0.5&nbsp; <br>
4340
4341
4342
4343
4344
[153]4345
4346
[116]4347zu(1) = dz * 0.5</p>
4348
4349
4350
4351
[153]4352
4353
[116]4354 
4355     
4356     
4357     
4358     
[153]4359     
4360     
[116]4361      </ul>
4362
4363
4364
4365
[153]4366
4367
[116]4368 
4369     
4370     
4371     
4372     
[153]4373     
4374     
[116]4375      <p>The w-levels lie
4376half between them:&nbsp; </p>
4377
4378
4379
4380
[153]4381
4382
[116]4383 
4384     
4385     
4386     
4387     
[153]4388     
4389     
[116]4390      <ul>
4391
4392
4393
4394
[153]4395
4396
[116]4397 
4398       
4399       
4400       
4401       
[153]4402       
4403       
[116]4404        <p>zw(k) =
4405( zu(k) + zu(k+1) ) * 0.5</p>
4406
4407
4408
4409
[153]4410
4411
[116]4412 
4413     
4414     
4415     
4416     
[153]4417     
4418     
[116]4419      </ul>
4420
4421
4422
4423
[153]4424
4425
[116]4426 </td>
4427
4428
4429
4430
[153]4431
4432
[116]4433 </tr>
4434
4435
4436
4437
4438
[153]4439
4440
[116]4441    <tr>
4442
4443
4444
4445
[153]4446
4447
[116]4448      <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td>
4449
4450
4451
4452
[153]4453
4454
[116]4455      <td style="vertical-align: top;">R</td>
4456
4457
4458
4459
[153]4460
4461
[116]4462      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4463
4464
4465
4466
[153]4467
4468
[116]4469      <td style="vertical-align: top;">Allowed maximum vertical grid
4470spacing (in m).<br>
4471
4472
4473
4474
[153]4475
4476
[116]4477      <br>
4478
4479
4480
4481
[153]4482
4483
[116]4484If the vertical grid is stretched
4485(see <a href="#dz_stretch_factor">dz_stretch_factor</a>
4486and <a href="#dz_stretch_level">dz_stretch_level</a>),
4487      <span style="font-weight: bold;">dz_max</span> can
4488be used to limit the vertical grid spacing.</td>
4489
4490
4491
4492
[153]4493
4494
[116]4495    </tr>
4496
4497
4498
4499
[153]4500
4501
[116]4502    <tr>
4503
4504
4505
4506
4507
[153]4508
4509
[116]4510      <td style="vertical-align: top;"> 
4511     
4512     
4513     
4514     
[153]4515     
4516     
[116]4517      <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p>
4518
4519
4520
4521
4522
[153]4523
4524
[116]4525      </td>
4526
4527
4528
4529
[153]4530
4531
[116]4532 <td style="vertical-align: top;">R</td>
4533
4534
4535
4536
4537
[153]4538
4539
[116]4540      <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td>
4541
4542
4543
4544
[153]4545
4546
[116]4547 <td style="vertical-align: top;"> 
4548     
4549     
4550     
4551     
[153]4552     
4553     
[116]4554      <p>Stretch factor for a
4555vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>).&nbsp;
4556      </p>
4557
4558
4559
4560
[153]4561
4562
[116]4563 
4564     
4565     
4566     
4567     
[153]4568     
4569     
[116]4570      <p>The stretch factor should not exceed a value of
4571approx. 1.10 -
45721.12, otherwise the discretization errors due to the stretched grid not
4573negligible any more. (refer Kalnay de Rivas)</p>
4574
4575
4576
4577
[153]4578
4579
[116]4580 </td>
4581
4582
4583
4584
[153]4585
4586
[116]4587 </tr>
4588
4589
4590
4591
4592
[153]4593
4594
[116]4595    <tr>
4596
4597
4598
4599
[153]4600
4601
[116]4602 <td style="vertical-align: top;"> 
4603     
4604     
4605     
4606     
[153]4607     
4608     
[116]4609      <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p>
4610
4611
4612
4613
4614
[153]4615
4616
[116]4617      </td>
4618
4619
4620
4621
[153]4622
4623
[116]4624 <td style="vertical-align: top;">R</td>
4625
4626
4627
4628
4629
[153]4630
4631
[116]4632      <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br>
4633
4634
4635
4636
[153]4637
4638
[116]4639 </td>
4640
4641
4642
4643
4644
[153]4645
4646
[116]4647      <td style="vertical-align: top;"> 
4648     
4649     
4650     
4651     
[153]4652     
4653     
[116]4654      <p>Height level
4655above/below which the grid is to be stretched
4656vertically (in m).&nbsp; </p>
4657
4658
4659
4660
[153]4661
4662
[116]4663 
4664     
4665     
4666     
4667     
[153]4668     
4669     
[116]4670      <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m)&nbsp;<span style="font-weight: bold;">above </span>which the grid is to be stretched
4671vertically. The vertical grid
4672spacings <a href="#dz">dz</a>
4673above this level are calculated as&nbsp; </p>
4674
4675
4676
4677
[153]4678
4679
[116]4680 
4681     
4682     
4683     
4684     
[153]4685     
4686     
[116]4687      <ul>
4688
4689
4690
4691
[153]4692
4693
[116]4694 
4695       
4696       
4697       
4698       
[153]4699       
4700       
[116]4701        <p><b>dz</b>(k+1)
4702= <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p>
4703
4704
4705
4706
4707
[153]4708
4709
[116]4710     
4711     
4712     
4713     
[153]4714     
4715     
[116]4716      </ul>
4717
4718
4719
4720
[153]4721
4722
[116]4723 
4724     
4725     
4726     
4727     
[153]4728     
4729     
[116]4730      <p>and used as spacings for the scalar levels (zu).
4731The
4732w-levels are then defined as:&nbsp; </p>
4733
4734
4735
4736
[153]4737
4738
[116]4739 
4740     
4741     
4742     
4743     
[153]4744     
4745     
[116]4746      <ul>
4747
4748
4749
4750
[153]4751
4752
[116]4753 
4754       
4755       
4756       
4757       
[153]4758       
4759       
[116]4760        <p>zw(k)
4761= ( zu(k) + zu(k+1) ) * 0.5.
4762
4763 
4764     
4765      </p>
4766
4767
[153]4768
4769
[116]4770     
4771     
[153]4772     
4773     
[116]4774      </ul>
4775
4776
[153]4777
4778
[116]4779     
4780     
[153]4781     
4782     
[116]4783      <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched
4784vertically. The vertical grid
4785spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as
4786
4787 
4788     
4789      </p>
4790
4791
[153]4792
4793
[116]4794     
4795     
[153]4796     
4797     
[116]4798      <ul>
4799
4800
[153]4801
4802
[116]4803       
4804       
[153]4805       
4806       
[116]4807        <p><b>dz</b>(k-1)
4808= <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p>
4809
4810
[153]4811
4812
[116]4813     
4814     
[153]4815     
4816     
[116]4817      </ul>
4818
4819
4820
4821
[153]4822
4823
[116]4824 </td>
4825
4826
4827
4828
[153]4829
4830
[116]4831 </tr>
4832
4833
4834
4835
4836
[153]4837
4838
[116]4839    <tr>
4840
4841
4842
[153]4843
4844
[116]4845      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td>
4846
4847
4848
[153]4849
4850
[116]4851      <td style="vertical-align: top;">R</td>
4852
4853
4854
[153]4855
4856
[116]4857      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
4858
4859
4860
[153]4861
4862
[116]4863      <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
4864
4865
4866
4867
4868
[153]4869
4870
[116]4871      <br>
4872
4873
4874
4875
[153]4876
4877
[116]4878This
4879option prescribes an initial&nbsp;subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if&nbsp;<a href="#km_constant">km_constant</a> is not set.</td>
4880
4881
4882
[153]4883
4884
[116]4885    </tr>
4886
4887
4888
[153]4889
4890
[116]4891    <tr>
4892
4893
4894
4895
[153]4896
4897
[116]4898 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td>
4899
4900
4901
4902
4903
[153]4904
4905
[116]4906      <td style="vertical-align: top;">R</td>
4907
4908
4909
4910
[153]4911
4912
[116]4913 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
4914
4915
4916
4917
[153]4918
4919
[116]4920 <td>Minimum
4921subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
4922
4923
4924
4925
4926
[153]4927
4928
[116]4929      <br>
4930
4931
4932
4933
[153]4934
4935
[116]4936This
4937option&nbsp;adds artificial viscosity to the flow by ensuring that
4938the
4939subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td>
4940
4941
4942
4943
[153]4944
4945
[116]4946 </tr>
4947
4948
4949
4950
4951
[153]4952
4953
[116]4954    <tr>
4955
4956
4957
4958
[153]4959
4960
[116]4961 <td style="vertical-align: top;"> 
4962     
4963     
4964     
4965     
[153]4966     
4967     
[116]4968      <p><a name="end_time_1d"></a><b>end_time_1d</b></p>
4969
4970
4971
4972
4973
[153]4974
4975
[116]4976      </td>
4977
4978
4979
4980
[153]4981
4982
[116]4983 <td style="vertical-align: top;">R</td>
4984
4985
4986
4987
4988
[153]4989
4990
[116]4991      <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br>
4992
4993
4994
4995
[153]4996
4997
[116]4998 </td>
4999
5000
5001
5002
5003
[153]5004
5005
[116]5006      <td style="vertical-align: top;"> 
5007     
5008     
5009     
5010     
[153]5011     
5012     
[116]5013      <p>Time to be
5014simulated for the 1d-model (in s).&nbsp; </p>
5015
5016
5017
5018
[153]5019
5020
[116]5021 
5022     
5023     
5024     
5025     
[153]5026     
5027     
[116]5028      <p>The
5029default value corresponds to a simulated time of 10 days.
5030Usually, after such a period the inertia oscillations have completely
5031decayed and the solution of the 1d-model can be regarded as stationary
5032(see <a href="#damp_level_1d">damp_level_1d</a>).
5033This parameter is only in effect if the 1d-model is switched on for the
5034initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
5035= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
5036
5037
5038
5039
5040
[153]5041
5042
[116]5043      </td>
5044
5045
5046
5047
[153]5048
5049
[116]5050 </tr>
5051
5052
5053
5054
[153]5055
5056
[116]5057 <tr>
5058
5059
5060
5061
[153]5062
5063
[116]5064 <td style="vertical-align: top;"> 
5065     
5066     
5067     
5068     
[153]5069     
5070     
[116]5071      <p><a name="fft_method"></a><b>fft_method</b></p>
5072
5073
5074
5075
5076
[153]5077
5078
[116]5079      </td>
5080
5081
5082
5083
[153]5084
5085
[116]5086 <td style="vertical-align: top;">C * 20</td>
5087
5088
5089
5090
5091
[153]5092
5093
[116]5094      <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;">
5095
5096
5097
5098
[153]5099
5100
[116]5101 <span style="font-style: italic;">specific'</span></td>
5102
5103
5104
5105
5106
[153]5107
5108
[116]5109      <td style="vertical-align: top;"> 
5110     
5111     
5112     
5113     
[153]5114     
5115     
[116]5116      <p>FFT-method to
5117be used.<br>
5118
5119
5120
5121
[153]5122
5123
[116]5124 </p>
5125
5126
5127
5128
[153]5129
5130
[116]5131 
5132     
5133     
5134     
5135     
[153]5136     
5137     
[116]5138      <p><br>
5139
5140
5141
5142
5143
[153]5144
5145
[116]5146The fast fourier transformation (FFT) is used for solving the
5147perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>)
5148and for calculating power spectra (see optional software packages,
5149section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p>
5150
5151
5152
5153
5154
[153]5155
5156
[116]5157     
5158     
5159     
5160     
[153]5161     
5162     
[116]5163      <p><br>
5164
5165
5166
5167
5168
[153]5169
5170
[116]5171By default, system-specific, optimized routines from external
5172vendor libraries are used. However, these are available only on certain
5173computers and there are more or less severe restrictions concerning the
5174number of gridpoints to be used with them.<br>
5175
5176
5177
5178
[153]5179
5180
[116]5181 </p>
5182
5183
5184
5185
[153]5186
5187
[116]5188 
5189     
5190     
5191     
5192     
[153]5193     
5194     
[116]5195      <p>There
5196are two other PALM internal methods available on every
5197machine (their respective source code is part of the PALM source code):</p>
5198
5199
5200
5201
5202
[153]5203
5204
[116]5205     
5206     
5207     
5208     
[153]5209     
5210     
[116]5211      <p>1.: The <span style="font-weight: bold;">Temperton</span>-method
5212from Clive Temperton (ECWMF) which is computationally very fast and
5213switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>.
5214The number of horizontal gridpoints (nx+1, ny+1) to be used with this
5215method must be composed of prime factors 2, 3 and 5.<br>
5216
5217
5218
5219
[153]5220
5221
[116]5222 </p>
5223
5224
5225
5226
5227
[153]5228
5229
[116]52302.: The <span style="font-weight: bold;">Singleton</span>-method
5231which is very slow but has no restrictions concerning the number of
5232gridpoints to be used with, switched on with <b>fft_method</b>
5233= <span style="font-style: italic;">'singleton-algorithm'</span>.
5234      </td>
5235
5236
5237
5238
[153]5239
5240
[116]5241 </tr>
5242
5243
5244
5245
[153]5246
5247
[116]5248 <tr>
5249
5250
5251
5252
[153]5253
5254
[116]5255 <td style="vertical-align: top;"> 
5256     
5257     
5258     
5259     
[153]5260     
5261     
[116]5262      <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p>
5263
5264
5265
5266
5267
[153]5268
5269
[116]5270      </td>
5271
5272
5273
5274
[153]5275
5276
[116]5277 <td style="vertical-align: top;">L</td>
5278
5279
5280
5281
5282
[153]5283
5284
[116]5285      <td style="vertical-align: top;"><i>.F.</i></td>
5286
5287
5288
5289
5290
[153]5291
5292
[116]5293      <td style="vertical-align: top;">Application of a
5294Galilei-transformation to the
5295coordinate
5296system of the model.<br>
5297
5298
5299
5300
[153]5301
5302
[116]5303     
5304     
5305     
5306     
[153]5307     
5308     
[116]5309      <p>With <b>galilei_transformation</b>
5310= <i>.T.,</i> a so-called
5311Galilei-transformation is switched on which ensures that the coordinate
5312system of the model is moved along with the geostrophical wind.
5313Alternatively, the model domain can be moved along with the averaged
5314horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>,
5315this can and will naturally change in time). With this method,
5316numerical inaccuracies of the Piascek - Williams - scheme (concerns in
5317particular the momentum advection) are minimized. Beyond that, in the
5318majority of cases the lower relative velocities in the moved system
5319permit a larger time step (<a href="#dt">dt</a>).
5320Switching the transformation on is only worthwhile if the geostrophical
5321wind (ug, vg)
5322and the averaged horizontal wind clearly deviate from the value 0. In
5323each case, the distance the coordinate system has been moved is written
5324to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
5325      </p>
5326
5327
5328
5329
[153]5330
5331
[116]5332 
5333     
5334     
5335     
5336     
[153]5337     
5338     
[116]5339      <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
5340and <a href="#bc_ns">bc_ns</a>), the specification
5341of a gestrophic
5342wind that is not constant with height
5343as well as e.g. stationary inhomogeneities at the bottom boundary do
5344not allow the use of this transformation.</p>
5345
5346
5347
5348
[153]5349
5350
[116]5351 </td>
5352
5353
5354
5355
[153]5356
5357
[116]5358 </tr>
5359
5360
5361
5362
5363
[153]5364
5365
[116]5366    <tr>
5367
5368
5369
5370
[153]5371
5372
[116]5373 <td style="vertical-align: top;"> 
5374     
5375     
5376     
5377     
[153]5378     
5379     
[116]5380      <p><a name="grid_matching"></a><b>grid_matching</b></p>
5381
5382
5383
5384
5385
[153]5386
5387
[116]5388      </td>
5389
5390
5391
5392
[153]5393
5394
[116]5395 <td style="vertical-align: top;">C * 6</td>
5396
5397
5398
5399
5400
[153]5401
5402
[116]5403      <td style="vertical-align: top;"><span style="font-style: italic;">'match'</span></td>
5404
5405
5406
5407
[153]5408
5409
[116]5410 <td style="vertical-align: top;">Variable to adjust the
5411subdomain
5412sizes in parallel runs.<br>
5413
5414
5415
5416
[153]5417
5418
[116]5419 <br>
5420
5421
5422
5423
5424
[153]5425
5426
[116]5427For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>,
5428the subdomains are forced to have an identical
5429size on all processors. In this case the processor numbers in the
5430respective directions of the virtual processor net must fulfill certain
5431divisor conditions concerning the grid point numbers in the three
5432directions (see <a href="#nx">nx</a>, <a href="#ny">ny</a>
5433and <a href="#nz">nz</a>).
5434Advantage of this method is that all PEs bear the same computational
5435load.<br>
5436
5437
5438
5439
[153]5440
5441
[116]5442 <br>
5443
5444
5445
5446
5447
[153]5448
5449
[116]5450There is no such restriction by default, because then smaller
5451subdomains are allowed on those processors which
5452form the right and/or north boundary of the virtual processor grid. On
5453all other processors the subdomains are of same size. Whether smaller
5454subdomains are actually used, depends on the number of processors and
5455the grid point numbers used. Information about the respective settings
5456are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br>
5457
5458
5459
5460
5461
[153]5462
5463
[116]5464      <br>
5465
5466
5467
5468
5469
[153]5470
5471
[116]5472When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
5473only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>
5474is allowed.<br>
5475
5476
5477
5478
[153]5479
5480
[116]5481 <br>
5482
5483
5484
5485
[153]5486
5487
[116]5488 <b>Note:</b><br>
5489
5490
5491
5492
5493
[153]5494
5495
[116]5496In some cases for small processor numbers there may be a very bad load
5497balancing among the
5498processors which may reduce the performance of the code.</td>
5499
5500
5501
5502
[153]5503
5504
[116]5505 </tr>
5506
5507
5508
5509
5510
[153]5511
5512
[116]5513    <tr>
5514
5515
5516
5517
[153]5518
5519
[116]5520 <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br>
5521
5522
5523
5524
5525
[153]5526
5527
[116]5528begin</b></td>
5529
5530
5531
5532
[153]5533
5534
[116]5535 <td style="vertical-align: top;">I</td>
5536
5537
5538
5539
5540
[153]5541
5542
[116]5543      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;">
5544
5545
5546
5547
[153]5548
5549
[116]5550 <span style="font-style: italic;">nx/2 or ny/2)</span></td>
5551
5552
5553
5554
5555
[153]5556
5557
[116]5558      <td style="vertical-align: top;">Lower
5559limit of the horizontal range for which random perturbations are to be
5560imposed on the horizontal velocity field (gridpoints).<br>
5561
5562
5563
5564
[153]5565
5566
[116]5567 <br>
5568
5569
5570
5571
5572
[153]5573
5574
[116]5575If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5576or <a href="#bc_ns">bc_ns</a>),
5577this parameter gives the gridpoint number (counted horizontally from
5578the inflow)&nbsp; from which on perturbations are imposed on the
5579horizontal velocity field. Perturbations must be switched on with
5580parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5581
5582
5583
5584
5585
[153]5586
5587
[116]5588    </tr>
5589
5590
5591
5592
[153]5593
5594
[116]5595 <tr>
5596
5597
5598
5599
[153]5600
5601
[116]5602 <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br>
5603
5604
5605
5606
5607
[153]5608
5609
[116]5610end</b></td>
5611
5612
5613
5614
[153]5615
5616
[116]5617 <td style="vertical-align: top;">I</td>
5618
5619
5620
5621
5622
[153]5623
5624
[116]5625      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;">
5626
5627
5628
5629
[153]5630
5631
[116]5632 <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;">
5633
5634
5635
5636
[153]5637
5638
[116]5639 <span style="font-style: italic;">3/4*ny)</span></td>
5640
5641
5642
5643
[153]5644
5645
[116]5646 <td style="vertical-align: top;">Upper
5647limit of the horizontal range for which random perturbations are
5648to be imposed on the horizontal velocity field (gridpoints).<br>
5649
5650
5651
5652
[153]5653
5654
[116]5655 <br>
5656
5657
5658
5659
5660
[153]5661
5662
[116]5663If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5664or <a href="#bc_ns">bc_ns</a>),
5665this parameter gives the gridpoint number (counted horizontally from
5666the inflow)&nbsp; unto which perturbations are imposed on the
5667horizontal
5668velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5669
5670
5671
5672
5673
[153]5674
5675
[116]5676    </tr>
5677
5678
5679
5680
[153]5681
5682
[116]5683 <tr>
5684
5685
5686
5687
[153]5688
5689
[116]5690 <td style="vertical-align: top;">
5691     
5692     
5693     
5694     
[153]5695     
5696     
[116]5697      <p><a name="initializing_actions"></a><b>initializing_actions</b></p>
5698
5699
5700
5701
5702
[153]5703
5704
[116]5705      </td>
5706
5707
5708
5709
[153]5710
5711
[116]5712 <td style="vertical-align: top;">C * 100</td>
5713
5714
5715
5716
5717
[153]5718
5719
[116]5720      <td style="vertical-align: top;"><br>
5721
5722
5723
5724
[153]5725
5726
[116]5727 </td>
5728
5729
5730
5731
[153]5732
5733
[116]5734 <td style="vertical-align: top;"> 
5735     
5736     
5737     
5738     
[153]5739     
5740     
[116]5741      <p style="font-style: normal;">Initialization actions
5742to be carried out.&nbsp; </p>
5743
5744
5745
5746
[153]5747
5748
[116]5749 
5750     
5751     
5752     
5753     
[153]5754     
5755     
[116]5756      <p style="font-style: normal;">This parameter does not have a
5757default value and therefore must be assigned with each model run. For
5758restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span>
5759must be set. For the initial run of a job chain the following values
5760are allowed:&nbsp; </p>
5761
5762
5763
5764
[153]5765
5766
[116]5767 
5768     
5769     
5770     
5771     
[153]5772     
5773     
[116]5774      <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span>
5775      </p>
5776
5777
5778
5779
[153]5780
5781
[116]5782 
5783     
5784     
5785     
5786     
[153]5787     
5788     
[116]5789      <ul>
5790
5791
5792
5793
[153]5794
5795
[116]5796 
5797       
5798       
5799       
5800       
[153]5801       
5802       
[116]5803        <p>A horizontal wind profile consisting
5804of linear sections (see <a href="#ug_surface">ug_surface</a>,
5805        <a href="#ug_vertical_gradient">ug_vertical_gradient</a>,
5806        <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
5807and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>,
5808        <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
5809respectively) as well as a vertical temperature (humidity) profile
5810consisting of
5811linear sections (see <a href="#pt_surface">pt_surface</a>,
5812        <a href="#pt_vertical_gradient">pt_vertical_gradient</a>,
5813        <a href="#q_surface">q_surface</a>
5814and <a href="#q_vertical_gradient">q_vertical_gradient</a>)
5815are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub>
5816and K<sub>h</sub> are set to very small values because
5817otherwise no TKE
5818would be generated.</p>
5819
5820
5821
5822
[153]5823
5824
[116]5825 
5826     
5827     
5828     
5829     
[153]5830     
5831     
[116]5832      </ul>
5833
5834
5835
5836
[153]5837
5838
[116]5839 
5840     
5841     
5842     
5843     
[153]5844     
5845     
[116]5846      <p style="font-style: italic;">'set_1d-model_profiles' </p>
5847
5848
5849
5850
5851
[153]5852
5853
[116]5854     
5855     
5856     
5857     
[153]5858     
5859     
[116]5860      <ul>
5861
5862
5863
5864
[153]5865
5866
[116]5867 
5868       
5869       
5870       
5871       
[153]5872       
5873       
[116]5874        <p>The arrays of the 3d-model are initialized with
5875the
5876(stationary) solution of the 1d-model. These are the variables e, kh,
5877km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The
5878temperature (humidity) profile consisting of linear sections is set as
5879for 'set_constant_profiles' and assumed as constant in time within the
58801d-model. For steering of the 1d-model a set of parameters with suffix
5881"_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>,
5882        <a href="#damp_level_1d">damp_level_1d</a>)
5883is available.</p>
5884
5885
5886
5887
[153]5888
5889
[116]5890 
5891     
5892     
5893     
5894     
[153]5895     
5896     
[116]5897      </ul>
5898
5899
5900
5901
[153]5902
5903
[116]5904 
5905     
5906     
5907     
5908     
[153]5909     
5910     
[116]5911      <p><span style="font-style: italic;">'by_user'</span></p>
5912
5913
5914
5915
[153]5916
5917
[116]5918     
5919     
5920     
5921     
[153]5922     
5923     
[116]5924      <p style="margin-left: 40px;">The initialization of the arrays
5925of the 3d-model is under complete control of the user and has to be
5926done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a>
5927of the user-interface.<span style="font-style: italic;"></span></p>
5928
5929
5930
5931
[153]5932
5933
[116]5934     
5935     
5936     
5937     
[153]5938     
5939     
[116]5940      <p><span style="font-style: italic;">'initialize_vortex'</span>
5941      </p>
5942
5943
5944
5945
[153]5946
5947
[116]5948 
5949     
5950     
5951     
5952     
[153]5953     
5954     
[116]5955      <div style="margin-left: 40px;">The initial
5956velocity field of the
59573d-model corresponds to a
5958Rankine-vortex with vertical axis. This setting may be used to test
5959advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>)
5960are necessary. In order not to distort the vortex, an initial
5961horizontal wind profile constant
5962with height is necessary (to be set by <b>initializing_actions</b>
5963= <span style="font-style: italic;">'set_constant_profiles'</span>)
5964and some other conditions have to be met (neutral stratification,
5965diffusion must be
5966switched off, see <a href="#km_constant">km_constant</a>).
5967The center of the vortex is located at jc = (nx+1)/2. It
5968extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a>
5969and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a>
5970(see init_rankine.f90). </div>
5971
5972
5973
5974
[153]5975
5976
[116]5977 
5978     
5979     
5980     
5981     
[153]5982     
5983     
[116]5984      <p><span style="font-style: italic;">'initialize_ptanom'</span>
5985      </p>
5986
5987
5988
5989
[153]5990
5991
[116]5992 
5993     
5994     
5995     
5996     
[153]5997     
5998     
[116]5999      <ul>
6000
6001
6002
6003
[153]6004
6005
[116]6006 
6007       
6008       
6009       
6010       
[153]6011       
6012       
[116]6013        <p>A 2d-Gauss-like shape disturbance
6014(x,y) is added to the
6015initial temperature field with radius 10.0 * <a href="#dx">dx</a>
6016and center at jc = (nx+1)/2. This may be used for tests of scalar
6017advection schemes
6018(see <a href="#scalar_advec">scalar_advec</a>).
6019Such tests require a horizontal wind profile constant with hight and
6020diffusion
6021switched off (see <span style="font-style: italic;">'initialize_vortex'</span>).
6022Additionally, the buoyancy term
6023must be switched of in the equation of motion&nbsp; for w (this
6024requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the
6025source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p>
6026
6027
6028
6029
6030
[153]6031
6032
[116]6033     
6034     
6035     
6036     
[153]6037     
6038     
[116]6039      </ul>
6040
6041
6042
6043
[153]6044
6045
[116]6046 
6047     
6048     
6049     
6050     
[153]6051     
6052     
[116]6053      <p style="font-style: normal;">Values may be
6054combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles
6055initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>,
6056      <span style="font-style: italic;">'set_1d-model_profiles'</span>
6057, and <span style="font-style: italic;">'by_user'</span>
6058must not be given at the same time.</p>
6059
6060
6061
6062
[153]6063
6064
[116]6065 
6066     
6067     
6068     
6069     
[153]6070     
6071     
[116]6072      <p style="font-style: italic;"> </p>
6073
6074
6075
6076
[153]6077
6078
[116]6079 </td>
6080
6081
6082
6083
[153]6084
6085
[116]6086 </tr>
6087
6088
6089
6090
6091
[153]6092
6093
[116]6094    <tr>
6095
6096
6097
6098
[153]6099
6100
[116]6101 <td style="vertical-align: top;"> 
6102     
6103     
6104     
6105     
[153]6106     
6107     
[116]6108      <p><a name="km_constant"></a><b>km_constant</b></p>
6109
6110
6111
6112
6113
[153]6114
6115
[116]6116      </td>
6117
6118
6119
6120
[153]6121
6122
[116]6123 <td style="vertical-align: top;">R</td>
6124
6125
6126
6127
6128
[153]6129
6130
[116]6131      <td style="vertical-align: top;"><i>variable<br>
6132
6133
6134
6135
6136
[153]6137
6138
[116]6139(computed from TKE)</i></td>
6140
6141
6142
6143
[153]6144
6145
[116]6146 <td style="vertical-align: top;"> 
6147     
6148     
6149     
6150     
[153]6151     
6152     
[116]6153      <p>Constant eddy
6154diffusivities are used (laminar
6155simulations).&nbsp; </p>
6156
6157
6158
6159
[153]6160
6161
[116]6162 
6163     
6164     
6165     
6166     
[153]6167     
6168     
[116]6169      <p>If this parameter is
6170specified, both in the 1d and in the
61713d-model constant values for the eddy diffusivities are used in
6172space and time with K<sub>m</sub> = <b>km_constant</b>
6173and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>.
6174The prognostic equation for the subgrid-scale TKE is switched off.
6175Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>)
6176switched off.</p>
6177
6178
6179
6180
[153]6181
6182
[116]6183 </td>
6184
6185
6186
6187
[153]6188
6189
[116]6190 </tr>
6191
6192
6193
6194
[153]6195
6196
[116]6197 <tr>
6198
6199
6200
6201
[153]6202
6203
[116]6204 <td style="vertical-align: top;"> 
6205     
6206     
6207     
6208     
[153]6209     
6210     
[116]6211      <p><a name="km_damp_max"></a><b>km_damp_max</b></p>
6212
6213
6214
6215
6216
[153]6217
6218
[116]6219      </td>
6220
6221
6222
6223
[153]6224
6225
[116]6226 <td style="vertical-align: top;">R</td>
6227
6228
6229
6230
6231
[153]6232
6233
[116]6234      <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx
6235or dy)</span></td>
6236
6237
6238
6239
[153]6240
6241
[116]6242 <td style="vertical-align: top;">Maximum
6243diffusivity used for filtering the velocity field in the vicinity of
6244the outflow (in m<sup>2</sup>/s).<br>
6245
6246
6247
6248
[153]6249
6250
[116]6251 <br>
6252
6253
6254
6255
6256
[153]6257
6258
[116]6259When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a>
6260or <a href="#bc_ns">bc_ns</a>),
6261a smoothing has to be applied to the
6262velocity field in the vicinity of the outflow in order to suppress any
6263reflections of outgoing disturbances. Smoothing is done by increasing
6264the eddy diffusivity along the horizontal direction which is
6265perpendicular to the outflow boundary. Only velocity components
6266parallel to the outflow boundary are filtered (e.g. v and w, if the
6267outflow is along x). Damping is applied from the bottom to the top of
6268the domain.<br>
6269
6270
6271
6272
[153]6273
6274
[116]6275 <br>
6276
6277
6278
6279
6280
[153]6281
6282
[116]6283The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a>
6284which defines the number of gridpoints (counted from the outflow
6285boundary) from where on the smoothing is applied. Starting from that
6286point, the eddy diffusivity is linearly increased (from zero to its
6287maximum value given by <span style="font-weight: bold;">km_damp_max</span>)
6288until half of the damping range width, from where it remains constant
6289up to the outflow boundary. If at a certain grid point the eddy
6290diffusivity calculated from the flow field is larger than as described
6291above, it is used instead.<br>
6292
6293
6294
6295
[153]6296
6297
[116]6298 <br>
6299
6300
6301
6302
6303
[153]6304
6305
[116]6306The default value of <span style="font-weight: bold;">km_damp_max</span>
6307has been empirically proven to be sufficient.</td>
6308
6309
6310
6311
[153]6312
6313
[116]6314 </tr>
6315
6316
6317
6318
[153]6319
6320
6321 <tr>
6322
[160]6323      <td style="vertical-align: top;"><a name="lad_surface"></a><span style="font-weight: bold;">lad_surface</span></td>
[153]6324
[160]6325      <td style="vertical-align: top;">R</td>
[153]6326
[160]6327      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[153]6328
[160]6329      <td style="vertical-align: top;">Surface value of the leaf area density (in m<sup>2</sup>/m<sup>3</sup>).<br>
[153]6330
6331      <br>
6332
6333This
[138]6334parameter assigns the value of the leaf area density <span style="font-weight: bold;">lad</span> at the surface (k=0)<b>.</b> Starting from this value,
6335the leaf area density profile is constructed with <a href="chapter_4.1.html#lad_vertical_gradient">lad_vertical_gradient</a>
6336and <a href="chapter_4.1.html#lad_vertical_gradient_level">lad_vertical_gradient_level
[153]6337      </a>.</td>
6338
6339    </tr>
6340
6341    <tr>
6342
[160]6343      <td style="vertical-align: top;"><a name="lad_vertical_gradient"></a><span style="font-weight: bold;">lad_vertical_gradient</span></td>
[153]6344
[160]6345      <td style="vertical-align: top;">R (10)</td>
[153]6346
[160]6347      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
[153]6348
[160]6349      <td style="vertical-align: top;">Gradient(s) of the leaf area density (in&nbsp;m<sup>2</sup>/m<sup>4</sup>).<br>
[153]6350
6351      <br>
6352
6353     
6354      <p>This leaf area density gradient
[138]6355holds starting from the height&nbsp;
6356level defined by <a href="chapter_4.1.html#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6357(precisely: for all uv levels k where zu(k) &gt; lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + dzu(k) * <b>lad_vertical_gradient</b>)
6358up to the level defined by <a href="#pch_index">pch_index</a>. Above that level lad(k) will automatically set to 0.0. A total of 10 different gradients for 11 height intervals (10 intervals
6359if <a href="chapter_4.1.html#lad_vertical_gradient_level">lad_vertical_gradient_level</a>(1)
6360= <i>0.0</i>) can be assigned. The leaf area density at the surface is
6361assigned via <a href="chapter_4.1.html#lad_surface">lad_surface</a>.&nbsp;
[153]6362      </p>
6363
6364      </td>
6365
6366    </tr>
6367
6368    <tr>
6369
[160]6370      <td style="vertical-align: top;"><a name="lad_vertical_gradient_level"></a><span style="font-weight: bold;">lad_vertical_gradient_level</span></td>
[153]6371
[160]6372      <td style="vertical-align: top;">R (10)</td>
[153]6373
[160]6374      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
[153]6375
[160]6376      <td style="vertical-align: top;">Height level from which on the&nbsp;gradient
[138]6377of the leaf area density defined by <a href="chapter_4.1.html#lad_vertical_gradient">lad_vertical_gradient_level</a>
[153]6378is effective (in m).<br>
[116]6379
[153]6380      <br>
[116]6381
[153]6382The height levels have to be assigned in ascending order. The
6383default values result in a leaf area density that is constant with height uup to the top of the plant canopy layer defined by <a href="#pch_index">pch_index</a>. For the piecewise construction of temperature profiles see <a href="chapter_4.1.html#lad_vertical_gradient">lad_vertical_gradient</a>.</td>
[116]6384
[153]6385    </tr>
[116]6386
[153]6387    <tr>
[116]6388
[160]6389      <td style="vertical-align: top;"><a name="leaf_surface_concentration"></a><b>leaf_surface_concentration</b></td>
[153]6390
[160]6391      <td style="vertical-align: top;">R</td>
[153]6392
[160]6393      <td style="vertical-align: top;"><i>0.0</i></td>
[153]6394
[160]6395      <td style="vertical-align: top;">Concentration of a passive scalar at the surface of a leaf (in K m/s).<br>
[153]6396
6397
6398      <br>
6399
6400
6401This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
6402The value of the concentration of a passive scalar at the surface of a
6403leaf is required for the parametrisation of the sources and sinks of
6404scalar concentration due to the canopy.</td>
6405
6406    </tr>
6407
6408    <tr>
6409
6410
6411
6412
6413
6414
6415
[116]6416      <td style="vertical-align: top;"> 
6417     
6418     
6419     
6420     
[153]6421     
6422     
[116]6423      <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p>
6424
6425
6426
6427
6428
[153]6429
6430
[116]6431      </td>
6432
6433
6434
6435
[153]6436
6437
[116]6438 <td style="vertical-align: top;">R</td>
6439
6440
6441
6442
6443
[153]6444
6445
[116]6446      <td style="vertical-align: top;"><i>0.0</i></td>
6447
6448
6449
6450
6451
[153]6452
6453
[116]6454      <td style="vertical-align: top;"> 
6455     
6456     
6457     
6458     
[153]6459     
6460     
[116]6461      <p>Filter factor
6462for the so-called Long-filter.<br>
6463
6464
6465
6466
[153]6467
6468
[116]6469 </p>
6470
6471
6472
6473
[153]6474
6475
[116]6476 
6477     
6478     
6479     
6480     
[153]6481     
6482     
[116]6483      <p><br>
6484
6485
6486
6487
6488
[153]6489
6490
[116]6491This filter very efficiently
6492eliminates 2-delta-waves sometimes cauesed by the upstream-spline
6493scheme (see Mahrer and
6494Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three
6495directions in space. A value of <b>long_filter_factor</b>
6496= <i>0.01</i>
6497sufficiently removes the small-scale waves without affecting the
6498longer waves.<br>
6499
6500
6501
6502
[153]6503
6504
[116]6505 </p>
6506
6507
6508
6509
[153]6510
6511
[116]6512 
6513     
6514     
6515     
6516     
[153]6517     
6518     
[116]6519      <p>By default, the filter is
6520switched off (= <i>0.0</i>).
6521It is exclusively applied to the tendencies calculated by the
6522upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a>
6523and <a href="#scalar_advec">scalar_advec</a>),
6524not to the prognostic variables themselves. At the bottom and top
6525boundary of the model domain the filter effect for vertical
65262-delta-waves is reduced. There, the amplitude of these waves is only
6527reduced by approx. 50%, otherwise by nearly 100%.&nbsp; <br>
6528
6529
6530
6531
6532
[153]6533
6534
[116]6535Filter factors with values &gt; <i>0.01</i> also
6536reduce the amplitudes
6537of waves with wavelengths longer than 2-delta (see the paper by Mahrer
6538and
6539Pielke, quoted above). </p>
6540
6541
6542
6543
[153]6544
6545
[116]6546 </td>
6547
6548
6549
6550
[153]6551
6552
[116]6553 </tr>
6554
6555
6556
6557
[153]6558
6559
[116]6560 <tr>
6561
6562
6563
6564
[153]6565
6566
[116]6567      <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td>
6568
6569
6570
6571
[153]6572
6573
[116]6574      <td style="vertical-align: top;">C*16</td>
6575
6576
6577
6578
[153]6579
6580
[116]6581      <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
6582
6583
6584
6585
[153]6586
6587
[116]6588      <td>Method used to optimize loops for solving the prognostic equations .<br>
6589
6590
6591
6592
[153]6593
6594
[116]6595      <br>
6596
6597
6598
6599
[153]6600
6601
[116]6602By
6603default, the optimization method depends on the host on which PALM is
6604running. On machines with vector-type CPUs, single 3d-loops are used to
6605calculate each tendency term of each prognostic equation, while on all
6606other machines, all prognostic equations are solved within one big loop
6607over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br>
6608
6609
6610
6611
[153]6612
6613
[116]6614      <br>
6615
6616
6617
6618
[153]6619
6620
[116]6621The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td>
6622
6623
6624
6625
[153]6626
6627
[116]6628    </tr>
6629
6630
6631
6632
[153]6633
6634
[116]6635    <tr>
6636
6637
6638
6639
6640
[153]6641
6642
[116]6643      <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br>
6644
6645
6646
6647
6648
[153]6649
6650
[116]6651      </td>
6652
6653
6654
6655
[153]6656
6657
[116]6658 <td style="vertical-align: top;">C*20<br>
6659
6660
6661
6662
6663
[153]6664
6665
[116]6666      </td>
6667
6668
6669
6670
[153]6671
6672
[116]6673 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
6674
6675
6676
6677
[153]6678
6679
[116]6680 <span style="font-style: italic;">model'</span><br>
6681
6682
6683
6684
[153]6685
6686
[116]6687 </td>
6688
6689
6690
6691
6692
[153]6693
6694
[116]6695      <td style="vertical-align: top;">Mixing length used in the
66961d-model.<br>
6697
6698
6699
6700
[153]6701
6702
[116]6703 <br>
6704
6705
6706
6707
6708
[153]6709
6710
[116]6711By default the mixing length is calculated as in the 3d-model (i.e. it
6712depends on the grid spacing).<br>
6713
6714
6715
6716
[153]6717
6718
[116]6719 <br>
6720
6721
6722
6723
6724
[153]6725
6726
[116]6727By setting <span style="font-weight: bold;">mixing_length_1d</span>
6728= <span style="font-style: italic;">'blackadar'</span>,
6729the so-called Blackadar mixing length is used (l = kappa * z / ( 1 +
6730kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br>
6731
6732
6733
6734
6735
[153]6736
6737
[116]6738      </td>
6739
6740
6741
6742
[153]6743
6744
[116]6745 </tr>
6746
6747
6748
6749
[153]6750
6751
[116]6752 <tr>
6753
6754
6755
6756
[153]6757
6758
[116]6759 <td style="vertical-align: top;"> 
6760     
6761     
6762     
6763     
[153]6764     
6765     
[116]6766      <p><a name="humidity"></a><b>humidity</b></p>
6767
6768
6769
6770
6771
[153]6772
6773
[116]6774      </td>
6775
6776
6777
6778
[153]6779
6780
[116]6781 <td style="vertical-align: top;">L</td>
6782
6783
6784
6785
6786
[153]6787
6788
[116]6789      <td style="vertical-align: top;"><i>.F.</i></td>
6790
6791
6792
6793
6794
[153]6795
6796
[116]6797      <td style="vertical-align: top;"> 
6798     
6799     
6800     
6801     
[153]6802     
6803     
[116]6804      <p>Parameter to
6805switch on the prognostic equation for specific
6806humidity q.<br>
6807
6808
6809
6810
[153]6811
6812
[116]6813 </p>
6814
6815
6816
6817
[153]6818
6819
[116]6820 
6821     
6822     
6823     
6824     
[153]6825     
6826     
[116]6827      <p>The initial vertical
6828profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a>
6829and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>.&nbsp;
6830Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a>
6831and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br>
6832
6833
6834
6835
6836
[153]6837
6838
[116]6839      </p>
6840
6841
6842
6843
6844
[153]6845
6846
[116]6847If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
6848= .TRUE.), q becomes the total liquid water content (sum of specific
6849humidity and liquid water content).</td>
6850
6851
6852
6853
[153]6854
6855
[116]6856 </tr>
6857
6858
6859
6860
6861
[153]6862
6863
[116]6864    <tr>
6865
6866
6867
6868
[153]6869
6870
[116]6871 <td style="vertical-align: top;"> 
6872     
6873     
6874     
6875     
[153]6876     
6877     
[116]6878      <p><a name="momentum_advec"></a><b>momentum_advec</b></p>
6879
6880
6881
6882
6883
[153]6884
6885
[116]6886      </td>
6887
6888
6889
6890
[153]6891
6892
[116]6893 <td style="vertical-align: top;">C * 10</td>
6894
6895
6896
6897
6898
[153]6899
6900
[116]6901      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
6902
6903
6904
6905
6906
[153]6907
6908
[116]6909      <td style="vertical-align: top;"> 
6910     
6911     
6912     
6913     
[153]6914     
6915     
[116]6916      <p>Advection
6917scheme to be used for the momentum equations.<br>
6918
6919
6920
6921
[153]6922
6923
[116]6924 <br>
6925
6926
6927
6928
6929
[153]6930
6931
[116]6932The user can choose between the following schemes:<br>
6933
6934
6935
6936
6937
[153]6938
6939
[116]6940&nbsp;<br>
6941
6942
6943
6944
[153]6945
6946
[116]6947 <br>
6948
6949
6950
6951
[153]6952
6953
[116]6954 <span style="font-style: italic;">'pw-scheme'</span><br>
6955
6956
6957
6958
6959
[153]6960
6961
[116]6962      </p>
6963
6964
6965
6966
[153]6967
6968
[116]6969 
6970     
6971     
6972     
6973     
[153]6974     
6975     
[116]6976      <div style="margin-left: 40px;">The scheme of
6977Piascek and
6978Williams (1970, J. Comp. Phys., 6,
6979392-405) with central differences in the form C3 is used.<br>
6980
6981
6982
6983
6984
[153]6985
6986
[116]6987If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
6988= <span style="font-style: italic;">'leapfrog+euler'</span>
6989the
6990advection scheme is - for the Euler-timestep - automatically switched
6991to an upstream-scheme.<br>
6992
6993
6994
6995
[153]6996
6997
[116]6998 </div>
6999
7000
7001
7002
[153]7003
7004
[116]7005 
7006     
7007     
7008     
7009     
[153]7010     
7011     
[116]7012      <p> </p>
7013
7014
7015
7016
[153]7017
7018
[116]7019 
7020     
7021     
7022     
7023     
[153]7024     
7025     
[116]7026      <p><span style="font-style: italic;">'ups-scheme'</span><br>
7027
7028
7029
7030
7031
[153]7032
7033
[116]7034      </p>
7035
7036
7037
7038
[153]7039
7040
[116]7041 
7042     
7043     
7044     
7045     
[153]7046     
7047     
[116]7048      <div style="margin-left: 40px;">The
7049upstream-spline scheme is
7050used
7051(see Mahrer and Pielke,
70521978: Mon. Wea. Rev., 106, 818-830). In opposite to the
7053Piascek-Williams scheme, this is characterized by much better numerical
7054features (less numerical diffusion, better preservation of flow
7055structures, e.g. vortices), but computationally it is much more
7056expensive. In
7057addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
7058= <span style="font-style: italic;">'</span><i>euler'</i>),
7059i.e. the
7060timestep accuracy is only of first order.
7061For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>)
7062should then also be carried out with the upstream-spline scheme,
7063because otherwise the scalar variables would
7064be subject to large numerical diffusion due to the upstream
7065scheme.&nbsp; </div>
7066
7067
7068
7069
[153]7070
7071
[116]7072 
7073     
7074     
7075     
7076     
[153]7077     
7078     
[116]7079      <p style="margin-left: 40px;">Since
7080the cubic splines used tend
7081to overshoot under
7082certain circumstances, this effect must be adjusted by suitable
7083filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
7084      <a href="#long_filter_factor">long_filter_factor</a>,
7085      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
7086This is always neccessary for runs with stable stratification,
7087even if this stratification appears only in parts of the model domain.<br>
7088
7089
7090
7091
7092
[153]7093
7094
[116]7095      </p>
7096
7097
7098
7099
[153]7100
7101
[116]7102 
7103     
7104     
7105     
7106     
[153]7107     
7108     
[116]7109      <div style="margin-left: 40px;">With stable
7110stratification the
7111upstream-spline scheme also
7112produces gravity waves with large amplitude, which must be
7113suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
7114
7115
7116
7117
7118
[153]7119
7120
[116]7121      <br>
7122
7123
7124
7125
[153]7126
7127
[116]7128 <span style="font-weight: bold;">Important: </span>The&nbsp;
7129upstream-spline scheme is not implemented for humidity and passive
7130scalars (see&nbsp;<a href="#humidity">humidity</a>
7131and <a href="#passive_scalar">passive_scalar</a>)
7132and requires the use of a 2d-domain-decomposition. The last conditions
7133severely restricts code optimization on several machines leading to
7134very long execution times! The scheme is also not allowed for
7135non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
7136and <a href="#bc_ns">bc_ns</a>).</div>
7137
7138
7139
7140
[153]7141
7142
[116]7143 </td>
7144
7145
7146
7147
7148
[153]7149
7150
[116]7151    </tr>
7152
7153
7154
7155
[153]7156
7157
[116]7158 <tr>
7159
7160
7161
7162
[153]7163
7164
[116]7165 <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br>
7166
7167
7168
7169
7170
[153]7171
7172
[116]7173      </td>
7174
7175
7176
7177
[153]7178
7179
[116]7180 <td style="vertical-align: top;">C*20<br>
7181
7182
7183
7184
7185
[153]7186
7187
[116]7188(10)<br>
7189
7190
7191
7192
[153]7193
7194
[116]7195 </td>
7196
7197
7198
7199
[153]7200
7201
[116]7202 <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;">
7203
7204
7205
7206
[153]7207
7208
[116]7209 <span style="font-style: italic;">sion for all</span><br style="font-style: italic;">
7210
7211
7212
7213
[153]7214
7215
[116]7216 <span style="font-style: italic;">output quan-</span><br style="font-style: italic;">
7217
7218
7219
7220
[153]7221
7222
[116]7223 <span style="font-style: italic;">tities</span><br>
7224
7225
7226
7227
[153]7228
7229
[116]7230 </td>
7231
7232
7233
7234
7235
[153]7236
7237
[116]7238      <td style="vertical-align: top;">Defines the accuracy of
7239the NetCDF output.<br>
7240
7241
7242
7243
[153]7244
7245
[116]7246 <br>
7247
7248
7249
7250
7251
[153]7252
7253
[116]7254By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
7255have single precision&nbsp; (4 byte) accuracy. Double precision (8
7256byte) can be choosen alternatively.<br>
7257
7258
7259
7260
7261
[153]7262
7263
[116]7264Accuracy for the different output data (cross sections, 3d-volume data,
7265spectra, etc.) can be set independently.<br>
7266
7267
7268
7269
[153]7270
7271
[116]7272 <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL4'</span>
7273(single precision) or <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL8'</span>
7274(double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>,
7275where the string <span style="font-style: italic;">'&lt;out&gt;'
7276      </span>can be chosen out of the following list:<br>
7277
7278
7279
7280
[153]7281
7282
[116]7283 <br>
7284
7285
7286
7287
7288
[153]7289
7290
[116]7291     
7292     
7293     
7294     
[153]7295     
7296     
[116]7297      <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2">
7298
7299
7300
7301
[153]7302
7303
[116]7304 <tbody>
7305
7306
7307
7308
7309
[153]7310
7311
[116]7312          <tr>
7313
7314
7315
7316
[153]7317
7318
[116]7319 <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br>
7320
7321
7322
7323
[153]7324
7325
[116]7326 </td>
7327
7328
7329
7330
7331
[153]7332
7333
[116]7334            <td style="vertical-align: top;">horizontal cross section<br>
7335
7336
7337
7338
7339
[153]7340
7341
[116]7342            </td>
7343
7344
7345
7346
[153]7347
7348
[116]7349 </tr>
7350
7351
7352
7353
[153]7354
7355
[116]7356 <tr>
7357
7358
7359
7360
[153]7361
7362
[116]7363 <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br>
7364
7365
7366
7367
[153]7368
7369
[116]7370 </td>
7371
7372
7373
7374
7375
[153]7376
7377
[116]7378            <td style="vertical-align: top;">vertical (xz) cross
7379section<br>
7380
7381
7382
7383
[153]7384
7385
[116]7386 </td>
7387
7388
7389
7390
[153]7391
7392
[116]7393 </tr>
7394
7395
7396
7397
[153]7398
7399
[116]7400 <tr>
7401
7402
7403
7404
[153]7405
7406
[116]7407 <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br>
7408
7409
7410
7411
[153]7412
7413
[116]7414 </td>
7415
7416
7417
7418
7419
[153]7420
7421
[116]7422            <td style="vertical-align: top;">vertical (yz) cross
7423section<br>
7424
7425
7426
7427
[153]7428
7429
[116]7430 </td>
7431
7432
7433
7434
[153]7435
7436
[116]7437 </tr>
7438
7439
7440
7441
[153]7442
7443
[116]7444 <tr>
7445
7446
7447
7448
[153]7449
7450
[116]7451 <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br>
7452
7453
7454
7455
[153]7456
7457
[116]7458 </td>
7459
7460
7461
7462
7463
[153]7464
7465
[116]7466            <td style="vertical-align: top;">all cross sections<br>
7467
7468
7469
7470
7471
[153]7472
7473
[116]7474            </td>
7475
7476
7477
7478
[153]7479
7480
[116]7481 </tr>
7482
7483
7484
7485
[153]7486
7487
[116]7488 <tr>
7489
7490
7491
7492
[153]7493
7494
[116]7495 <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br>
7496
7497
7498
7499
[153]7500
7501
[116]7502 </td>
7503
7504
7505
7506
7507
[153]7508
7509
[116]7510            <td style="vertical-align: top;">volume data<br>
7511
7512
7513
7514
[153]7515
7516
[116]7517 </td>
7518
7519
7520
7521
7522
[153]7523
7524
[116]7525          </tr>
7526
7527
7528
7529
[153]7530
7531
[116]7532 <tr>
7533
7534
7535
7536
[153]7537
7538
[116]7539 <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br>
7540
7541
7542
7543
[153]7544
7545
[116]7546 </td>
7547
7548
7549
7550
7551
[153]7552
7553
[116]7554            <td style="vertical-align: top;">vertical profiles<br>
7555
7556
7557
7558
7559
[153]7560
7561
[116]7562            </td>
7563
7564
7565
7566
[153]7567
7568
[116]7569 </tr>
7570
7571
7572
7573
[153]7574
7575
[116]7576 <tr>
7577
7578
7579
7580
[153]7581
7582
[116]7583 <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br>
7584
7585
7586
7587
[153]7588
7589
[116]7590 </td>
7591
7592
7593
7594
7595
[153]7596
7597
[116]7598            <td style="vertical-align: top;">time series, particle
7599time series<br>
7600
7601
7602
7603
[153]7604
7605
[116]7606 </td>
7607
7608
7609
7610
[153]7611
7612
[116]7613 </tr>
7614
7615
7616
7617
[153]7618
7619
[116]7620 <tr>
7621
7622
7623
7624
[153]7625
7626
[116]7627 <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br>
7628
7629
7630
7631
[153]7632
7633
[116]7634 </td>
7635
7636
7637
7638
7639
[153]7640
7641
[116]7642            <td style="vertical-align: top;">spectra<br>
7643
7644
7645
7646
[153]7647
7648
[116]7649 </td>
7650
7651
7652
7653
7654
[153]7655
7656
[116]7657          </tr>
7658
7659
7660
7661
[153]7662
7663
[116]7664 <tr>
7665
7666
7667
7668
[153]7669
7670
[116]7671 <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br>
7672
7673
7674
7675
[153]7676
7677
[116]7678 </td>
7679
7680
7681
7682
7683
[153]7684
7685
[116]7686            <td style="vertical-align: top;">particles<br>
7687
7688
7689
7690
[153]7691
7692
[116]7693 </td>
7694
7695
7696
7697
7698
[153]7699
7700
[116]7701          </tr>
7702
7703
7704
7705
[153]7706
7707
[116]7708 <tr>
7709
7710
7711
7712
[153]7713
7714
[116]7715 <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br>
7716
7717
7718
7719
[153]7720
7721
[116]7722 </td>
7723
7724
7725
7726
7727
[153]7728
7729
[116]7730            <td style="vertical-align: top;">all output quantities<br>
7731
7732
7733
7734
7735
[153]7736
7737
[116]7738            </td>
7739
7740
7741
7742
[153]7743
7744
[116]7745 </tr>
7746
7747
7748
7749
[153]7750
7751
[116]7752 
7753       
7754       
7755       
7756       
[153]7757       
7758       
[116]7759        </tbody> 
7760     
7761     
7762     
7763     
[153]7764     
7765     
[116]7766      </table>
7767
7768
7769
7770
[153]7771
7772
[116]7773 <br>
7774
7775
7776
7777
[153]7778
7779
[116]7780 <span style="font-weight: bold;">Example:</span><br>
7781
7782
7783
7784
7785
[153]7786
7787
[116]7788If all cross section data and the particle data shall be output in
7789double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span>
7790has to be assigned.<br>
7791
7792
7793
7794
[153]7795
7796
[116]7797 </td>
7798
7799
7800
7801
[153]7802
7803
[116]7804 </tr>
7805
7806
7807
7808
7809
[153]7810
7811
[116]7812    <tr>
7813
7814
7815
7816
[153]7817
7818
[116]7819 <td style="vertical-align: top;"> 
7820     
7821     
7822     
7823     
[153]7824     
7825     
[116]7826      <p><a name="npex"></a><b>npex</b></p>
7827
7828
7829
7830
[153]7831
7832
[116]7833 </td>
7834
7835
7836
7837
7838
[153]7839
7840
[116]7841      <td style="vertical-align: top;">I</td>
7842
7843
7844
7845
[153]7846
7847
[116]7848 <td style="vertical-align: top;"><br>
7849
7850
7851
7852
[153]7853
7854
[116]7855 </td>
7856
7857
7858
7859
[153]7860
7861
[116]7862 <td style="vertical-align: top;"> 
7863     
7864     
7865     
7866     
[153]7867     
7868     
[116]7869      <p>Number of processors
7870along x-direction of the virtual
7871processor
7872net.&nbsp; </p>
7873
7874
7875
7876
[153]7877
7878
[116]7879 
7880     
7881     
7882     
7883     
[153]7884     
7885     
[116]7886      <p>For parallel runs, the total
7887number of processors to be used
7888is given by
7889the <span style="font-weight: bold;">mrun</span>
7890option <a href="http://www.muk.uni-hannover.de/software/mrun_beschreibung.html#Opt-X">-X</a>.
7891By default, depending on the type of the parallel computer, PALM
7892generates a 1d processor
7893net (domain decomposition along x, <span style="font-weight: bold;">npey</span>
7894= <span style="font-style: italic;">1</span>) or a
78952d-net (this is
7896favored on machines with fast communication network). In case of a
78972d-net, it is tried to make it more or less square-shaped. If, for
7898example, 16 processors are assigned (-X 16), a 4 * 4 processor net is
7899generated (<span style="font-weight: bold;">npex</span>
7900= <span style="font-style: italic;">4</span>, <span style="font-weight: bold;">npey</span>
7901= <span style="font-style: italic;">4</span>).
7902This choice is optimal for square total domains (<a href="#nx">nx</a>
7903= <a href="#ny">ny</a>),
7904since then the number of ghost points at the lateral boundarys of
7905the subdomains is minimal. If <span style="font-weight: bold;">nx</span>
7906nd <span style="font-weight: bold;">ny</span>
7907differ extremely, the
7908processor net should be manually adjusted using adequate values for <span style="font-weight: bold;">npex</span> and <span style="font-weight: bold;">npey</span>.&nbsp; </p>
7909
7910
7911
7912
7913
[153]7914
7915
[116]7916     
7917     
7918     
7919     
[153]7920     
7921     
[116]7922      <p><b>Important:</b> The value of <span style="font-weight: bold;">npex</span> * <span style="font-weight: bold;">npey</span> must exactly
7923correspond to the
7924value assigned by the <span style="font-weight: bold;">mrun</span>-option
7925      <tt>-X</tt>.
7926Otherwise the model run will abort with a corresponding error
7927message.&nbsp; <br>
7928
7929
7930
7931
7932
[153]7933
7934
[116]7935Additionally, the specification of <span style="font-weight: bold;">npex</span>
7936and <span style="font-weight: bold;">npey</span>
7937may of course
7938override the default setting for the domain decomposition (1d or 2d)
7939which may have a significant (negative) effect on the code performance.
7940      </p>
7941
7942
7943
7944
[153]7945
7946
[116]7947 </td>
7948
7949
7950
7951
[153]7952
7953
[116]7954 </tr>
7955
7956
7957
7958
[153]7959
7960
[116]7961 <tr>
7962
7963
7964
7965
[153]7966
7967
[116]7968 <td style="vertical-align: top;"> 
7969     
7970     
7971     
7972     
[153]7973     
7974     
[116]7975      <p><a name="npey"></a><b>npey</b></p>
7976
7977
7978
7979
7980
[153]7981
7982
[116]7983      </td>
7984
7985
7986
7987
[153]7988
7989
[116]7990 <td style="vertical-align: top;">I</td>
7991
7992
7993
7994
7995
[153]7996
7997
[116]7998      <td style="vertical-align: top;"><br>
7999
8000
8001
8002
[153]8003
8004
[116]8005 </td>
8006
8007
8008
8009
[153]8010
8011
[116]8012 <td style="vertical-align: top;"> 
8013     
8014     
8015     
8016     
[153]8017     
8018     
[116]8019      <p>Number of processors
8020along y-direction of the virtual
8021processor
8022net.&nbsp; </p>
8023
8024
8025
8026
[153]8027
8028
[116]8029 
8030     
8031     
8032     
8033     
[153]8034     
8035     
[116]8036      <p>For further information see <a href="#npex">npex</a>.</p>
8037
8038
8039
8040
[153]8041
8042
[116]8043 </td>
8044
8045
8046
8047
[153]8048
8049
[116]8050 </tr>
8051
8052
8053
8054
8055
[153]8056
8057
[116]8058    <tr>
8059
8060
8061
8062
[153]8063
8064
[116]8065 <td style="vertical-align: top;"> 
8066     
8067     
8068     
8069     
[153]8070     
8071     
[116]8072      <p><a name="nsor_ini"></a><b>nsor_ini</b></p>
8073
8074
8075
8076
8077
[153]8078
8079
[116]8080      </td>
8081
8082
8083
8084
[153]8085
8086
[116]8087 <td style="vertical-align: top;">I</td>
8088
8089
8090
8091
8092
[153]8093
8094
[116]8095      <td style="vertical-align: top;"><i>100</i></td>
8096
8097
8098
8099
8100
[153]8101
8102
[116]8103      <td style="vertical-align: top;"> 
8104     
8105     
8106     
8107     
[153]8108     
8109     
[116]8110      <p>Initial number
8111of iterations with the SOR algorithm.&nbsp; </p>
8112
8113
8114
8115
[153]8116
8117
[116]8118 
8119     
8120     
8121     
8122     
[153]8123     
8124     
[116]8125      <p>This
8126parameter is only effective if the SOR algorithm was
8127selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a>
8128= <span style="font-style: italic;">'sor'</span>)
8129and specifies the
8130number of initial iterations of the SOR
8131scheme (at t = 0). The number of subsequent iterations at the following
8132timesteps is determined
8133with the parameter <a href="#nsor">nsor</a>.
8134Usually <b>nsor</b> &lt; <b>nsor_ini</b>,
8135since in each case
8136subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a>
8137use the solution of the previous call as initial value. Suitable
8138test runs should determine whether sufficient convergence of the
8139solution is obtained with the default value and if necessary the value
8140of <b>nsor_ini</b> should be changed.</p>
8141
8142
8143
8144
[153]8145
8146
[116]8147 </td>
8148
8149
8150
8151
8152
[153]8153
8154
[116]8155    </tr>
8156
8157
8158
8159
[153]8160
8161
[116]8162 <tr>
8163
8164
8165
8166
[153]8167
8168
[116]8169 <td style="vertical-align: top;">
8170     
8171     
8172     
8173     
[153]8174     
8175     
[116]8176      <p><a name="nx"></a><b>nx</b></p>
8177
8178
8179
8180
8181
[153]8182
8183
[116]8184      </td>
8185
8186
8187
8188
[153]8189
8190
[116]8191 <td style="vertical-align: top;">I</td>
8192
8193
8194
8195
8196
[153]8197
8198
[116]8199      <td style="vertical-align: top;"><br>
8200
8201
8202
8203
[153]8204
8205
[116]8206 </td>
8207
8208
8209
8210
[153]8211
8212
[116]8213 <td style="vertical-align: top;"> 
8214     
8215     
8216     
8217     
[153]8218     
8219     
[116]8220      <p>Number of grid
8221points in x-direction.&nbsp; </p>
8222
8223
8224
8225
[153]8226
8227
[116]8228 
8229     
8230     
8231     
8232     
[153]8233     
8234     
[116]8235      <p>A value for this
8236parameter must be assigned. Since the lower
8237array bound in PALM
8238starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>.
8239In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)*
8240      <a href="#dx">dx</a>.</p>
8241
8242
8243
8244
[153]8245
8246
[116]8247 
8248     
8249     
8250     
8251     
[153]8252     
8253     
[116]8254      <p>For
8255parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8256= <span style="font-style: italic;">'strict'</span>,
8257      <b>nx+1</b> must
8258be an integral multiple
8259of the processor numbers (see <a href="#npex">npex</a>
8260and <a href="#npey">npey</a>)
8261along x- as well as along y-direction (due to data
8262transposition restrictions).</p>
8263
8264
8265
8266
[153]8267
8268
[116]8269     
8270     
8271     
8272     
[153]8273     
8274     
[116]8275      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8276and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8277
8278
8279
8280
[153]8281
8282
[116]8283 </td>
8284
8285
8286
8287
[153]8288
8289
[116]8290 </tr>
8291
8292
8293
8294
[153]8295
8296
[116]8297 <tr>
8298
8299
8300
8301
8302
[153]8303
8304
[116]8305      <td style="vertical-align: top;"> 
8306     
8307     
8308     
8309     
[153]8310     
8311     
[116]8312      <p><a name="ny"></a><b>ny</b></p>
8313
8314
8315
8316
8317
[153]8318
8319
[116]8320      </td>
8321
8322
8323
8324
[153]8325
8326
[116]8327 <td style="vertical-align: top;">I</td>
8328
8329
8330
8331
8332
[153]8333
8334
[116]8335      <td style="vertical-align: top;"><br>
8336
8337
8338
8339
[153]8340
8341
[116]8342 </td>
8343
8344
8345
8346
[153]8347
8348
[116]8349 <td style="vertical-align: top;"> 
8350     
8351     
8352     
8353     
[153]8354     
8355     
[116]8356      <p>Number of grid
8357points in y-direction.&nbsp; </p>
8358
8359
8360
8361
[153]8362
8363
[116]8364 
8365     
8366     
8367     
8368     
[153]8369     
8370     
[116]8371      <p>A value for this
8372parameter must be assigned. Since the lower
8373array bound in PALM starts with j = 0, the actual number of grid points
8374is equal to <b>ny+1</b>. In case of cyclic boundary
8375conditions along
8376y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p>
8377
8378
8379
8380
8381
[153]8382
8383
[116]8384     
8385     
8386     
8387     
[153]8388     
8389     
[116]8390      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8391= <span style="font-style: italic;">'strict'</span>,
8392      <b>ny+1</b> must
8393be an integral multiple
8394of the processor numbers (see <a href="#npex">npex</a>
8395and <a href="#npey">npey</a>)&nbsp;
8396along y- as well as along x-direction (due to data
8397transposition restrictions).</p>
8398
8399
8400
8401
[153]8402
8403
[116]8404     
8405     
8406     
8407     
[153]8408     
8409     
[116]8410      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8411and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8412
8413
8414
8415
[153]8416
8417
[116]8418 </td>
8419
8420
8421
8422
[153]8423
8424
[116]8425 </tr>
8426
8427
8428
8429
[153]8430
8431
[116]8432 <tr>
8433
8434
8435
8436
8437
[153]8438
8439
[116]8440      <td style="vertical-align: top;"> 
8441     
8442     
8443     
8444     
[153]8445     
8446     
[116]8447      <p><a name="nz"></a><b>nz</b></p>
8448
8449
8450
8451
8452
[153]8453
8454
[116]8455      </td>
8456
8457
8458
8459
[153]8460
8461
[116]8462 <td style="vertical-align: top;">I</td>
8463
8464
8465
8466
8467
[153]8468
8469
[116]8470      <td style="vertical-align: top;"><br>
8471
8472
8473
8474
[153]8475
8476
[116]8477 </td>
8478
8479
8480
8481
[153]8482
8483
[116]8484 <td style="vertical-align: top;"> 
8485     
8486     
8487     
8488     
[153]8489     
8490     
[116]8491      <p>Number of grid
8492points in z-direction.&nbsp; </p>
8493
8494
8495
8496
[153]8497
8498
[116]8499 
8500     
8501     
8502     
8503     
[153]8504     
8505     
[116]8506      <p>A value for this
8507parameter must be assigned. Since the lower
8508array bound in PALM
8509starts with k = 0 and since one additional grid point is added at the
8510top boundary (k = <b>nz+1</b>), the actual number of grid
8511points is <b>nz+2</b>.
8512However, the prognostic equations are only solved up to <b>nz</b>
8513(u,
8514v)
8515or up to <b>nz-1</b> (w, scalar quantities). The top
8516boundary for u
8517and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b>
8518for all
8519other quantities.&nbsp; </p>
8520
8521
8522
8523
[153]8524
8525
[116]8526 
8527     
8528     
8529     
8530     
[153]8531     
8532     
[116]8533      <p>For parallel
8534runs,&nbsp; in case of <a href="#grid_matching">grid_matching</a>
8535= <span style="font-style: italic;">'strict'</span>,
8536      <b>nz</b> must
8537be an integral multiple of
8538the number of processors in x-direction (due to data transposition
8539restrictions).</p>
8540
8541
8542
8543
[153]8544
8545
[116]8546 </td>
8547
8548
8549
8550
[153]8551
8552
[116]8553 </tr>
8554
8555
8556
8557
[153]8558
8559
[116]8560 <tr>
8561
8562
8563
8564
[153]8565
8566
[116]8567      <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td>
8568
8569
8570
8571
[153]8572
8573
[116]8574      <td style="vertical-align: top;">L</td>
8575
8576
8577
8578
[153]8579
8580
[116]8581      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
8582
8583
8584
8585
[153]8586
8587
[116]8588      <td style="vertical-align: top;">Parameter to switch on&nbsp;ocean runs.<br>
8589
8590
8591
8592
[153]8593
8594
[116]8595      <br>
8596
8597
8598
8599
[153]8600
8601
[116]8602By default PALM is configured to simulate&nbsp;atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows&nbsp;simulation of ocean turbulent flows. Setting this switch has several effects:<br>
8603
8604
8605
8606
[153]8607
8608
[116]8609      <br>
8610
8611
8612
8613
[153]8614
8615
[116]8616     
8617     
8618     
8619     
[153]8620     
8621     
[116]8622      <ul>
8623
8624
8625
8626
[153]8627
8628
[116]8629        <li>An additional prognostic equation for salinity is solved.</li>
8630
8631
8632
8633
[153]8634
8635
[116]8636        <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li>
8637
8638
8639
8640
[153]8641
8642
[116]8643        <li>Potential
8644density is calculated from the equation of state for seawater after
8645each timestep, using the algorithm proposed by Jackett et al. (2006, J.
8646Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br>
8647
8648
8649
8650
[153]8651
8652
[116]8653So far, only the initial hydrostatic pressure is entered into this equation.</li>
8654
8655
8656
8657
[153]8658
8659
[116]8660        <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li>
8661
8662
8663
8664
[153]8665
8666
[116]8667        <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values&nbsp;given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li>
8668
8669
8670
8671
[153]8672
8673
[116]8674        <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li>
8675
8676
8677
8678
[153]8679
8680
[116]8681        <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li>
8682
8683
8684
8685
[153]8686
8687
[116]8688     
8689     
8690     
8691     
[153]8692     
8693     
[116]8694      </ul>
8695
8696
8697
8698
[153]8699
8700
[116]8701      <br>
8702
8703
8704
8705
[153]8706
8707
[116]8708Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br>
8709
8710
8711
8712
[153]8713
8714
[116]8715      <br>
8716
8717
8718
8719
[153]8720
8721
[116]8722Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br>
8723
8724
8725
8726
[153]8727
8728
[116]8729      <br>
8730
8731
8732
8733
[153]8734
8735
[116]8736      <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br>
8737
[153]8738
8739
[116]8740      </td>
8741
8742
8743
8744
[153]8745
8746
[116]8747    </tr>
8748
8749
8750
8751
[153]8752
8753
[116]8754    <tr>
8755
8756
8757
8758
[153]8759
8760
[116]8761 <td style="vertical-align: top;"> 
8762     
8763     
8764     
8765     
[153]8766     
8767     
[116]8768      <p><a name="omega"></a><b>omega</b></p>
8769
8770
8771
8772
8773
[153]8774
8775
[116]8776      </td>
8777
8778
8779
8780
[153]8781
8782
[116]8783 <td style="vertical-align: top;">R</td>
8784
8785
8786
8787
8788
[153]8789
8790
[116]8791      <td style="vertical-align: top;"><i>7.29212E-5</i></td>
8792
8793
8794
8795
8796
[153]8797
8798
[116]8799      <td style="vertical-align: top;"> 
8800     
8801     
8802     
8803     
[153]8804     
8805     
[116]8806      <p>Angular
8807velocity of the rotating system (in rad s<sup>-1</sup>).&nbsp;
8808      </p>
8809
8810
8811
8812
[153]8813
8814
[116]8815 
8816     
8817     
8818     
8819     
[153]8820     
8821     
[116]8822      <p>The angular velocity of the earth is set by
8823default. The
8824values
8825of the Coriolis parameters are calculated as:&nbsp; </p>
8826
8827
8828
8829
[153]8830
8831
[116]8832 
8833     
8834     
8835     
8836     
[153]8837     
8838     
[116]8839      <ul>
8840
8841
8842
8843
8844
[153]8845
8846
[116]8847       
8848       
8849       
8850       
[153]8851       
8852       
[116]8853        <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>)&nbsp;
8854        <br>
8855
8856
8857
8858
[153]8859
8860
[116]8861f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p>
8862
8863
8864
8865
8866
[153]8867
8868
[116]8869     
8870     
8871     
8872     
[153]8873     
8874     
[116]8875      </ul>
8876
8877
8878
8879
[153]8880
8881
[116]8882 </td>
8883
8884
8885
8886
[153]8887
8888
[116]8889 </tr>
8890
8891
8892
8893
[153]8894
8895
[116]8896 <tr>
8897
8898
8899
8900
[153]8901
8902
[116]8903 <td style="vertical-align: top;"> 
8904     
8905     
8906     
8907     
[153]8908     
8909     
[116]8910      <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p>
8911
8912
8913
8914
8915
[153]8916
8917
[116]8918      </td>
8919
8920
8921
8922
[153]8923
8924
[116]8925 <td style="vertical-align: top;">I</td>
8926
8927
8928
8929
8930
[153]8931
8932
[116]8933      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20,
8934nx/2</span> or <span style="font-style: italic;">ny/2)</span></td>
8935
8936
8937
8938
8939
[153]8940
8941
[116]8942      <td style="vertical-align: top;">Width of
8943the damping range in the vicinity of the outflow (gridpoints).<br>
8944
8945
8946
8947
8948
[153]8949
8950
[116]8951      <br>
8952
8953
8954
8955
8956
[153]8957
8958
[116]8959When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
8960or <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
8961a smoothing has to be applied to the
8962velocity field in the vicinity of the outflow in order to suppress any
8963reflections of outgoing disturbances. This parameter controlls the
8964horizontal range to which the smoothing is applied. The range is given
8965in gridpoints counted from the respective outflow boundary. For further
8966details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>,
8967which defines the magnitude of the damping.</td>
8968
8969
8970
8971
[153]8972
8973
[116]8974 </tr>
8975
8976
8977
8978
8979
[153]8980
8981
[116]8982    <tr>
8983
8984
8985
8986
[153]8987
8988
[116]8989 <td style="vertical-align: top;"> 
8990     
8991     
8992     
8993     
[153]8994     
8995     
[116]8996      <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p>
8997
8998
8999
9000
9001
[153]9002
9003
[116]9004      </td>
9005
9006
9007
9008
[153]9009
9010
[116]9011 <td style="vertical-align: top;">R</td>
9012
9013
9014
9015
9016
[153]9017
9018
[116]9019      <td style="vertical-align: top;"><i>0.0</i></td>
9020
9021
9022
9023
9024
[153]9025
9026
[116]9027      <td style="vertical-align: top;"> 
9028     
9029     
9030     
9031     
[153]9032     
9033     
[116]9034      <p>Allowed limit
9035for the overshooting of subgrid-scale TKE in
9036case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
9037      </p>
9038
9039
9040
9041
[153]9042
9043
[116]9044 
9045     
9046     
9047     
9048     
[153]9049     
9050     
[116]9051      <p>By deafult, if cut-off of overshoots is switched
9052on for the
9053upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>),
9054no overshoots are permitted at all. If <b>overshoot_limit_e</b>
9055is given a non-zero value, overshoots with the respective
9056amplitude (both upward and downward) are allowed.&nbsp; </p>
9057
9058
9059
9060
9061
[153]9062
9063
[116]9064     
9065     
9066     
9067     
[153]9068     
9069     
[116]9070      <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p>
9071
9072
9073
9074
9075
[153]9076
9077
[116]9078      </td>
9079
9080
9081
9082
[153]9083
9084
[116]9085 </tr>
9086
9087
9088
9089
[153]9090
9091
[116]9092 <tr>
9093
9094
9095
9096
[153]9097
9098
[116]9099 <td style="vertical-align: top;"> 
9100     
9101     
9102     
9103     
[153]9104     
9105     
[116]9106      <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p>
9107
9108
9109
9110
9111
[153]9112
9113
[116]9114      </td>
9115
9116
9117
9118
[153]9119
9120
[116]9121 <td style="vertical-align: top;">R</td>
9122
9123
9124
9125
9126
[153]9127
9128
[116]9129      <td style="vertical-align: top;"><i>0.0</i></td>
9130
9131
9132
9133
9134
[153]9135
9136
[116]9137      <td style="vertical-align: top;"> 
9138     
9139     
9140     
9141     
[153]9142     
9143     
[116]9144      <p>Allowed limit
9145for the overshooting of potential temperature in
9146case that the upstream-spline scheme is switched on (in K).&nbsp; </p>
9147
9148
9149
9150
9151
[153]9152
9153
[116]9154     
9155     
9156     
9157     
[153]9158     
9159     
[116]9160      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9161      </p>
9162
9163
9164
9165
[153]9166
9167
[116]9168 
9169     
9170     
9171     
9172     
[153]9173     
9174     
[116]9175      <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p>
9176
9177
9178
9179
9180
[153]9181
9182
[116]9183      </td>
9184
9185
9186
9187
[153]9188
9189
[116]9190 </tr>
9191
9192
9193
9194
[153]9195
9196
[116]9197 <tr>
9198
9199
9200
9201
[153]9202
9203
[116]9204 <td style="vertical-align: top;"> 
9205     
9206     
9207     
9208     
[153]9209     
9210     
[116]9211      <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p>
9212
9213
9214
9215
9216
[153]9217
9218
[116]9219      </td>
9220
9221
9222
9223
[153]9224
9225
[116]9226 <td style="vertical-align: top;">R</td>
9227
9228
9229
9230
9231
[153]9232
9233
[116]9234      <td style="vertical-align: top;"><i>0.0</i></td>
9235
9236
9237
9238
9239
[153]9240
9241
[116]9242      <td style="vertical-align: top;">Allowed limit for the
9243overshooting of
9244the u-component of velocity in case that the upstream-spline scheme is
9245switched on (in m/s).
9246     
9247     
9248     
9249     
[153]9250     
9251     
[116]9252      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9253      </p>
9254
9255
9256
9257
[153]9258
9259
[116]9260 
9261     
9262     
9263     
9264     
[153]9265     
9266     
[116]9267      <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p>
9268
9269
9270
9271
9272
[153]9273
9274
[116]9275      </td>
9276
9277
9278
9279
[153]9280
9281
[116]9282 </tr>
9283
9284
9285
9286
[153]9287
9288
[116]9289 <tr>
9290
9291
9292
9293
[153]9294
9295
[116]9296 <td style="vertical-align: top;"> 
9297     
9298     
9299     
9300     
[153]9301     
9302     
[116]9303      <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p>
9304
9305
9306
9307
9308
[153]9309
9310
[116]9311      </td>
9312
9313
9314
9315
[153]9316
9317
[116]9318 <td style="vertical-align: top;">R</td>
9319
9320
9321
9322
9323
[153]9324
9325
[116]9326      <td style="vertical-align: top;"><i>0.0</i></td>
9327
9328
9329
9330
9331
[153]9332
9333
[116]9334      <td style="vertical-align: top;"> 
9335     
9336     
9337     
9338     
[153]9339     
9340     
[116]9341      <p>Allowed limit
9342for the overshooting of the v-component of
9343velocity in case that the upstream-spline scheme is switched on
9344(in m/s).&nbsp; </p>
9345
9346
9347
9348
[153]9349
9350
[116]9351 
9352     
9353     
9354     
9355     
[153]9356     
9357     
[116]9358      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9359      </p>
9360
9361
9362
9363
[153]9364
9365
[116]9366 
9367     
9368     
9369     
9370     
[153]9371     
9372     
[116]9373      <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p>
9374
9375
9376
9377
9378
[153]9379
9380
[116]9381      </td>
9382
9383
9384
9385
[153]9386
9387
[116]9388 </tr>
9389
9390
9391
9392
[153]9393
9394
[116]9395 <tr>
9396
9397
9398
9399
[153]9400
9401
[116]9402 <td style="vertical-align: top;"> 
9403     
9404     
9405     
9406     
[153]9407     
9408     
[116]9409      <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p>
9410
9411
9412
9413
9414
[153]9415
9416
[116]9417      </td>
9418
9419
9420
9421
[153]9422
9423
[116]9424 <td style="vertical-align: top;">R</td>
9425
9426
9427
9428
9429
[153]9430
9431
[116]9432      <td style="vertical-align: top;"><i>0.0</i></td>
9433
9434
9435
9436
9437
[153]9438
9439
[116]9440      <td style="vertical-align: top;"> 
9441     
9442     
9443     
9444     
[153]9445     
9446     
[116]9447      <p>Allowed limit
9448for the overshooting of the w-component of
9449velocity in case that the upstream-spline scheme is switched on
9450(in m/s).&nbsp; </p>
9451
9452
9453
9454
[153]9455
9456
[116]9457 
9458     
9459     
9460     
9461     
[153]9462     
9463     
[116]9464      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9465      </p>
9466
9467
9468
9469
[153]9470
9471
[116]9472 
9473     
9474     
9475     
9476     
[153]9477     
9478     
[116]9479      <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p>
9480
9481
9482
9483
9484
[153]9485
9486
[116]9487      </td>
9488
9489
9490
9491
[153]9492
9493
[116]9494 </tr>
9495
9496
9497
9498
[153]9499
9500
[116]9501 <tr>
9502
9503
9504
9505
[153]9506
9507
[116]9508 <td style="vertical-align: top;"> 
9509     
9510     
9511     
9512     
[153]9513     
9514     
[116]9515      <p><a name="passive_scalar"></a><b>passive_scalar</b></p>
9516
9517
9518
9519
9520
[153]9521
9522
[116]9523      </td>
9524
9525
9526
9527
[153]9528
9529
[116]9530 <td style="vertical-align: top;">L</td>
9531
9532
9533
9534
9535
[153]9536
9537
[116]9538      <td style="vertical-align: top;"><i>.F.</i></td>
9539
9540
9541
9542
9543
[153]9544
9545
[116]9546      <td style="vertical-align: top;"> 
9547     
9548     
9549     
9550     
[153]9551     
9552     
[116]9553      <p>Parameter to
9554switch on the prognostic equation for a passive
9555scalar. <br>
9556
9557
9558
9559
[153]9560
9561
[116]9562 </p>
9563
9564
9565
9566
[153]9567
9568
[116]9569 
9570     
9571     
9572     
9573     
[153]9574     
9575     
[116]9576      <p>The initial vertical profile
9577of s can be set via parameters <a href="#s_surface">s_surface</a>,
9578      <a href="#s_vertical_gradient">s_vertical_gradient</a>
9579and&nbsp; <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
9580Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a>
9581and <a href="#surface_scalarflux">surface_scalarflux</a>.&nbsp;
9582      </p>
9583
9584
9585
9586
[153]9587
9588
[116]9589 
9590     
9591     
9592     
9593     
[153]9594     
9595     
[116]9596      <p><b>Note:</b> <br>
9597
9598
9599
9600
9601
[153]9602
9603
[116]9604With <span style="font-weight: bold;">passive_scalar</span>
9605switched
9606on, the simultaneous use of humidity (see&nbsp;<a href="#humidity">humidity</a>)
9607is impossible.</p>
9608
9609
9610
9611
[153]9612
9613
[116]9614 </td>
9615
9616
9617
9618
[153]9619
9620
[116]9621 </tr>
9622
9623
9624
9625
9626
9627
[153]9628 <tr>
[116]9629
[160]9630      <td style="vertical-align: top;"><a name="pch_index"></a><span style="font-weight: bold;">pch_index</span></td>
[116]9631
[160]9632      <td style="vertical-align: top;">I</td>
[153]9633
[160]9634      <td style="vertical-align: top;"><span style="font-style: italic;">0</span></td>
[153]9635
[160]9636      <td style="vertical-align: top;">Grid point index (scalar) of the upper boundary of the plant canopy layer.<br>
[153]9637
9638      <br>
9639
9640Above <span style="font-weight: bold;">pch_index</span> the arrays of leaf area density and drag_coeffient are automatically set to zero in case of <a href="#plant_canopy">plant_canopy</a> = .T.. Up to <span style="font-weight: bold;">pch_index</span> a leaf area density profile can be prescribed by using the parameters <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a> and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>.</td>
9641
9642    </tr>
9643
9644    <tr>
9645
9646
9647
9648
9649
9650
[116]9651 <td style="vertical-align: top;"> 
9652     
9653     
9654     
9655     
[153]9656     
9657     
[116]9658      <p><a name="phi"></a><b>phi</b></p>
9659
9660
9661
9662
9663
[153]9664
9665
[116]9666      </td>
9667
9668
9669
9670
[153]9671
9672
[116]9673 <td style="vertical-align: top;">R</td>
9674
9675
9676
9677
9678
[153]9679
9680
[116]9681      <td style="vertical-align: top;"><i>55.0</i></td>
9682
9683
9684
9685
9686
[153]9687
9688
[116]9689      <td style="vertical-align: top;"> 
9690     
9691     
9692     
9693     
[153]9694     
9695     
[116]9696      <p>Geographical
9697latitude (in degrees).&nbsp; </p>
9698
9699
9700
9701
[153]9702
9703
[116]9704 
9705     
9706     
9707     
9708     
[153]9709     
9710     
[116]9711      <p>The value of
9712this parameter determines the value of the
9713Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>)
9714is non-zero.</p>
9715
9716
9717
9718
[153]9719
9720
[116]9721 </td>
9722
9723
9724
9725
[153]9726
9727
[116]9728 </tr>
9729
9730
9731
9732
[153]9733
9734
9735 <tr>
9736
[160]9737      <td style="vertical-align: top;"><a name="plant_canopy"></a><span style="font-weight: bold;">plant_canopy</span></td>
[153]9738
[160]9739      <td style="vertical-align: top;">L</td>
[153]9740
[160]9741      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
[153]9742
[160]9743      <td style="vertical-align: top;">Switch for the plant_canopy_model.<br>
[153]9744
9745      <br>
9746
9747If <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>, the plant canopy model of Watanabe (2004, BLM 112, 307-341) is used. <br>
9748
9749The
[138]9750impact of a plant canopy on a turbulent flow is considered by an
9751additional drag term in the momentum equations and an additional sink
9752term in the prognostic equation for the subgrid-scale TKE. These
[153]9753additional terms are dependent on the leaf drag coefficient (see <a href="#drag_coefficient">drag_coefficient</a>) and the leaf area density (see <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a>, <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>). <br>
[116]9754
[153]9755By default, a horizontally homogeneous plant canopy is prescribed, if&nbsp; <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>. However, the user can define other types of plant canopies (see <a href="#canopy_mode">canopy_mode</a>).<br>
[116]9756
[153]9757      <br>
[116]9758
[153]9759      <span style="font-weight: bold;">plant_canopy</span> = <span style="font-style: italic;">.T. </span>is only allowed together with a non-zero <a href="#drag_coefficient">drag_coefficient</a>.</td>
[116]9760
[153]9761    </tr>
9762
9763    <tr>
9764
9765
9766
9767
9768
9769
[116]9770 <td style="vertical-align: top;"> 
9771     
9772     
9773     
9774     
[153]9775     
9776     
[116]9777      <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p>
9778
9779
9780
9781
9782
[153]9783
9784
[116]9785      </td>
9786
9787
9788
9789
[153]9790
9791
[116]9792 <td style="vertical-align: top;">L</td>
9793
9794
9795
9796
9797
[153]9798
9799
[116]9800      <td style="vertical-align: top;"><i>.T.</i></td>
9801
9802
9803
9804
9805
[153]9806
9807
[116]9808      <td style="vertical-align: top;"> 
9809     
9810     
9811     
9812     
[153]9813     
9814     
[116]9815      <p>Parameter to
9816switch on a Prandtl layer.&nbsp; </p>
9817
9818
9819
9820
[153]9821
9822
[116]9823 
9824     
9825     
9826     
9827     
[153]9828     
9829     
[116]9830      <p>By default,
9831a Prandtl layer is switched on at the bottom
9832boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a>
9833(the first computational grid point above ground for u, v and the
9834scalar quantities).
9835In this case, at the bottom boundary, free-slip conditions for u and v
9836(see <a href="#bc_uv_b">bc_uv_b</a>)
9837are not allowed. Likewise, laminar
9838simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>)
9839are forbidden.&nbsp; </p>
9840
9841
9842
9843
[153]9844
9845
[116]9846 
9847     
9848     
9849     
9850     
[153]9851     
9852     
[116]9853      <p>With Prandtl-layer
9854switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a>
9855= '<i>(u*)**2+neumann'</i> must not be used and is
9856automatically
9857changed to <i>'neumann'</i> if necessary.&nbsp; Also,
9858the pressure
9859boundary condition <a href="#bc_p_b">bc_p_b</a>
9860= <i>'neumann+inhomo'</i>&nbsp; is not allowed. </p>
9861
9862
9863
9864
9865
[153]9866
9867
[116]9868     
9869     
9870     
9871     
[153]9872     
9873     
[116]9874      <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p>
9875
9876
9877
9878
9879
[153]9880
9881
[116]9882      </td>
9883
9884
9885
9886
[153]9887
9888
[116]9889 </tr>
9890
9891
9892
9893
[153]9894
9895
[116]9896 <tr>
9897
9898
9899
9900
[153]9901
9902
[116]9903 <td style="vertical-align: top;"> 
9904     
9905     
9906     
9907     
[153]9908     
9909     
[116]9910      <p><a name="precipitation"></a><b>precipitation</b></p>
9911
9912
9913
9914
9915
[153]9916
9917
[116]9918      </td>
9919
9920
9921
9922
[153]9923
9924
[116]9925 <td style="vertical-align: top;">L</td>
9926
9927
9928
9929
9930
[153]9931
9932
[116]9933      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9934
9935
9936
9937
[153]9938
9939
[116]9940 <td style="vertical-align: top;"> 
9941     
9942     
9943     
9944     
[153]9945     
9946     
[116]9947      <p>Parameter to switch
9948on the precipitation scheme.<br>
9949
9950
9951
9952
[153]9953
9954
[116]9955 </p>
9956
9957
9958
9959
[153]9960
9961
[116]9962 
9963     
9964     
9965     
9966     
[153]9967     
9968     
[116]9969      <p>For
9970precipitation processes PALM uses a simplified Kessler
9971scheme. This scheme only considers the
9972so-called autoconversion, that means the generation of rain water by
9973coagulation of cloud drops among themselves. Precipitation begins and
9974is immediately removed from the flow as soon as the liquid water
9975content exceeds the critical value of 0.5 g/kg.</p>
9976
9977
9978
9979
[153]9980
9981
[116]9982     
9983     
9984     
9985     
[153]9986     
9987     
[116]9988      <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p>
9989
9990
9991
9992
[153]9993
9994
[116]9995 </td>
9996
9997
9998
9999
[153]10000
10001
[116]10002 </tr>
10003
10004
10005
10006
10007
[153]10008
10009
[116]10010    <tr>
10011
10012
10013
10014
[153]10015
10016
[116]10017      <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td>
10018
10019
10020
10021
[153]10022
10023
[116]10024      <td style="vertical-align: top;">R</td>
10025
10026
10027
10028
[153]10029
10030
[116]10031      <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as
10032refrence</span></td>
10033
10034
10035
10036
[153]10037
10038
[116]10039      <td style="vertical-align: top;">Reference
10040temperature to be used in all buoyancy terms (in K).<br>
10041
10042
10043
10044
[153]10045
10046
[116]10047      <br>
10048
10049
10050
10051
[153]10052
10053
[116]10054By
10055default, the instantaneous horizontal average over the total model
10056domain is used.<br>
10057
10058
10059
10060
[153]10061
10062
[116]10063      <br>
10064
10065
10066
10067
[153]10068
10069
[116]10070      <span style="font-weight: bold;">Attention:</span><br>
10071
10072
10073
10074
[153]10075
10076
[116]10077In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td>
10078
10079
10080
10081
[153]10082
10083
[116]10084    </tr>
10085
10086
10087
10088
[153]10089
10090
[116]10091    <tr>
10092
10093
10094
10095
[153]10096
10097
[116]10098 <td style="vertical-align: top;"> 
10099     
10100     
10101     
10102     
[153]10103     
10104     
[116]10105      <p><a name="pt_surface"></a><b>pt_surface</b></p>
10106
10107
10108
10109
10110
[153]10111
10112
[116]10113      </td>
10114
10115
10116
10117
[153]10118
10119
[116]10120 <td style="vertical-align: top;">R</td>
10121
10122
10123
10124
10125
[153]10126
10127
[116]10128      <td style="vertical-align: top;"><i>300.0</i></td>
10129
10130
10131
10132
10133
[153]10134
10135
[116]10136      <td style="vertical-align: top;"> 
10137     
10138     
10139     
10140     
[153]10141     
10142     
[116]10143      <p>Surface
10144potential temperature (in K).&nbsp; </p>
10145
10146
10147
10148
[153]10149
10150
[116]10151 
10152     
10153     
10154     
10155     
[153]10156     
10157     
[116]10158      <p>This
10159parameter assigns the value of the potential temperature
10160      <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value,
10161the
10162initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10163and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level
10164      </a>.
10165This profile is also used for the 1d-model as a stationary profile.</p>
10166
10167
10168
10169
[153]10170
10171
[116]10172     
10173     
10174     
10175     
[153]10176     
10177     
[116]10178      <p><span style="font-weight: bold;">Attention:</span><br>
10179
10180
10181
10182
[153]10183
10184
[116]10185In case of ocean runs (see <a href="#ocean">ocean</a>),
10186this parameter gives the temperature value at the sea surface, which is
10187at k=nzt. The profile is then constructed from the surface down to the
10188bottom of the model.</p>
10189
10190
10191
10192
10193
[153]10194
10195
[116]10196      </td>
10197
10198
10199
10200
[153]10201
10202
[116]10203 </tr>
10204
10205
10206
10207
[153]10208
10209
[116]10210 <tr>
10211
10212
10213
10214
[153]10215
10216
[116]10217 <td style="vertical-align: top;"> 
10218     
10219     
10220     
10221     
[153]10222     
10223     
[116]10224      <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b>
10225      <br>
10226
10227
10228
10229
[153]10230
10231
[116]10232 <b>_change</b></p>
10233
10234
10235
10236
[153]10237
10238
[116]10239 </td>
10240
10241
10242
10243
[153]10244
10245
[116]10246 <td style="vertical-align: top;">R</td>
10247
10248
10249
10250
[153]10251
10252
[116]10253 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
10254
10255
10256
10257
[153]10258
10259
[116]10260 </td>
10261
10262
10263
10264
10265
[153]10266
10267
[116]10268      <td style="vertical-align: top;"> 
10269     
10270     
10271     
10272     
[153]10273     
10274     
[116]10275      <p>Change in
10276surface temperature to be made at the beginning of
10277the 3d run
10278(in K).&nbsp; </p>
10279
10280
10281
10282
[153]10283
10284
[116]10285 
10286     
10287     
10288     
10289     
[153]10290     
10291     
[116]10292      <p>If <b>pt_surface_initial_change</b>
10293is set to a non-zero
10294value, the near surface sensible heat flux is not allowed to be given
10295simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p>
10296
10297
10298
10299
10300
[153]10301
10302
[116]10303      </td>
10304
10305
10306
10307
[153]10308
10309
[116]10310 </tr>
10311
10312
10313
10314
[153]10315
10316
[116]10317 <tr>
10318
10319
10320
10321
[153]10322
10323
[116]10324 <td style="vertical-align: top;"> 
10325     
10326     
10327     
10328     
[153]10329     
10330     
[116]10331      <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p>
10332
10333
10334
10335
10336
[153]10337
10338
[116]10339      </td>
10340
10341
10342
10343
[153]10344
10345
[116]10346 <td style="vertical-align: top;">R (10)</td>
10347
10348
10349
10350
10351
[153]10352
10353
[116]10354      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10355
10356
10357
10358
10359
[153]10360
10361
[116]10362      <td style="vertical-align: top;"> 
10363     
10364     
10365     
10366     
[153]10367     
10368     
[116]10369      <p>Temperature
10370gradient(s) of the initial temperature profile (in
10371K
10372/ 100 m).&nbsp; </p>
10373
10374
10375
10376
[153]10377
10378
[116]10379 
10380     
10381     
10382     
10383     
[153]10384     
10385     
[116]10386      <p>This temperature gradient
10387holds starting from the height&nbsp;
10388level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>
10389(precisely: for all uv levels k where zu(k) &gt;
10390pt_vertical_gradient_level,
10391pt_init(k) is set: pt_init(k) = pt_init(k-1) + dzu(k) * <b>pt_vertical_gradient</b>)
10392up to the top boundary or up to the next height level defined
10393by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>.
10394A total of 10 different gradients for 11 height intervals (10 intervals
10395if <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>(1)
10396= <i>0.0</i>) can be assigned. The surface temperature is
10397assigned via <a href="#pt_surface">pt_surface</a>.&nbsp;
10398      </p>
10399
10400
10401
10402
[153]10403
10404
[116]10405 
10406     
10407     
10408     
10409     
[153]10410     
10411     
[116]10412      <p>Example:&nbsp; </p>
10413
10414
10415
10416
[153]10417
10418
[116]10419 
10420     
10421     
10422     
10423     
[153]10424     
10425     
[116]10426      <ul>
10427
10428
10429
10430
[153]10431
10432
[116]10433 
10434       
10435       
10436       
10437       
[153]10438       
10439       
[116]10440        <p><b>pt_vertical_gradient</b>
10441= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
10442
10443
10444
10445
10446
[153]10447
10448
[116]10449        <b>pt_vertical_gradient_level</b> = <i>500.0</i>,
10450        <i>1000.0</i>,</p>
10451
10452
10453
10454
[153]10455
10456
[116]10457 
10458     
10459     
10460     
10461     
[153]10462     
10463     
[116]10464      </ul>
10465
10466
10467
10468
[153]10469
10470
[116]10471 
10472     
10473     
10474     
10475     
[153]10476     
10477     
[116]10478      <p>That
10479defines the temperature profile to be neutrally
10480stratified
10481up to z = 500.0 m with a temperature given by <a href="#pt_surface">pt_surface</a>.
10482For 500.0 m &lt; z &lt;= 1000.0 m the temperature gradient is
104831.0 K /
10484100 m and for z &gt; 1000.0 m up to the top boundary it is
104850.5 K / 100 m (it is assumed that the assigned height levels correspond
10486with uv levels).</p>
10487
10488
10489
10490
[153]10491
10492
[116]10493     
10494     
10495     
10496     
[153]10497     
10498     
[116]10499      <p><span style="font-weight: bold;">Attention:</span><br>
10500
10501
10502
10503
[153]10504
10505
[116]10506In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
10507the profile is constructed like described above, but starting from the
10508sea surface (k=nzt) down to the bottom boundary of the model. Height
10509levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p>
10510
10511
10512
10513
[153]10514
10515
[116]10516 </td>
10517
10518
10519
10520
[153]10521
10522
[116]10523 </tr>
10524
10525
10526
10527
[153]10528
10529
[116]10530 <tr>
10531
10532
10533
10534
[153]10535
10536
[116]10537 <td style="vertical-align: top;"> 
10538     
10539     
10540     
10541     
[153]10542     
10543     
[116]10544      <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b>
10545      <br>
10546
10547
10548
10549
[153]10550
10551
[116]10552 <b>_level</b></p>
10553
10554
10555
10556
[153]10557
10558
[116]10559 </td>
10560
10561
10562
10563
[153]10564
10565
[116]10566 <td style="vertical-align: top;">R (10)</td>
10567
10568
10569
10570
[153]10571
10572
[116]10573 <td style="vertical-align: top;"> 
10574     
10575     
10576     
10577     
[153]10578     
10579     
[116]10580      <p><i>10 *</i>&nbsp;
10581      <span style="font-style: italic;">0.0</span><br>
10582
10583
10584
10585
10586
[153]10587
10588
[116]10589      </p>
10590
10591
10592
10593
[153]10594
10595
[116]10596 </td>
10597
10598
10599
10600
[153]10601
10602
[116]10603 <td style="vertical-align: top;">
10604     
10605     
10606     
10607     
[153]10608     
10609     
[116]10610      <p>Height level from which on the temperature gradient defined by
10611      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10612is effective (in m).&nbsp; </p>
10613
10614
10615
10616
[153]10617
10618
[116]10619 
10620     
10621     
10622     
10623     
[153]10624     
10625     
[116]10626      <p>The height levels have to be assigned in ascending order. The
10627default values result in a neutral stratification regardless of the
10628values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10629(unless the top boundary of the model is higher than 100000.0 m).
10630For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p>
10631
10632
10633
10634
[153]10635
10636
[116]10637      <span style="font-weight: bold;">Attention:</span><br>
10638
10639
10640
10641
[153]10642
10643
[116]10644In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.
10645      </td>
10646
10647
10648
10649
[153]10650
10651
[116]10652 </tr>
10653
10654
10655
10656
[153]10657
10658
[116]10659 <tr>
10660
10661
10662
10663
[153]10664
10665
[116]10666 <td style="vertical-align: top;"> 
10667     
10668     
10669     
10670     
[153]10671     
10672     
[116]10673      <p><a name="q_surface"></a><b>q_surface</b></p>
10674
10675
10676
10677
10678
[153]10679
10680
[116]10681      </td>
10682
10683
10684
10685
[153]10686
10687
[116]10688 <td style="vertical-align: top;">R</td>
10689
10690
10691
10692
10693
[153]10694
10695
[116]10696      <td style="vertical-align: top;"><i>0.0</i></td>
10697
10698
10699
10700
10701
[153]10702
10703
[116]10704      <td style="vertical-align: top;"> 
10705     
10706     
10707     
10708     
[153]10709     
10710     
[116]10711      <p>Surface
10712specific humidity / total water content (kg/kg).&nbsp; </p>
10713
10714
10715
10716
[153]10717
10718
[116]10719 
10720     
10721     
10722     
10723     
[153]10724     
10725     
[116]10726      <p>This
10727parameter assigns the value of the specific humidity q at
10728the surface (k=0).&nbsp; Starting from this value, the initial
10729humidity
10730profile is constructed with&nbsp; <a href="#q_vertical_gradient">q_vertical_gradient</a>
10731and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10732This profile is also used for the 1d-model as a stationary profile.</p>
10733
10734
10735
10736
10737
[153]10738
10739
[116]10740      </td>
10741
10742
10743
10744
[153]10745
10746
[116]10747 </tr>
10748
10749
10750
10751
[153]10752
10753
[116]10754 <tr>
10755
10756
10757
10758
[153]10759
10760
[116]10761 <td style="vertical-align: top;"> 
10762     
10763     
10764     
10765     
[153]10766     
10767     
[116]10768      <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b>
10769      <br>
10770
10771
10772
10773
[153]10774
10775
[116]10776 <b>_change</b></p>
10777
10778
10779
10780
[153]10781
10782
[116]10783 </td>
10784
10785
10786
10787
[153]10788
10789
[116]10790 <td style="vertical-align: top;">R<br>
10791
10792
10793
10794
[153]10795
10796
[116]10797 </td>
10798
10799
10800
10801
[153]10802
10803
[116]10804 <td style="vertical-align: top;"><i>0.0</i></td>
10805
10806
10807
10808
10809
[153]10810
10811
[116]10812      <td style="vertical-align: top;"> 
10813     
10814     
10815     
10816     
[153]10817     
10818     
[116]10819      <p>Change in
10820surface specific humidity / total water content to
10821be made at the beginning
10822of the 3d run (kg/kg).&nbsp; </p>
10823
10824
10825
10826
[153]10827
10828
[116]10829 
10830     
10831     
10832     
10833     
[153]10834     
10835     
[116]10836      <p>If <b>q_surface_initial_change</b><i>
10837      </i>is set to a
10838non-zero value the
10839near surface latent heat flux (water flux) is not allowed to be given
10840simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p>
10841
10842
10843
10844
10845
[153]10846
10847
[116]10848      </td>
10849
10850
10851
10852
[153]10853
10854
[116]10855 </tr>
10856
10857
10858
10859
[153]10860
10861
[116]10862 <tr>
10863
10864
10865
10866
[153]10867
10868
[116]10869 <td style="vertical-align: top;"> 
10870     
10871     
10872     
10873     
[153]10874     
10875     
[116]10876      <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p>
10877
10878
10879
10880
10881
[153]10882
10883
[116]10884      </td>
10885
10886
10887
10888
[153]10889
10890
[116]10891 <td style="vertical-align: top;">R (10)</td>
10892
10893
10894
10895
10896
[153]10897
10898
[116]10899      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10900
10901
10902
10903
10904
[153]10905
10906
[116]10907      <td style="vertical-align: top;"> 
10908     
10909     
10910     
10911     
[153]10912     
10913     
[116]10914      <p>Humidity
10915gradient(s) of the initial humidity profile
10916(in 1/100 m).&nbsp; </p>
10917
10918
10919
10920
[153]10921
10922
[116]10923 
10924     
10925     
10926     
10927     
[153]10928     
10929     
[116]10930      <p>This humidity gradient
10931holds starting from the height
10932level&nbsp; defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>
10933(precisely: for all uv levels k, where zu(k) &gt;
10934q_vertical_gradient_level,
10935q_init(k) is set: q_init(k) = q_init(k-1) + dzu(k) * <b>q_vertical_gradient</b>)
10936up to the top boundary or up to the next height level defined
10937by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10938A total of 10 different gradients for 11 height intervals (10 intervals
10939if <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>(1)
10940= <i>0.0</i>) can be asigned. The surface humidity is
10941assigned
10942via <a href="#q_surface">q_surface</a>. </p>
10943
10944
10945
10946
10947
[153]10948
10949
[116]10950     
10951     
10952     
10953     
[153]10954     
10955     
[116]10956      <p>Example:&nbsp; </p>
10957
10958
10959
10960
[153]10961
10962
[116]10963 
10964     
10965     
10966     
10967     
[153]10968     
10969     
[116]10970      <ul>
10971
10972
10973
10974
[153]10975
10976
[116]10977 
10978       
10979       
10980       
10981       
[153]10982       
10983       
[116]10984        <p><b>q_vertical_gradient</b>
10985= <i>0.001</i>, <i>0.0005</i>,&nbsp; <br>
10986
10987
10988
10989
10990
[153]10991
10992
[116]10993        <b>q_vertical_gradient_level</b> = <i>500.0</i>,
10994        <i>1000.0</i>,</p>
10995
10996
10997
10998
[153]10999
11000
[116]11001 
11002     
11003     
11004     
11005     
[153]11006     
11007     
[116]11008      </ul>
11009
11010
11011
11012
11013
[153]11014
11015
[116]11016That defines the humidity to be constant with height up to z =
11017500.0
11018m with a
11019value given by <a href="#q_surface">q_surface</a>.
11020For 500.0 m &lt; z &lt;= 1000.0 m the humidity gradient is
110210.001 / 100
11022m and for z &gt; 1000.0 m up to the top boundary it is
110230.0005 / 100 m (it is assumed that the assigned height levels
11024correspond with uv
11025levels). </td>
11026
11027
11028
11029
[153]11030
11031
[116]11032 </tr>
11033
11034
11035
11036
[153]11037
11038
[116]11039 <tr>
11040
11041
11042
11043
[153]11044
11045
[116]11046 <td style="vertical-align: top;"> 
11047     
11048     
11049     
11050     
[153]11051     
11052     
[116]11053      <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b>
11054      <br>
11055
11056
11057
11058
[153]11059
11060
[116]11061 <b>_level</b></p>
11062
11063
11064
11065
[153]11066
11067
[116]11068 </td>
11069
11070
11071
11072
[153]11073
11074
[116]11075 <td style="vertical-align: top;">R (10)</td>
11076
11077
11078
11079
[153]11080
11081
[116]11082 <td style="vertical-align: top;"> 
11083     
11084     
11085     
11086     
[153]11087     
11088     
[116]11089      <p><i>10 *</i>&nbsp;
11090      <i>0.0</i></p>
11091
11092
11093
11094
[153]11095
11096
[116]11097 </td>
11098
11099
11100
11101
[153]11102
11103
[116]11104 <td style="vertical-align: top;"> 
11105     
11106     
11107     
11108     
[153]11109     
11110     
[116]11111      <p>Height level from
11112which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a>
11113is effective (in m).&nbsp; </p>
11114
11115
11116
11117
[153]11118
11119
[116]11120 
11121     
11122     
11123     
11124     
[153]11125     
11126     
[116]11127      <p>The height levels
11128are to be assigned in ascending order. The
11129default values result in a humidity constant with height regardless of
11130the values of <a href="#q_vertical_gradient">q_vertical_gradient</a>
11131(unless the top boundary of the model is higher than 100000.0 m). For
11132the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p>
11133
11134
11135
11136
11137
[153]11138
11139
[116]11140      </td>
11141
11142
11143
11144
[153]11145
11146
[116]11147 </tr>
11148
11149
11150
11151
[153]11152
11153
[116]11154 <tr>
11155
11156
11157
11158
[153]11159
11160
[116]11161 <td style="vertical-align: top;"> 
11162     
11163     
11164     
11165     
[153]11166     
11167     
[116]11168      <p><a name="radiation"></a><b>radiation</b></p>
11169
11170
11171
11172
11173
[153]11174
11175
[116]11176      </td>
11177
11178
11179
11180
[153]11181
11182
[116]11183 <td style="vertical-align: top;">L</td>
11184
11185
11186
11187
11188
[153]11189
11190
[116]11191      <td style="vertical-align: top;"><i>.F.</i></td>
11192
11193
11194
11195
11196
[153]11197
11198
[116]11199      <td style="vertical-align: top;"> 
11200     
11201     
11202     
11203     
[153]11204     
11205     
[116]11206      <p>Parameter to
11207switch on longwave radiation cooling at
11208cloud-tops.&nbsp; </p>
11209
11210
11211
11212
[153]11213
11214
[116]11215 
11216     
11217     
11218     
11219     
[153]11220     
11221     
[116]11222      <p>Long-wave radiation
11223processes are parameterized by the
11224effective emissivity, which considers only the absorption and emission
11225of long-wave radiation at cloud droplets. The radiation scheme can be
11226used only with <a href="#cloud_physics">cloud_physics</a>
11227= .TRUE. .</p>
11228
11229
11230
11231
[153]11232
11233
[116]11234 </td>
11235
11236
11237
11238
[153]11239
11240
[116]11241 </tr>
11242
11243
11244
11245
[153]11246
11247
[116]11248 <tr>
11249
11250
11251
11252
[153]11253
11254
[116]11255 <td style="vertical-align: top;"> 
11256     
11257     
11258     
11259     
[153]11260     
11261     
[116]11262      <p><a name="random_generator"></a><b>random_generator</b></p>
11263
11264
11265
11266
11267
[153]11268
11269
[116]11270      </td>
11271
11272
11273
11274
[153]11275
11276
[116]11277 <td style="vertical-align: top;">C * 20</td>
11278
11279
11280
11281
11282
[153]11283
11284
[116]11285      <td style="vertical-align: top;"> 
11286     
11287     
11288     
11289     
[153]11290     
11291     
[116]11292      <p><i>'numerical</i><br>
11293
11294
11295
11296
11297
[153]11298
11299
[116]11300      <i>recipes'</i></p>
11301
11302
11303
11304
[153]11305
11306
[116]11307 </td>
11308
11309
11310
11311
[153]11312
11313
[116]11314 <td style="vertical-align: top;"> 
11315     
11316     
11317     
11318     
[153]11319     
11320     
[116]11321      <p>Random number
11322generator to be used for creating uniformly
11323distributed random numbers. <br>
11324
11325
11326
11327
[153]11328
11329
[116]11330 </p>
11331
11332
11333
11334
[153]11335
11336
[116]11337 
11338     
11339     
11340     
11341     
[153]11342     
11343     
[116]11344      <p>It is
11345used if random perturbations are to be imposed on the
11346velocity field or on the surface heat flux field (see <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>
11347and <a href="chapter_4.2.html#random_heatflux">random_heatflux</a>).
11348By default, the "Numerical Recipes" random number generator is used.
11349This one provides exactly the same order of random numbers on all
11350different machines and should be used in particular for comparison runs.<br>
11351
11352
11353
11354
11355
[153]11356
11357
[116]11358      <br>
11359
11360
11361
11362
11363
[153]11364
11365
[116]11366Besides, a system-specific generator is available ( <b>random_generator</b>
11367= <i>'system-specific')</i> which should particularly be
11368used for runs
11369on vector parallel computers (NEC), because the default generator
11370cannot be vectorized and therefore significantly drops down the code
11371performance on these machines.<br>
11372
11373
11374
11375
[153]11376
11377
[116]11378 </p>
11379
11380
11381
11382
[153]11383
11384
[116]11385 <span style="font-weight: bold;">Note:</span><br>
11386
11387
11388
11389
11390
[153]11391
11392
[116]11393Results from two otherwise identical model runs will not be comparable
11394one-to-one if they used different random number generators.</td>
11395
11396
11397
11398
[153]11399
11400
[116]11401 </tr>
11402
11403
11404
11405
11406
[153]11407
11408
[116]11409    <tr>
11410
11411
11412
11413
[153]11414
11415
[116]11416 <td style="vertical-align: top;"> 
11417     
11418     
11419     
11420     
[153]11421     
11422     
[116]11423      <p><a name="random_heatflux"></a><b>random_heatflux</b></p>
11424
11425
11426
11427
11428
[153]11429
11430
[116]11431      </td>
11432
11433
11434
11435
[153]11436
11437
[116]11438 <td style="vertical-align: top;">L</td>
11439
11440
11441
11442
11443
[153]11444
11445
[116]11446      <td style="vertical-align: top;"><i>.F.</i></td>
11447
11448
11449
11450
11451
[153]11452
11453
[116]11454      <td style="vertical-align: top;"> 
11455     
11456     
11457     
11458     
[153]11459     
11460     
[116]11461      <p>Parameter to
11462impose random perturbations on the internal two-dimensional near
11463surface heat flux field <span style="font-style: italic;">shf</span>.
11464      <br>
11465
11466
11467
11468
[153]11469
11470
[116]11471 </p>
11472
11473
11474
11475
[153]11476
11477
[116]11478If a near surface heat flux is used as bottom
11479boundary
11480condition (see <a href="#surface_heatflux">surface_heatflux</a>),
11481it is by default assumed to be horizontally homogeneous. Random
11482perturbations can be imposed on the internal
11483two-dimensional&nbsp;heat flux field <span style="font-style: italic;">shf</span> by assigning <b>random_heatflux</b>
11484= <i>.T.</i>. The disturbed heat flux field is calculated
11485by
11486multiplying the
11487values at each mesh point with a normally distributed random number
11488with a mean value and standard deviation of 1. This is repeated after
11489every timestep.<br>
11490
11491
11492
11493
[153]11494
11495
[116]11496 <br>
11497
11498
11499
11500
11501
[153]11502
11503
[116]11504In case of a non-flat <a href="#topography">topography</a>,&nbsp;assigning
11505      <b>random_heatflux</b>
11506= <i>.T.</i> imposes random perturbations on the
11507combined&nbsp;heat
11508flux field <span style="font-style: italic;">shf</span>
11509composed of <a href="#surface_heatflux">surface_heatflux</a>
11510at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
11511at the topography top face.</td>
11512
11513
11514
11515
[153]11516
11517
[116]11518 </tr>
11519
11520
11521
11522
[153]11523
11524
[116]11525 <tr>
11526
11527
11528
11529
[153]11530
11531
[116]11532 <td style="vertical-align: top;"> 
11533     
11534     
11535     
11536     
[153]11537     
11538     
[116]11539      <p><a name="rif_max"></a><b>rif_max</b></p>
11540
11541
11542
11543
11544
[153]11545
11546
[116]11547      </td>
11548
11549
11550
11551
[153]11552
11553
[116]11554 <td style="vertical-align: top;">R</td>
11555
11556
11557
11558
11559
[153]11560
11561
[116]11562      <td style="vertical-align: top;"><i>1.0</i></td>
11563
11564
11565
11566
11567
[153]11568
11569
[116]11570      <td style="vertical-align: top;"> 
11571     
11572     
11573     
11574     
[153]11575     
11576     
[116]11577      <p>Upper limit of
11578the flux-Richardson number.&nbsp; </p>
11579
11580
11581
11582
[153]11583
11584
[116]11585 
11586     
11587     
11588     
11589     
[153]11590     
11591     
[116]11592      <p>With the
11593Prandtl layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>),
11594flux-Richardson numbers (rif) are calculated for z=z<sub>p</sub>
11595(k=1)
11596in the 3d-model (in the 1d model for all heights). Their values in
11597particular determine the
11598values of the friction velocity (1d- and 3d-model) and the values of
11599the eddy diffusivity (1d-model). With small wind velocities at the
11600Prandtl layer top or small vertical wind shears in the 1d-model, rif
11601can take up unrealistic large values. They are limited by an upper (<span style="font-weight: bold;">rif_max</span>) and lower
11602limit (see <a href="#rif_min">rif_min</a>)
11603for the flux-Richardson number. The condition <b>rif_max</b>
11604&gt; <b>rif_min</b>
11605must be met.</p>
11606
11607
11608
11609
[153]11610
11611
[116]11612 </td>
11613
11614
11615
11616
[153]11617
11618
[116]11619 </tr>
11620
11621
11622
11623
[153]11624
11625
[116]11626 <tr>
11627
11628
11629
11630
[153]11631
11632
[116]11633 <td style="vertical-align: top;"> 
11634     
11635     
11636     
11637     
[153]11638     
11639     
[116]11640      <p><a name="rif_min"></a><b>rif_min</b></p>
11641
11642
11643
11644
11645
[153]11646
11647
[116]11648      </td>
11649
11650
11651
11652
[153]11653
11654
[116]11655 <td style="vertical-align: top;">R</td>
11656
11657
11658
11659
11660
[153]11661
11662
[116]11663      <td style="vertical-align: top;"><i>- 5.0</i></td>
11664
11665
11666
11667
11668
[153]11669
11670
[116]11671      <td style="vertical-align: top;"> 
11672     
11673     
11674     
11675     
[153]11676     
11677     
[116]11678      <p>Lower limit of
11679the flux-Richardson number.&nbsp; </p>
11680
11681
11682
11683
[153]11684
11685
[116]11686 
11687     
11688     
11689     
11690     
[153]11691     
11692     
[116]11693      <p>For further
11694explanations see <a href="#rif_max">rif_max</a>.
11695The condition <b>rif_max</b> &gt; <b>rif_min </b>must
11696be met.</p>
11697
11698
11699
11700
[153]11701
11702
[116]11703 </td>
11704
11705
11706
11707
[153]11708
11709
[116]11710 </tr>
11711
11712
11713
11714
[153]11715
11716
[116]11717 <tr>
11718
11719
11720
11721
[153]11722
11723
[116]11724 <td style="vertical-align: top;"> 
11725     
11726     
11727     
11728     
[153]11729     
11730     
[116]11731      <p><a name="roughness_length"></a><b>roughness_length</b></p>
11732
11733
11734
11735
11736
[153]11737
11738
[116]11739      </td>
11740
11741
11742
11743
[153]11744
11745
[116]11746 <td style="vertical-align: top;">R</td>
11747
11748
11749
11750
11751
[153]11752
11753
[116]11754      <td style="vertical-align: top;"><i>0.1</i></td>
11755
11756
11757
11758
11759
[153]11760
11761
[116]11762      <td style="vertical-align: top;"> 
11763     
11764     
11765     
11766     
[153]11767     
11768     
[116]11769      <p>Roughness
11770length (in m).&nbsp; </p>
11771
11772
11773
11774
[153]11775
11776
[116]11777 
11778     
11779     
11780     
11781     
[153]11782     
11783     
[116]11784      <p>This parameter is
11785effective only in case that a Prandtl layer
11786is switched
11787on (see <a href="#prandtl_layer">prandtl_layer</a>).</p>
11788
11789
11790
11791
11792
[153]11793
11794
[116]11795      </td>
11796
11797
11798
11799
[153]11800
11801
[116]11802 </tr>
11803
11804
11805
11806
[153]11807
11808
[116]11809 <tr>
11810
11811
11812
11813
[153]11814
11815
[116]11816      <td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td>
11817
11818
11819
11820
[153]11821
11822
[116]11823      <td style="vertical-align: top;">R</td>
11824
11825
11826
11827
[153]11828
11829
[116]11830      <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td>
11831
11832
11833
11834
[153]11835
11836
[116]11837      <td style="vertical-align: top;"> 
11838     
11839     
11840     
11841     
[153]11842     
11843     
[116]11844      <p>Surface salinity (in psu).&nbsp;</p>
11845
11846
11847
11848
[153]11849
11850
[116]11851This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
11852     
11853     
11854     
11855     
[153]11856     
11857     
[116]11858      <p>This
11859parameter assigns the value of the salinity <span style="font-weight: bold;">sa</span> at the sea surface (k=nzt)<b>.</b> Starting from this value,
11860the
11861initial vertical salinity profile is constructed from the surface down to the bottom of the model (k=0) by using&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
11862and&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level
11863      </a>.</p>
11864
11865
11866
11867
[153]11868
11869
[116]11870      </td>
11871
11872
11873
11874
[153]11875
11876
[116]11877    </tr>
11878
11879
11880
11881
[153]11882
11883
[116]11884    <tr>
11885
11886
11887
11888
[153]11889
11890
[116]11891      <td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td>
11892
11893
11894
11895
[153]11896
11897
[116]11898      <td style="vertical-align: top;">R(10)</td>
11899
11900
11901
11902
[153]11903
11904
[116]11905      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
11906
11907
11908
11909
[153]11910
11911
[116]11912      <td style="vertical-align: top;">
11913     
11914     
11915     
11916     
[153]11917     
11918     
[116]11919      <p>Salinity gradient(s) of the initial salinity profile (in psu
11920/ 100 m).&nbsp; </p>
11921
11922
11923
11924
[153]11925
11926
[116]11927 
11928     
11929     
11930     
11931     
[153]11932     
11933     
[116]11934      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
11935
11936
11937
11938
[153]11939
11940
[116]11941     
11942     
11943     
11944     
[153]11945     
11946     
[116]11947      <p>This salinity gradient
11948holds starting from the height&nbsp;
11949level defined by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>
11950(precisely: for all uv levels k where zu(k) &lt;
11951sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) =
11952sa_init(k+1) - dzu(k+1) * <b>sa_vertical_gradient</b>) down to the bottom boundary or down to the next height level defined
11953by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>.
11954A total of 10 different gradients for 11 height intervals (10 intervals
11955if <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>(1)
11956= <i>0.0</i>) can be assigned. The surface salinity at k=nzt is
11957assigned via <a href="chapter_4.1.html#sa_surface">sa_surface</a>.&nbsp;
11958      </p>
11959
11960
11961
11962
[153]11963
11964
[116]11965 
11966     
11967     
11968     
11969     
[153]11970     
11971     
[116]11972      <p>Example:&nbsp; </p>
11973
11974
11975
11976
[153]11977
11978
[116]11979 
11980     
11981     
11982     
11983     
[153]11984     
11985     
[116]11986      <ul>
11987
11988
11989
11990
[153]11991
11992
[116]11993       
11994       
11995       
11996       
[153]11997       
11998       
[116]11999        <p><b>sa_vertical_gradient</b>
12000= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
12001
12002
12003
12004
12005
[153]12006
12007
[116]12008        <b>sa_vertical_gradient_level</b> = <i>-500.0</i>,
12009-<i>1000.0</i>,</p>
12010
12011
12012
12013
[153]12014
12015
[116]12016     
12017     
12018     
12019     
[153]12020     
12021     
[116]12022      </ul>
12023
12024
12025
12026
[153]12027
12028
[116]12029 
12030     
12031     
12032     
12033     
[153]12034     
12035     
[116]12036      <p>That
12037defines the salinity to be constant down to z = -500.0 m with a salinity given by <a href="chapter_4.1.html#sa_surface">sa_surface</a>.
12038For -500.0 m &lt; z &lt;= -1000.0 m the salinity gradient is
120391.0 psu /
12040100 m and for z &lt; -1000.0 m down to the bottom boundary it is
120410.5 psu / 100 m (it is assumed that the assigned height levels correspond
12042with uv levels).</p>
12043
12044
12045
12046
[153]12047
12048
[116]12049      </td>
12050
12051
12052
12053
[153]12054
12055
[116]12056    </tr>
12057
12058
12059
12060
[153]12061
12062
[116]12063    <tr>
12064
12065
12066
12067
[153]12068
12069
[116]12070      <td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td>
12071
12072
12073
12074
[153]12075
12076
[116]12077      <td style="vertical-align: top;">R(10)</td>
12078
12079
12080
12081
[153]12082
12083
[116]12084      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
12085
12086
12087
12088
[153]12089
12090
[116]12091      <td style="vertical-align: top;">
12092     
12093     
12094     
12095     
[153]12096     
12097     
[116]12098      <p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12099is effective (in m).&nbsp; </p>
12100
12101
12102
12103
[153]12104
12105
[116]12106 
12107     
12108     
12109     
12110     
[153]12111     
12112     
[116]12113      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
12114
12115
12116
12117
[153]12118
12119
[116]12120     
12121     
12122     
12123     
[153]12124     
12125     
[116]12126      <p>The height levels have to be assigned in descending order. The
12127default values result in a constant salinity profile regardless of the
12128values of <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12129(unless the bottom boundary of the model is lower than -100000.0 m).
12130For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p>
12131
12132
12133
12134
[153]12135
12136
[116]12137      </td>
12138
12139
12140
12141
[153]12142
12143
[116]12144    </tr>
12145
12146
12147
12148
[153]12149
12150
[116]12151    <tr>
12152
12153
12154
12155
[153]12156
12157
[116]12158 <td style="vertical-align: top;"> 
12159     
12160     
12161     
12162     
[153]12163     
12164     
[116]12165      <p><a name="scalar_advec"></a><b>scalar_advec</b></p>
12166
12167
12168
12169
12170
[153]12171
12172
[116]12173      </td>
12174
12175
12176
12177
[153]12178
12179
[116]12180 <td style="vertical-align: top;">C * 10</td>
12181
12182
12183
12184
12185
[153]12186
12187
[116]12188      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
12189
12190
12191
12192
12193
[153]12194
12195
[116]12196      <td style="vertical-align: top;"> 
12197     
12198     
12199     
12200     
[153]12201     
12202     
[116]12203      <p>Advection
12204scheme to be used for the scalar quantities.&nbsp; </p>
12205
12206
12207
12208
[153]12209
12210
[116]12211 
12212     
12213     
12214     
12215     
[153]12216     
12217     
[116]12218      <p>The
12219user can choose between the following schemes:<br>
12220
12221
12222
12223
[153]12224
12225
[116]12226 </p>
12227
12228
12229
12230
[153]12231
12232
[116]12233 
12234     
12235     
12236     
12237     
[153]12238     
12239     
[116]12240      <p><span style="font-style: italic;">'pw-scheme'</span><br>
12241
12242
12243
12244
12245
[153]12246
12247
[116]12248      </p>
12249
12250
12251
12252
[153]12253
12254
[116]12255 
12256     
12257     
12258     
12259     
[153]12260     
12261     
[116]12262      <div style="margin-left: 40px;">The scheme of
12263Piascek and
12264Williams (1970, J. Comp. Phys., 6,
12265392-405) with central differences in the form C3 is used.<br>
12266
12267
12268
12269
12270
[153]12271
12272
[116]12273If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
12274= <span style="font-style: italic;">'leapfrog+euler'</span>
12275the
12276advection scheme is - for the Euler-timestep - automatically switched
12277to an upstream-scheme. <br>
12278
12279
12280
12281
[153]12282
12283
[116]12284 </div>
12285
12286
12287
12288
[153]12289
12290
[116]12291 <br>
12292
12293
12294
12295
[153]12296
12297
[116]12298 
12299     
12300     
12301     
12302     
[153]12303     
12304     
[116]12305      <p><span style="font-style: italic;">'bc-scheme'</span><br>
12306
12307
12308
12309
12310
[153]12311
12312
[116]12313      </p>
12314
12315
12316
12317
[153]12318
12319
[116]12320 
12321     
12322     
12323     
12324     
[153]12325     
12326     
[116]12327      <div style="margin-left: 40px;">The Bott
12328scheme modified by
12329Chlond (1994, Mon.
12330Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with
12331very small numerical diffusion and therefore very good conservation of
12332scalar flow features. The scheme however, is computationally very
12333expensive both because it is expensive itself and because it does (so
12334far) not allow specific code optimizations (e.g. cache optimization).
12335Choice of this
12336scheme forces the Euler timestep scheme to be used for the scalar
12337quantities. For output of horizontally averaged
12338profiles of the resolved / total heat flux, <a href="chapter_4.2.html#data_output_pr">data_output_pr</a>
12339= <i>'w*pt*BC'</i> / <i>'wptBC' </i>should
12340be used, instead of the
12341standard profiles (<span style="font-style: italic;">'w*pt*'</span>
12342and <span style="font-style: italic;">'wpt'</span>)
12343because these are
12344too inaccurate with this scheme. However, for subdomain analysis (see <a href="#statistic_regions">statistic_regions</a>)
12345exactly the reverse holds: here <i>'w*pt*BC'</i> and <i>'wptBC'</i>
12346show very large errors and should not be used.<br>
12347
12348
12349
12350
[153]12351
12352
[116]12353 <br>
12354
12355
12356
12357
12358
[153]12359
12360
[116]12361This scheme is not allowed for non-cyclic lateral boundary conditions
12362(see <a href="#bc_lr">bc_lr</a>
12363and <a href="#bc_ns">bc_ns</a>).<br>
12364
12365
12366
12367
[153]12368
12369
[116]12370 <br>
12371
12372
12373
12374
12375
[153]12376
12377
[116]12378      </div>
12379
12380
12381
12382
[153]12383
12384
[116]12385 <span style="font-style: italic;">'ups-scheme'</span><br>
12386
12387
12388
12389
12390
[153]12391
12392
[116]12393     
12394     
12395     
12396     
[153]12397     
12398     
[116]12399      <p style="margin-left: 40px;">The upstream-spline-scheme
12400is used
12401(see Mahrer and Pielke,
124021978: Mon. Wea. Rev., 106, 818-830). In opposite to the Piascek
12403Williams scheme, this is characterized by much better numerical
12404features (less numerical diffusion, better preservation of flux
12405structures, e.g. vortices), but computationally it is much more
12406expensive. In
12407addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
12408= <span style="font-style: italic;">'</span><i>euler'</i>),
12409i.e. the
12410timestep accuracy is only first order. For this reason the advection of
12411momentum (see <a href="#momentum_advec">momentum_advec</a>)
12412should then also be carried out with the upstream-spline scheme,
12413because otherwise the momentum would
12414be subject to large numerical diffusion due to the upstream
12415scheme.&nbsp; </p>
12416
12417
12418
12419
[153]12420
12421
[116]12422 
12423     
12424     
12425     
12426     
[153]12427     
12428     
[116]12429      <p style="margin-left: 40px;">Since
12430the cubic splines used tend
12431to overshoot under
12432certain circumstances, this effect must be adjusted by suitable
12433filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
12434      <a href="#long_filter_factor">long_filter_factor</a>,
12435      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
12436This is always neccesssary for runs with stable stratification,
12437even if this stratification appears only in parts of the model
12438domain.&nbsp; </p>
12439
12440
12441
12442
[153]12443
12444
[116]12445 
12446     
12447     
12448     
12449     
[153]12450     
12451     
[116]12452      <p style="margin-left: 40px;">With
12453stable stratification the
12454upstream-upline scheme also produces gravity waves with large
12455amplitude, which must be
12456suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
12457
12458
12459
12460
12461
[153]12462
12463
[116]12464      </p>
12465
12466
12467
12468
[153]12469
12470
[116]12471 
12472     
12473     
12474     
12475     
[153]12476     
12477     
[116]12478      <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The&nbsp;
12479upstream-spline scheme is not implemented for humidity and passive
12480scalars (see&nbsp;<a href="#humidity">humidity</a>
12481and <a href="#passive_scalar">passive_scalar</a>)
12482and requires the use of a 2d-domain-decomposition. The last conditions
12483severely restricts code optimization on several machines leading to
12484very long execution times! This scheme is also not allowed for
12485non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
12486and <a href="#bc_ns">bc_ns</a>).</p>
12487
12488
12489
12490
[153]12491
12492
[116]12493      <br>
12494
12495
12496
12497
[153]12498
12499
[116]12500A
12501differing advection scheme can be choosed for the subgrid-scale TKE
12502using parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>.</td>
12503
12504
12505
12506
12507
[153]12508
12509
[116]12510    </tr>
12511
12512
12513
12514
[153]12515
12516
[116]12517 <tr>
12518
[160]12519      <td style="vertical-align: top;"><a name="scalar_exchange_coefficient"></a><b>scalar_exchange_coefficient</b></td>
[116]12520
[160]12521      <td style="vertical-align: top;">R</td>
[116]12522
[160]12523      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
[116]12524
[160]12525      <td style="vertical-align: top;">Scalar exchange coefficient for a leaf (dimensionless).<br>
[153]12526
12527
12528      <br>
12529
12530
12531This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
12532The value of the scalar exchange coefficient is required for the parametrisation of the sources and sinks of
12533scalar concentration due to the canopy.</td>
12534
12535    </tr>
12536
12537    <tr>
12538
12539
12540
12541
12542
12543
[116]12544 <td style="vertical-align: top;">
12545     
12546     
12547     
12548     
[153]12549     
12550     
[116]12551      <p><a name="statistic_regions"></a><b>statistic_regions</b></p>
12552
12553
12554
12555
12556
[153]12557
12558
[116]12559      </td>
12560
12561
12562
12563
[153]12564
12565
[116]12566 <td style="vertical-align: top;">I</td>
12567
12568
12569
12570
12571
[153]12572
12573
[116]12574      <td style="vertical-align: top;"><i>0</i></td>
12575
12576
12577
12578
12579
[153]12580
12581
[116]12582      <td style="vertical-align: top;"> 
12583     
12584     
12585     
12586     
[153]12587     
12588     
[116]12589      <p>Number of
12590additional user-defined subdomains for which
12591statistical analysis
12592and corresponding output (profiles, time series) shall be
12593made.&nbsp; </p>
12594
12595
12596
12597
[153]12598
12599
[116]12600 
12601     
12602     
12603     
12604     
[153]12605     
12606     
[116]12607      <p>By default, vertical profiles and
12608other statistical quantities
12609are calculated as horizontal and/or volume average of the total model
12610domain. Beyond that, these calculations can also be carried out for
12611subdomains which can be defined using the field <a href="chapter_3.5.3.html">rmask </a>within the
12612user-defined software
12613(see <a href="chapter_3.5.3.html">chapter
126143.5.3</a>). The number of these subdomains is determined with the
12615parameter <b>statistic_regions</b>. Maximum 9 additional
12616subdomains
12617are allowed. The parameter <a href="chapter_4.3.html#region">region</a>
12618can be used to assigned names (identifier) to these subdomains which
12619are then used in the headers
12620of the output files and plots.</p>
12621
12622
12623
12624
[153]12625
12626
[116]12627     
12628     
12629     
12630     
[153]12631     
12632     
[116]12633      <p>If the default NetCDF
12634output format is selected (see parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>),
12635data for the total domain and all defined subdomains are output to the
12636same file(s) (<a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>,
12637      <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>).
12638In case of <span style="font-weight: bold;">statistic_regions</span>
12639&gt; <span style="font-style: italic;">0</span>,
12640data on the file for the different domains can be distinguished by a
12641suffix which is appended to the quantity names. Suffix 0 means data for
12642the total domain, suffix 1 means data for subdomain 1, etc.</p>
12643
12644
12645
12646
[153]12647
12648
[116]12649     
12650     
12651     
12652     
[153]12653     
12654     
[116]12655      <p>In
12656case of <span style="font-weight: bold;">data_output_format</span>
12657= <span style="font-style: italic;">'profil'</span>,
12658individual local files for profiles (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>)&nbsp;are
12659created for each subdomain. The individual subdomain files differ by
12660their name (the
12661number of the respective subdomain is attached, e.g.
12662PLOT1D_DATA_1). In this case the name of the file with the data of
12663the total domain is PLOT1D_DATA_0. If no subdomains
12664are declared (<b>statistic_regions</b> = <i>0</i>),
12665the name
12666PLOT1D_DATA is used (this must be considered in the
12667respective file connection statements of the <span style="font-weight: bold;">mrun</span> configuration
12668file).</p>
12669
12670
12671
12672
[153]12673
12674
[116]12675 </td>
12676
12677
12678
12679
[153]12680
12681
[116]12682 </tr>
12683
12684
12685
12686
[153]12687
12688
[116]12689 <tr>
12690
12691
12692
12693
[153]12694
12695
[116]12696 <td style="vertical-align: top;"> 
12697     
12698     
12699     
12700     
[153]12701     
12702     
[116]12703      <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p>
12704
12705
12706
12707
12708
[153]12709
12710
[116]12711      </td>
12712
12713
12714
12715
[153]12716
12717
[116]12718 <td style="vertical-align: top;">R</td>
12719
12720
12721
12722
12723
[153]12724
12725
[116]12726      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
12727
12728
12729
12730
12731
[153]12732
12733
[116]12734heatflux<br>
12735
12736
12737
12738
[153]12739
12740
[116]12741 </span></td>
12742
12743
12744
12745
[153]12746
12747
[116]12748 <td style="vertical-align: top;"> 
12749     
12750     
12751     
12752     
[153]12753     
12754     
[116]12755      <p>Kinematic sensible
12756heat flux at the bottom surface (in K m/s).&nbsp; </p>
12757
12758
12759
12760
[153]12761
12762
[116]12763 
12764     
12765     
12766     
12767     
[153]12768     
12769     
[116]12770      <p>If
12771a value is assigned to this parameter, the internal two-dimensional
12772surface heat flux field <span style="font-style: italic;">shf</span>
12773is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>&nbsp;as
12774bottom (horizontally homogeneous) boundary condition for the
12775temperature equation. This additionally requires that a Neumann
12776condition must be used for the potential temperature (see <a href="#bc_pt_b">bc_pt_b</a>),
12777because otherwise the resolved scale may contribute to
12778the surface flux so that a constant value cannot be guaranteed. Also,
12779changes of the
12780surface temperature (see <a href="#pt_surface_initial_change">pt_surface_initial_change</a>)
12781are not allowed. The parameter <a href="#random_heatflux">random_heatflux</a>
12782can be used to impose random perturbations on the (homogeneous) surface
12783heat
12784flux field <span style="font-style: italic;">shf</span>.&nbsp;</p>
12785
12786
12787
12788
12789
[153]12790
12791
[116]12792     
12793     
12794     
12795     
[153]12796     
12797     
[116]12798      <p>
12799In case of a non-flat <a href="#topography">topography</a>,&nbsp;the
12800internal two-dimensional&nbsp;surface heat
12801flux field <span style="font-style: italic;">shf</span>
12802is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>
12803at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
12804at the topography top face.&nbsp;The parameter<a href="#random_heatflux"> random_heatflux</a>
12805can be used to impose random perturbations on this combined surface
12806heat
12807flux field <span style="font-style: italic;">shf</span>.&nbsp;
12808      </p>
12809
12810
12811
12812
[153]12813
12814
[116]12815 
12816     
12817     
12818     
12819     
[153]12820     
12821     
[116]12822      <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated
12823at each timestep by u<sub>*</sub> * theta<sub>*</sub>
12824(of course only with <a href="#prandtl_layer">prandtl_layer</a>
12825switched on). Here, u<sub>*</sub>
12826and theta<sub>*</sub> are calculated from the Prandtl law
12827assuming
12828logarithmic wind and temperature
12829profiles between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_pt_b">bc_pt_b</a>)
12830must be used as bottom boundary condition for the potential temperature.</p>
12831
12832
12833
12834
[153]12835
12836
[116]12837     
12838     
12839     
12840     
[153]12841     
12842     
[116]12843      <p>See
12844also <a href="#top_heatflux">top_heatflux</a>.</p>
12845
12846
12847
12848
12849
[153]12850
12851
[116]12852      </td>
12853
12854
12855
12856
[153]12857
12858
[116]12859 </tr>
12860
12861
12862
12863
[153]12864
12865
[116]12866 <tr>
12867
12868
12869
12870
[153]12871
12872
[116]12873 <td style="vertical-align: top;"> 
12874     
12875     
12876     
12877     
[153]12878     
12879     
[116]12880      <p><a name="surface_pressure"></a><b>surface_pressure</b></p>
12881
12882
12883
12884
12885
[153]12886
12887
[116]12888      </td>
12889
12890
12891
12892
[153]12893
12894
[116]12895 <td style="vertical-align: top;">R</td>
12896
12897
12898
12899
12900
[153]12901
12902
[116]12903      <td style="vertical-align: top;"><i>1013.25</i></td>
12904
12905
12906
12907
12908
[153]12909
12910
[116]12911      <td style="vertical-align: top;"> 
12912     
12913     
12914     
12915     
[153]12916     
12917     
[116]12918      <p>Atmospheric
12919pressure at the surface (in hPa).&nbsp; </p>
12920
12921
12922
12923
12924
[153]12925
12926
[116]12927Starting from this surface value, the vertical pressure
12928profile is calculated once at the beginning of the run assuming a
12929neutrally stratified
12930atmosphere. This is needed for
12931converting between the liquid water potential temperature and the
12932potential temperature (see <a href="#cloud_physics">cloud_physics</a><span style="text-decoration: underline;"></span>).</td>
12933
12934
12935
12936
12937
[153]12938
12939
[116]12940    </tr>
12941
12942
12943
12944
[153]12945
12946
[116]12947 <tr>
12948
12949
12950
12951
[153]12952
12953
[116]12954 <td style="vertical-align: top;">
12955     
12956     
12957     
12958     
[153]12959     
12960     
[116]12961      <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p>
12962
12963
12964
12965
12966
[153]12967
12968
[116]12969      </td>
12970
12971
12972
12973
[153]12974
12975
[116]12976 <td style="vertical-align: top;">R</td>
12977
12978
12979
12980
12981
[153]12982
12983
[116]12984      <td style="vertical-align: top;"><i>0.0</i></td>
12985
12986
12987
12988
12989
[153]12990
12991
[116]12992      <td style="vertical-align: top;"> 
12993     
12994     
12995     
12996     
[153]12997     
12998     
[116]12999      <p>Scalar flux at
13000the surface (in kg/(m<sup>2</sup> s)).&nbsp; </p>
13001
13002
13003
13004
13005
[153]13006
13007
[116]13008     
13009     
13010     
13011     
[153]13012     
13013     
[116]13014      <p>If a non-zero value is assigned to this parameter, the
13015respective scalar flux value is used
13016as bottom (horizontally homogeneous) boundary condition for the scalar
13017concentration equation.&nbsp;This additionally requires that a
13018Neumann
13019condition must be used for the scalar concentration&nbsp;(see <a href="#bc_s_b">bc_s_b</a>),
13020because otherwise the resolved scale may contribute to
13021the surface flux so that a constant value cannot be guaranteed. Also,
13022changes of the
13023surface scalar concentration (see <a href="#s_surface_initial_change">s_surface_initial_change</a>)
13024are not allowed. <br>
13025
13026
13027
13028
[153]13029
13030
[116]13031 </p>
13032
13033
13034
13035
[153]13036
13037
[116]13038 
13039     
13040     
13041     
13042     
[153]13043     
13044     
[116]13045      <p>If no surface scalar
13046flux is assigned (<b>surface_scalarflux</b>
13047= <i>0.0</i>),
13048it is calculated at each timestep by u<sub>*</sub> * s<sub>*</sub>
13049(of course only with Prandtl layer switched on). Here, s<sub>*</sub>
13050is calculated from the Prandtl law assuming a logarithmic scalar
13051concentration
13052profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_s_b">bc_s_b</a>)
13053must be used as bottom boundary condition for the scalar concentration.</p>
13054
13055
13056
13057
13058
[153]13059
13060
[116]13061      </td>
13062
13063
13064
13065
[153]13066
13067
[116]13068 </tr>
13069
13070
13071
13072
[153]13073
13074
[116]13075 <tr>
13076
13077
13078
13079
[153]13080
13081
[116]13082 <td style="vertical-align: top;"> 
13083     
13084     
13085     
13086     
[153]13087     
13088     
[116]13089      <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p>
13090
13091
13092
13093
13094
[153]13095
13096
[116]13097      </td>
13098
13099
13100
13101
[153]13102
13103
[116]13104 <td style="vertical-align: top;">R</td>
13105
13106
13107
13108
13109
[153]13110
13111
[116]13112      <td style="vertical-align: top;"><i>0.0</i></td>
13113
13114
13115
13116
13117
[153]13118
13119
[116]13120      <td style="vertical-align: top;"> 
13121     
13122     
13123     
13124     
[153]13125     
13126     
[116]13127      <p>Kinematic
13128water flux near the surface (in m/s).&nbsp; </p>
13129
13130
13131
13132
[153]13133
13134
[116]13135 
13136     
13137     
13138     
13139     
[153]13140     
13141     
[116]13142      <p>If
13143a non-zero value is assigned to this parameter, the
13144respective water flux value is used
13145as bottom (horizontally homogeneous) boundary condition for the
13146humidity equation. This additionally requires that a Neumann
13147condition must be used for the specific humidity / total water content
13148(see <a href="#bc_q_b">bc_q_b</a>),
13149because otherwise the resolved scale may contribute to
13150the surface flux so that a constant value cannot be guaranteed. Also,
13151changes of the
13152surface humidity (see <a href="#q_surface_initial_change">q_surface_initial_change</a>)
13153are not allowed.<br>
13154
13155
13156
13157
[153]13158
13159
[116]13160 </p>
13161
13162
13163
13164
[153]13165
13166
[116]13167 
13168     
13169     
13170     
13171     
[153]13172     
13173     
[116]13174      <p>If no surface water
13175flux is assigned (<b>surface_waterflux</b>
13176= <i>0.0</i>),
13177it is calculated at each timestep by u<sub>*</sub> * q<sub>*</sub>
13178(of course only with Prandtl layer switched on). Here, q<sub>*</sub>
13179is calculated from the Prandtl law assuming a logarithmic temperature
13180profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_q_b">bc_q_b</a>)
13181must be used as the bottom boundary condition for the humidity.</p>
13182
13183
13184
13185
13186
[153]13187
13188
[116]13189      </td>
13190
13191
13192
13193
[153]13194
13195
[116]13196 </tr>
13197
13198
13199
13200
[153]13201
13202
[116]13203 <tr>
13204
13205
13206
13207
[153]13208
13209
[116]13210 <td style="vertical-align: top;"> 
13211     
13212     
13213     
13214     
[153]13215     
13216     
[116]13217      <p><a name="s_surface"></a><b>s_surface</b></p>
13218
13219
13220
13221
13222
[153]13223
13224
[116]13225      </td>
13226
13227
13228
13229
[153]13230
13231
[116]13232 <td style="vertical-align: top;">R</td>
13233
13234
13235
13236
13237
[153]13238
13239
[116]13240      <td style="vertical-align: top;"><i>0.0</i></td>
13241
13242
13243
13244
13245
[153]13246
13247
[116]13248      <td style="vertical-align: top;"> 
13249     
13250     
13251     
13252     
[153]13253     
13254     
[116]13255      <p>Surface value
13256of the passive scalar (in kg/m<sup>3</sup>).&nbsp;<br>
13257
13258
13259
13260
13261
[153]13262
13263
[116]13264      </p>
13265
13266
13267
13268
13269
[153]13270
13271
[116]13272This parameter assigns the value of the passive scalar s at
13273the surface (k=0)<b>.</b> Starting from this value, the
13274initial vertical scalar concentration profile is constructed with<a href="#s_vertical_gradient">
13275s_vertical_gradient</a> and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.</td>
13276
13277
13278
13279
13280
[153]13281
13282
[116]13283    </tr>
13284
13285
13286
13287
[153]13288
13289
[116]13290 <tr>
13291
13292
13293
13294
[153]13295
13296
[116]13297 <td style="vertical-align: top;">
13298     
13299     
13300     
13301     
[153]13302     
13303     
[116]13304      <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b>
13305      <br>
13306
13307
13308
13309
[153]13310
13311
[116]13312 <b>_change</b></p>
13313
13314
13315
13316
[153]13317
13318
[116]13319 </td>
13320
13321
13322
13323
[153]13324
13325
[116]13326 <td style="vertical-align: top;">R</td>
13327
13328
13329
13330
[153]13331
13332
[116]13333 <td style="vertical-align: top;"><i>0.0</i></td>
13334
13335
13336
13337
13338
[153]13339
13340
[116]13341      <td style="vertical-align: top;"> 
13342     
13343     
13344     
13345     
[153]13346     
13347     
[116]13348      <p>Change in
13349surface scalar concentration to be made at the
13350beginning of the 3d run (in kg/m<sup>3</sup>).&nbsp; </p>
13351
13352
13353
13354
13355
[153]13356
13357
[116]13358     
13359     
13360     
13361     
[153]13362     
13363     
[116]13364      <p>If <b>s_surface_initial_change</b><i>&nbsp;</i>is
13365set to a
13366non-zero
13367value, the near surface scalar flux is not allowed to be given
13368simultaneously (see <a href="#surface_scalarflux">surface_scalarflux</a>).</p>
13369
13370
13371
13372
13373
[153]13374
13375
[116]13376      </td>
13377
13378
13379
13380
[153]13381
13382
[116]13383 </tr>
13384
13385
13386
13387
[153]13388
13389
[116]13390 <tr>
13391
13392
13393
13394
[153]13395
13396
[116]13397 <td style="vertical-align: top;"> 
13398     
13399     
13400     
13401     
[153]13402     
13403     
[116]13404      <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p>
13405
13406
13407
13408
13409
[153]13410
13411
[116]13412      </td>
13413
13414
13415
13416
[153]13417
13418
[116]13419 <td style="vertical-align: top;">R (10)</td>
13420
13421
13422
13423
13424
[153]13425
13426
[116]13427      <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td>
13428
13429
13430
13431
13432
[153]13433
13434
[116]13435      <td style="vertical-align: top;"> 
13436     
13437     
13438     
13439     
[153]13440     
13441     
[116]13442      <p>Scalar
13443concentration gradient(s) of the initial scalar
13444concentration profile (in kg/m<sup>3 </sup>/
13445100 m).&nbsp; </p>
13446
13447
13448
13449
[153]13450
13451
[116]13452 
13453     
13454     
13455     
13456     
[153]13457     
13458     
[116]13459      <p>The scalar gradient holds
13460starting from the height level
13461defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level
13462      </a>(precisely: for all uv levels k, where zu(k) &gt;
13463s_vertical_gradient_level, s_init(k) is set: s_init(k) = s_init(k-1) +
13464dzu(k) * <b>s_vertical_gradient</b>) up to the top
13465boundary or up to
13466the next height level defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
13467A total of 10 different gradients for 11 height intervals (10 intervals
13468if <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>(1)
13469= <i>0.0</i>) can be assigned. The surface scalar value is
13470assigned
13471via <a href="#s_surface">s_surface</a>.<br>
13472
13473
13474
13475
[153]13476
13477
[116]13478 </p>
13479
13480
13481
13482
13483
[153]13484
13485
[116]13486     
13487     
13488     
13489     
[153]13490     
13491     
[116]13492      <p>Example:&nbsp; </p>
13493
13494
13495
13496
[153]13497
13498
[116]13499 
13500     
13501     
13502     
13503     
[153]13504     
13505     
[116]13506      <ul>
13507
13508
13509
13510
[153]13511
13512
[116]13513 
13514       
13515       
13516       
13517       
[153]13518       
13519       
[116]13520        <p><b>s_vertical_gradient</b>
13521= <i>0.1</i>, <i>0.05</i>,&nbsp; <br>
13522
13523
13524
13525
13526
[153]13527
13528
[116]13529        <b>s_vertical_gradient_level</b> = <i>500.0</i>,
13530        <i>1000.0</i>,</p>
13531
13532
13533
13534
[153]13535
13536
[116]13537 
13538     
13539     
13540     
13541     
[153]13542     
13543     
[116]13544      </ul>
13545
13546
13547
13548
[153]13549
13550
[116]13551 
13552     
13553     
13554     
13555     
[153]13556     
13557     
[116]13558      <p>That
13559defines the scalar concentration to be constant with
13560height up to z = 500.0 m with a value given by <a href="#s_surface">s_surface</a>.
13561For 500.0 m &lt; z &lt;= 1000.0 m the scalar gradient is 0.1
13562kg/m<sup>3 </sup>/ 100 m and for z &gt; 1000.0 m up to
13563the top
13564boundary it is 0.05 kg/m<sup>3 </sup>/ 100 m (it is
13565assumed that the
13566assigned height levels
13567correspond with uv
13568levels).</p>
13569
13570
13571
13572
[153]13573
13574
[116]13575 </td>
13576
13577
13578
13579
[153]13580
13581
[116]13582 </tr>
13583
13584
13585
13586
[153]13587
13588
[116]13589 <tr>
13590
13591
13592
13593
[153]13594
13595
[116]13596 <td style="vertical-align: top;"> 
13597     
13598     
13599     
13600     
[153]13601     
13602     
[116]13603      <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b>
13604      <br>
13605
13606
13607
13608
[153]13609
13610
[116]13611 <b>level</b></p>
13612
13613
13614
13615
[153]13616
13617
[116]13618 </td>
13619
13620
13621
13622
[153]13623
13624
[116]13625 <td style="vertical-align: top;">R (10)</td>
13626
13627
13628
13629
[153]13630
13631
[116]13632 <td style="vertical-align: top;"> 
13633     
13634     
13635     
13636     
[153]13637     
13638     
[116]13639      <p><i>10 *</i>
13640      <i>0.0</i></p>
13641
13642
13643
13644
[153]13645
13646
[116]13647 </td>
13648
13649
13650
13651
[153]13652
13653
[116]13654 <td style="vertical-align: top;"> 
13655     
13656     
13657     
13658     
[153]13659     
13660     
[116]13661      <p>Height level from
13662which on the scalar gradient defined by <a href="#s_vertical_gradient">s_vertical_gradient</a>
13663is effective (in m).&nbsp; </p>
13664
13665
13666
13667
[153]13668
13669
[116]13670 
13671     
13672     
13673     
13674     
[153]13675     
13676     
[116]13677      <p>The height levels
13678are to be assigned in ascending order. The
13679default values result in a scalar concentration constant with height
13680regardless of the values of <a href="#s_vertical_gradient">s_vertical_gradient</a>
13681(unless the top boundary of the model is higher than 100000.0 m). For
13682the
13683piecewise construction of scalar concentration profiles see <a href="#s_vertical_gradient">s_vertical_gradient</a>.</p>
13684
13685
13686
13687
13688
[153]13689
13690
[116]13691      </td>
13692
13693
13694
13695
[153]13696
13697
[116]13698 </tr>
13699
13700
13701
13702
[153]13703
13704
[116]13705 <tr>
13706
13707
13708
13709
[153]13710
13711
[116]13712 <td style="vertical-align: top;"> 
13713     
13714     
13715     
13716     
[153]13717     
13718     
[116]13719      <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p>
13720
13721
13722
13723
13724
[153]13725
13726
[116]13727      </td>
13728
13729
13730
13731
[153]13732
13733
[116]13734 <td style="vertical-align: top;">C * 20</td>
13735
13736
13737
13738
13739
[153]13740
13741
[116]13742      <td style="vertical-align: top;"> 
13743     
13744     
13745     
13746     
[153]13747     
13748     
[116]13749      <p><i>'runge</i><br>
13750
13751
13752
13753
13754
[153]13755
13756
[116]13757      <i>kutta-3'</i></p>
13758
13759
13760
13761
[153]13762
13763
[116]13764 </td>
13765
13766
13767
13768
[153]13769
13770
[116]13771 <td style="vertical-align: top;"> 
13772     
13773     
13774     
13775     
[153]13776     
13777     
[116]13778      <p>Time step scheme to
13779be used for the integration of the prognostic
13780variables.&nbsp; </p>
13781
13782
13783
13784
[153]13785
13786
[116]13787 
13788     
13789     
13790     
13791     
[153]13792     
13793     
[116]13794      <p>The user can choose between
13795the following schemes:<br>
13796
13797
13798
13799
[153]13800
13801
[116]13802 </p>
13803
13804
13805
13806
[153]13807
13808
[116]13809 
13810     
13811     
13812     
13813     
[153]13814     
13815     
[116]13816      <p><span style="font-style: italic;">'runge-kutta-3'</span><br>
13817
13818
13819
13820
13821
[153]13822
13823
[116]13824      </p>
13825
13826
13827
13828
[153]13829
13830
[116]13831 
13832     
13833     
13834     
13835     
[153]13836     
13837     
[116]13838      <div style="margin-left: 40px;">Third order
13839Runge-Kutta scheme.<br>
13840
13841
13842
13843
13844
[153]13845
13846
[116]13847This scheme requires the use of <a href="#momentum_advec">momentum_advec</a>
13848= <a href="#scalar_advec">scalar_advec</a>
13849= '<i>pw-scheme'</i>. Please refer to the&nbsp;<a href="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation
13850on PALM's time integration schemes&nbsp;(28p., in German)</a>
13851fur further details.<br>
13852
13853
13854
13855
[153]13856
13857
[116]13858 </div>
13859
13860
13861
13862
[153]13863
13864
[116]13865 
13866     
13867     
13868     
13869     
[153]13870     
13871     
[116]13872      <p><span style="font-style: italic;">'runge-kutta-2'</span><br>
13873
13874
13875
13876
13877
[153]13878
13879
[116]13880      </p>
13881
13882
13883
13884
[153]13885
13886
[116]13887 
13888     
13889     
13890     
13891     
[153]13892     
13893     
[116]13894      <div style="margin-left: 40px;">Second order
13895Runge-Kutta scheme.<br>
13896
13897
13898
13899
13900
[153]13901
13902
[116]13903For special features see <b>timestep_scheme</b> = '<i>runge-kutta-3'</i>.<br>
13904
13905
13906
13907
13908
[153]13909
13910
[116]13911      </div>
13912
13913
13914
13915
[153]13916
13917
[116]13918 <br>
13919
13920
13921
13922
[153]13923
13924
[116]13925 <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br>
13926
13927
13928
13929
13930
[153]13931
13932
[116]13933      <br>
13934
13935
13936
13937
[153]13938
13939
[116]13940 </span> 
13941     
13942     
13943     
13944     
[153]13945     
13946     
[116]13947      <div style="margin-left: 40px;">Second
13948order leapfrog scheme.<br>
13949
13950
13951
13952
13953
[153]13954
13955
[116]13956Although this scheme requires a constant timestep (because it is
13957centered in time),&nbsp; is even applied in case of changes in
13958timestep. Therefore, only small
13959changes of the timestep are allowed (see <a href="#dt">dt</a>).
13960However, an Euler timestep is always used as the first timestep of an
13961initiali run. When using the Bott-Chlond scheme for scalar advection
13962(see <a href="#scalar_advec">scalar_advec</a>),
13963the prognostic equation for potential temperature will be calculated
13964with the Euler scheme, although the leapfrog scheme is switched
13965on.&nbsp; <br>
13966
13967
13968
13969
13970
[153]13971
13972
[116]13973The leapfrog scheme must not be used together with the upstream-spline
13974scheme for calculating the advection (see <a href="#scalar_advec">scalar_advec</a>
13975= '<i>ups-scheme'</i> and <a href="#momentum_advec">momentum_advec</a>
13976= '<i>ups-scheme'</i>).<br>
13977
13978
13979
13980
[153]13981
13982
[116]13983 </div>
13984
13985
13986
13987
[153]13988
13989
[116]13990 <br>
13991
13992
13993
13994
13995
[153]13996
13997
[116]13998      <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br>
13999
14000
14001
14002
14003
[153]14004
14005
[116]14006      <br>
14007
14008
14009
14010
[153]14011
14012
[116]14013 </span> 
14014     
14015     
14016     
14017     
[153]14018     
14019     
[116]14020      <div style="margin-left: 40px;">The
14021leapfrog scheme is used, but
14022after each change of a timestep an Euler timestep is carried out.
14023Although this method is theoretically correct (because the pure
14024leapfrog method does not allow timestep changes), the divergence of the
14025velocity field (after applying the pressure solver) may be
14026significantly larger than with <span style="font-style: italic;">'leapfrog'</span>.<br>
14027
14028
14029
14030
14031
[153]14032
14033
[116]14034      </div>
14035
14036
14037
14038
[153]14039
14040
[116]14041 <br>
14042
14043
14044
14045
[153]14046
14047
[116]14048 <span style="font-style: italic;">'euler'</span><br>
14049
14050
14051
14052
14053
[153]14054
14055
[116]14056      <br>
14057
14058
14059
14060
[153]14061
14062
[116]14063 
14064     
14065     
14066     
14067     
[153]14068     
14069     
[116]14070      <div style="margin-left: 40px;">First order
14071Euler scheme.&nbsp; <br>
14072
14073
14074
14075
14076
[153]14077
14078
[116]14079The Euler scheme must be used when treating the advection terms with
14080the upstream-spline scheme (see <a href="#scalar_advec">scalar_advec</a>
14081= <span style="font-style: italic;">'ups-scheme'</span>
14082and <a href="#momentum_advec">momentum_advec</a>
14083= <span style="font-style: italic;">'ups-scheme'</span>).</div>
14084
14085
14086
14087
14088
[153]14089
14090
[116]14091      <br>
14092
14093
14094
14095
[153]14096
14097
[116]14098      <br>
14099
14100
14101
14102
[153]14103
14104
[116]14105A differing timestep scheme can be choosed for the
14106subgrid-scale TKE using parameter <a href="#use_upstream_for_tke">use_upstream_for_tke</a>.<br>
14107
14108
14109
14110
14111
[153]14112
14113
[116]14114      </td>
14115
14116
14117
14118
[153]14119
14120
[116]14121 </tr>
14122
14123
14124
14125
[153]14126
14127
[116]14128 <tr>
14129
14130
14131
14132
[153]14133
14134
[116]14135 <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td>
14136
14137
14138
14139
14140
[153]14141
14142
[116]14143      <td style="vertical-align: top;">C * 40</td>
14144
14145
14146
14147
[153]14148
14149
[116]14150 <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td>
14151
14152
14153
14154
[153]14155
14156
[116]14157 <td>
14158     
14159     
14160     
14161     
[153]14162     
14163     
[116]14164      <p>Topography mode.&nbsp; </p>
14165
14166
14167
14168
[153]14169
14170
[116]14171 
14172     
14173     
14174     
14175     
[153]14176     
14177     
[116]14178      <p>The user can
14179choose between the following modes:<br>
14180
14181
14182
14183
[153]14184
14185
[116]14186 </p>
14187
14188
14189
14190
[153]14191
14192
[116]14193 
14194     
14195     
14196     
14197     
[153]14198     
14199     
[116]14200      <p><span style="font-style: italic;">'flat'</span><br>
14201
14202
14203
14204
[153]14205
14206
[116]14207 </p>
14208
14209
14210
14211
14212
[153]14213
14214
[116]14215     
14216     
14217     
14218     
[153]14219     
14220     
[116]14221      <div style="margin-left: 40px;">Flat surface.</div>
14222
14223
14224
14225
[153]14226
14227
[116]14228 
14229     
14230     
14231     
14232     
[153]14233     
14234     
[116]14235      <p><span style="font-style: italic;">'single_building'</span><br>
14236
14237
14238
14239
14240
[153]14241
14242
[116]14243      </p>
14244
14245
14246
14247
[153]14248
14249
[116]14250 
14251     
14252     
14253     
14254     
[153]14255     
14256     
[116]14257      <div style="margin-left: 40px;">Flow
14258around&nbsp;a single rectangular building mounted on a flat surface.<br>
14259
14260
14261
14262
14263
14264
14265
[153]14266The building size and location can be specified with the parameters <a href="#building_height">building_height</a>, <a href="#building_length_x">building_length_x</a>, <a href="#building_length_y">building_length_y</a>, <a href="#building_wall_left">building_wall_left</a> and <a href="#building_wall_south">building_wall_south</a>.<br>
[116]14267
[153]14268      <font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font></div>
[116]14269
14270
[153]14271
14272
14273
14274
14275
[116]14276      <span style="font-style: italic;"></span> 
14277     
14278     
14279     
14280     
[153]14281     
14282     
[116]14283      <p><span style="font-style: italic;">'read_from_file'</span><br>
14284
14285
14286
14287
14288
[153]14289
14290
[116]14291      </p>
14292
14293
14294
14295
[153]14296
14297
[116]14298 
14299     
14300     
14301     
14302     
[153]14303     
14304     
[116]14305      <div style="margin-left: 40px;">Flow around
14306arbitrary topography.<br>
14307
14308
14309
14310
14311
[153]14312
14313
[116]14314This mode requires the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. This file contains </font><font color="#000000"><font color="#000000">the&nbsp;</font></font><font color="#000000">arbitrary topography </font><font color="#000000"><font color="#000000">height
14315information</font></font><font color="#000000">
14316in m. These data&nbsp;<span style="font-style: italic;"></span>must
[153]14317exactly match the horizontal grid.<br>
[116]14318
[153]14319Due to the staggered grid the topography will be displaced by -0.5 <a href="#dx">dx</a> in x-direction and -0.5 <a href="#dy">dy</a> in y-direction.</font> </div>
[116]14320
14321
14322
[153]14323
14324
14325
[116]14326 <span style="font-style: italic;"><br>
14327
14328
14329
14330
[153]14331
14332
[116]14333 </span><font color="#000000">
14334Alternatively, the user may add code to the user interface subroutine <a href="chapter_3.5.1.html#user_init_grid">user_init_grid</a>
[153]14335to allow further topography modes. Again, </font><font color="#000000">due to the staggered grid the topography will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font><br>
[116]14336
[153]14337      <font color="#000000">
[116]14338
14339
14340
[153]14341
[116]14342 <br>
14343
14344
14345
14346
14347
[153]14348
14349
[116]14350All non-flat <span style="font-weight: bold;">topography</span>
14351modes </font>require the use of <a href="#momentum_advec">momentum_advec</a>
14352= <a href="#scalar_advec">scalar_advec</a>
14353= '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a>
14354= <i>'poisfft'</i> or '<i>poisfft_hybrid'</i>,
14355      <i>&nbsp;</i><a href="#alpha_surface">alpha_surface</a>
14356= 0.0, <a href="#bc_lr">bc_lr</a> = <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>,&nbsp;<a style="" href="#galilei_transformation">galilei_transformation</a>
14357= <span style="font-style: italic;">.F.</span>,&nbsp;<a href="#cloud_physics">cloud_physics&nbsp;</a> = <span style="font-style: italic;">.F.</span>,&nbsp; <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>,&nbsp;&nbsp;<a href="#humidity">humidity</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br>
14358
14359
14360
14361
14362
[153]14363
14364
[116]14365      <font color="#000000"><br>
14366
14367
14368
14369
14370
[153]14371
14372
[116]14373Note that an inclined model domain requires the use of <span style="font-weight: bold;">topography</span> = <span style="font-style: italic;">'flat'</span> and a
14374nonzero </font><a href="#alpha_surface">alpha_surface</a>.</td>
14375
14376
14377
14378
14379
[153]14380
14381
[116]14382    </tr>
14383
14384
14385
14386
[153]14387
14388
[116]14389 <tr>
14390
14391
14392
14393
[153]14394
14395
[116]14396      <td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td>
14397
14398
14399
14400
[153]14401
14402
[116]14403      <td style="vertical-align: top;">R</td>
14404
14405
14406
14407
[153]14408
14409
[116]14410      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14411
14412
14413
14414
14415
[153]14416
14417
[116]14418heatflux</span></td>
14419
14420
14421
14422
[153]14423
14424
[116]14425      <td style="vertical-align: top;">
14426     
14427     
14428     
14429     
[153]14430     
14431     
[116]14432      <p>Kinematic
14433sensible heat flux at the top boundary (in K m/s).&nbsp; </p>
14434
14435
14436
14437
14438
[153]14439
14440
[116]14441     
14442     
14443     
14444     
[153]14445     
14446     
[116]14447      <p>If a value is assigned to this parameter, the internal
14448two-dimensional surface heat flux field <span style="font-family: monospace;">tswst</span> is
14449initialized with the value of <span style="font-weight: bold;">top_heatflux</span>&nbsp;as
14450top (horizontally homogeneous) boundary condition for the
14451temperature equation. This additionally requires that a Neumann
14452condition must be used for the potential temperature (see <a href="chapter_4.1.html#bc_pt_t">bc_pt_t</a>),
14453because otherwise the resolved scale may contribute to
14454the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14455
14456
14457
14458
14459
[153]14460
14461
[116]14462     
14463     
14464     
14465     
[153]14466     
14467     
[116]14468      <p><span style="font-weight: bold;">Note:</span><br>
14469
14470
14471
14472
[153]14473
14474
[116]14475The
14476application of a top heat flux additionally requires the setting of
14477initial parameter <a href="#use_top_fluxes">use_top_fluxes</a>
14478= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14479
14480
14481
14482
[153]14483
14484
[116]14485     
14486     
14487     
14488     
[153]14489     
14490     
[116]14491      <p>No
14492Prandtl-layer is available at the top boundary so far.</p>
14493
14494
14495
14496
[153]14497
14498
[116]14499     
14500     
14501     
14502     
[153]14503     
14504     
[116]14505      <p>See
14506also <a href="#surface_heatflux">surface_heatflux</a>.</p>
14507
14508
14509
14510
14511
[153]14512
14513
[116]14514      </td>
14515
14516
14517
14518
[153]14519
14520
[116]14521    </tr>
14522
14523
14524
14525
[153]14526
14527
[116]14528    <tr>
14529
14530
14531
14532
[153]14533
14534
[116]14535      <td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td>
14536
14537
14538
14539
[153]14540
14541
[116]14542      <td style="vertical-align: top;">R</td>
14543
14544
14545
14546
[153]14547
14548
[116]14549      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14550
14551
14552
14553
[153]14554
14555
[116]14556      <td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br>
14557
14558
14559
14560
[153]14561
14562
[116]14563     
14564     
14565     
14566     
[153]14567     
14568     
[116]14569      <p>If a value is assigned to this parameter, the internal
14570two-dimensional u-momentum flux field <span style="font-family: monospace;">uswst</span> is
14571initialized with the value of <span style="font-weight: bold;">top_momentumflux_u</span> as
14572top (horizontally homogeneous) boundary condition for the u-momentum equation.</p>
14573
14574
14575
14576
[153]14577
14578
[116]14579     
14580     
14581     
14582     
[153]14583     
14584     
[116]14585      <p><span style="font-weight: bold;">Notes:</span><br>
14586
14587
14588
14589
[153]14590
14591
[116]14592The
14593application of a top momentum flux additionally requires the setting of
14594initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14595= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p>
14596
14597
14598
14599
[153]14600
14601
[116]14602     
14603     
14604     
14605     
[153]14606     
14607     
[116]14608      <p>A&nbsp;Neumann
14609condition should be used for the u velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14610because otherwise the resolved scale may contribute to
14611the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14612
14613
14614
14615
14616
[153]14617
14618
[116]14619      <span style="font-weight: bold;"></span>
14620     
14621     
14622     
14623     
[153]14624     
14625     
[116]14626      <p>No
14627Prandtl-layer is available at the top boundary so far.</p>
14628
14629
14630
14631
[153]14632
14633
[116]14634     
14635     
14636     
14637     
[153]14638     
14639     
[116]14640      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14641
14642
14643
14644
[153]14645
14646
[116]14647      </td>
14648
14649
14650
14651
[153]14652
14653
[116]14654    </tr>
14655
14656
14657
14658
[153]14659
14660
[116]14661    <tr>
14662
14663
14664
14665
[153]14666
14667
[116]14668      <td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td>
14669
14670
14671
14672
[153]14673
14674
[116]14675      <td style="vertical-align: top;">R</td>
14676
14677
14678
14679
[153]14680
14681
[116]14682      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14683
14684
14685
14686
[153]14687
14688
[116]14689      <td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br>
14690
14691
14692
14693
[153]14694
14695
[116]14696     
14697     
14698     
14699     
[153]14700     
14701     
[116]14702      <p>If a value is assigned to this parameter, the internal
14703two-dimensional v-momentum flux field <span style="font-family: monospace;">vswst</span> is
14704initialized with the value of <span style="font-weight: bold;">top_momentumflux_v</span> as
14705top (horizontally homogeneous) boundary condition for the v-momentum equation.</p>
14706
14707
14708
14709
[153]14710
14711
[116]14712     
14713     
14714     
14715     
[153]14716     
14717     
[116]14718      <p><span style="font-weight: bold;">Notes:</span><br>
14719
14720
14721
14722
[153]14723
14724
[116]14725The
14726application of a top momentum flux additionally requires the setting of
14727initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14728= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p>
14729
14730
14731
14732
[153]14733
14734
[116]14735     
14736     
14737     
14738     
[153]14739     
14740     
[116]14741      <p>A&nbsp;Neumann
14742condition should be used for the v velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14743because otherwise the resolved scale may contribute to
14744the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14745
14746
14747
14748
14749
[153]14750
14751
[116]14752      <span style="font-weight: bold;"></span>
14753     
14754     
14755     
14756     
[153]14757     
14758     
[116]14759      <p>No
14760Prandtl-layer is available at the top boundary so far.</p>
14761
14762
14763
14764
[153]14765
14766
[116]14767     
14768     
14769     
14770     
[153]14771     
14772     
[116]14773      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14774
14775
14776
14777
[153]14778
14779
[116]14780      </td>
14781
14782
14783
14784
[153]14785
14786
[116]14787    </tr>
14788
14789
14790
14791
[153]14792
14793
[116]14794    <tr>
14795
14796
14797
14798
[153]14799
14800
[116]14801      <td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td>
14802
14803
14804
14805
[153]14806
14807
[116]14808      <td style="vertical-align: top;">R</td>
14809
14810
14811
14812
[153]14813
14814
[116]14815      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14816
14817
14818
14819
14820
[153]14821
14822
[116]14823salinityflux</span></td>
14824
14825
14826
14827
[153]14828
14829
[116]14830      <td style="vertical-align: top;">
14831     
14832     
14833     
14834     
[153]14835     
14836     
[116]14837      <p>Kinematic
14838salinity flux at the top boundary, i.e. the sea surface (in psu m/s).&nbsp; </p>
14839
14840
14841
14842
14843
[153]14844
14845
[116]14846     
14847     
14848     
14849     
[153]14850     
14851     
[116]14852      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
14853
14854
14855
14856
[153]14857
14858
[116]14859     
14860     
14861     
14862     
[153]14863     
14864     
[116]14865      <p>If a value is assigned to this parameter, the internal
14866two-dimensional surface heat flux field <span style="font-family: monospace;">saswst</span> is
14867initialized with the value of <span style="font-weight: bold;">top_salinityflux</span>&nbsp;as
14868top (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
14869condition must be used for the salinity (see <a href="chapter_4.1.html#bc_sa_t">bc_sa_t</a>),
14870because otherwise the resolved scale may contribute to
14871the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14872
14873
14874
14875
14876
[153]14877
14878
[116]14879     
14880     
14881     
14882     
[153]14883     
14884     
[116]14885      <p><span style="font-weight: bold;">Note:</span><br>
14886
14887
14888
14889
[153]14890
14891
[116]14892The
14893application of a salinity flux at the model top additionally requires the setting of
14894initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14895= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14896
14897
14898
14899
[153]14900
14901
[116]14902     
14903     
14904     
14905     
[153]14906     
14907     
[116]14908      <p>See
14909also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p>
14910
14911
14912
14913
[153]14914
14915
[116]14916      </td>
14917
14918
14919
14920
[153]14921
14922
[116]14923    </tr>
14924
14925
14926
14927
[153]14928
14929
[116]14930    <tr>
14931
14932
14933
14934
[153]14935
14936
[116]14937 <td style="vertical-align: top;">
14938     
14939     
14940     
14941     
[153]14942     
14943     
[116]14944      <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p>
14945
14946
14947
14948
14949
[153]14950
14951
[116]14952      </td>
14953
14954
14955
14956
[153]14957
14958
[116]14959 <td style="vertical-align: top;">R<br>
14960
14961
14962
14963
[153]14964
14965
[116]14966 </td>
14967
14968
14969
14970
14971
[153]14972
14973
[116]14974      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
14975
14976
14977
14978
[153]14979
14980
[116]14981 </td>
14982
14983
14984
14985
14986
[153]14987
14988
[116]14989      <td style="vertical-align: top;">u-component of the
14990geostrophic
14991wind at the surface (in m/s).<br>
14992
14993
14994
14995
[153]14996
14997
[116]14998 <br>
14999
15000
15001
15002
15003
[153]15004
15005
[116]15006This parameter assigns the value of the u-component of the geostrophic
15007wind (ug) at the surface (k=0). Starting from this value, the initial
15008vertical profile of the <br>
15009
15010
15011
15012
15013
[153]15014
15015
[116]15016u-component of the geostrophic wind is constructed with <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15017and <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15018The
15019profile constructed in that way is used for creating the initial
15020vertical velocity profile of the 3d-model. Either it is applied, as it
15021has been specified by the user (<a href="#initializing_actions">initializing_actions</a>
15022= 'set_constant_profiles') or it is used for calculating a stationary
15023boundary layer wind profile (<a href="#initializing_actions">initializing_actions</a>
15024= 'set_1d-model_profiles'). If ug is constant with height (i.e. ug(k)=<span style="font-weight: bold;">ug_surface</span>)
15025and&nbsp; has a large
15026value, it is recommended to use a Galilei-transformation of the
15027coordinate system, if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
15028in order to obtain larger time steps.<br>
15029
15030
15031
15032
[153]15033
15034
[116]15035      <br>
15036
15037
15038
15039
[153]15040
15041
[116]15042      <span style="font-weight: bold;">Attention:</span><br>
15043
15044
15045
15046
[153]15047
15048
[116]15049In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15050this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
15051at k=nzt. The profile is then constructed from the surface down to the
15052bottom of the model.<br>
15053
15054
15055
15056
[153]15057
15058
[116]15059 </td>
15060
15061
15062
15063
[153]15064
15065
[116]15066 </tr>
15067
15068
15069
15070
15071
[153]15072
15073
[116]15074    <tr>
15075
15076
15077
15078
[153]15079
15080
[116]15081 <td style="vertical-align: top;"> 
15082     
15083     
15084     
15085     
[153]15086     
15087     
[116]15088      <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p>
15089
15090
15091
15092
15093
[153]15094
15095
[116]15096      </td>
15097
15098
15099
15100
[153]15101
15102
[116]15103 <td style="vertical-align: top;">R(10)<br>
15104
15105
15106
15107
15108
[153]15109
15110
[116]15111      </td>
15112
15113
15114
15115
[153]15116
15117
[116]15118 <td style="vertical-align: top;"><span style="font-style: italic;">10
15119* 0.0</span><br>
15120
15121
15122
15123
[153]15124
15125
[116]15126 </td>
15127
15128
15129
15130
[153]15131
15132
[116]15133 <td style="vertical-align: top;">Gradient(s) of the initial
15134profile of the&nbsp; u-component of the geostrophic wind (in
151351/100s).<br>
15136
15137
15138
15139
[153]15140
15141
[116]15142 <br>
15143
15144
15145
15146
15147
[153]15148
15149
[116]15150The gradient holds starting from the height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
15151(precisely: for all uv levels k where zu(k) &gt; <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>,
15152ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <span style="font-weight: bold;">ug_vertical_gradient</span>)
15153up to the top
15154boundary or up to the next height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15155A
15156total of 10 different gradients for 11 height intervals (10
15157intervals&nbsp; if <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>(1)
15158= 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br>
15159
15160
15161
15162
[153]15163
15164
[116]15165      <br>
15166
15167
15168
15169
[153]15170
15171
[116]15172      <span style="font-weight: bold;">Attention:</span><br>
15173
15174
15175
15176
[153]15177
15178
[116]15179In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15180the profile is constructed like described above, but starting from the
15181sea surface (k=nzt) down to the bottom boundary of the model. Height
15182levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br>
15183
15184
15185
15186
[153]15187
15188
[116]15189 </td>
15190
15191
15192
15193
15194
[153]15195
15196
[116]15197    </tr>
15198
15199
15200
15201
[153]15202
15203
[116]15204 <tr>
15205
15206
15207
15208
[153]15209
15210
[116]15211 <td style="vertical-align: top;">
15212     
15213     
15214     
15215     
[153]15216     
15217     
[116]15218      <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p>
15219
15220
15221
15222
15223
[153]15224
15225
[116]15226      </td>
15227
15228
15229
15230
[153]15231
15232
[116]15233 <td style="vertical-align: top;">R(10)<br>
15234
15235
15236
15237
15238
[153]15239
15240
[116]15241      </td>
15242
15243
15244
15245
[153]15246
15247
[116]15248 <td style="vertical-align: top;"><span style="font-style: italic;">10
15249* 0.0</span><br>
15250
15251
15252
15253
[153]15254
15255
[116]15256 </td>
15257
15258
15259
15260
[153]15261
15262
[116]15263 <td style="vertical-align: top;">Height level from which on the
15264gradient defined by <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15265is effective (in m).<br>
15266
15267
15268
15269
[153]15270
15271
[116]15272 <br>
15273
15274
15275
15276
15277
[153]15278
15279
[116]15280The height levels have to be assigned in ascending order. For the
15281piecewise construction of a profile of the u-component of the
15282geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br>
15283
15284
15285
15286
[153]15287
15288
[116]15289      <br>
15290
15291
15292
15293
[153]15294
15295
[116]15296      <span style="font-weight: bold;">Attention:</span><br>
15297
15298
15299
15300
[153]15301
15302
[116]15303In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
15304
15305
15306
15307
[153]15308
15309
[116]15310 </tr>
15311
15312
15313
15314
[153]15315
15316
[116]15317 <tr>
15318
15319
15320
15321
[153]15322
15323
[116]15324 <td style="vertical-align: top;"> 
15325     
15326     
15327     
15328     
[153]15329     
15330     
[116]15331      <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p>
15332
15333
15334
15335
15336
[153]15337
15338
[116]15339      </td>
15340
15341
15342
15343
[153]15344
15345
[116]15346 <td style="vertical-align: top;">R</td>
15347
15348
15349
15350
15351
[153]15352
15353
[116]15354      <td style="vertical-align: top;"><i>0.0</i></td>
15355
15356
15357
15358
15359
[153]15360
15361
[116]15362      <td style="vertical-align: top;"> 
15363     
15364     
15365     
15366     
[153]15367     
15368     
[116]15369      <p>Subgrid-scale
15370turbulent kinetic energy difference used as
15371criterion for applying the upstream scheme when upstream-spline
15372advection is switched on (in m<sup>2</sup>/s<sup>2</sup>).
15373&nbsp; </p>
15374
15375
15376
15377
[153]15378
15379
[116]15380 
15381     
15382     
15383     
15384     
[153]15385     
15386     
[116]15387      <p>This variable steers the appropriate
15388treatment of the
15389advection of the subgrid-scale turbulent kinetic energy in case that
15390the uptream-spline scheme is used . For further information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp; </p>
15391
15392
15393
15394
15395
[153]15396
15397
[116]15398     
15399     
15400     
15401     
[153]15402     
15403     
[116]15404      <p>Only positive values are allowed for <b>ups_limit_e</b>.
15405      </p>
15406
15407
15408
15409
[153]15410
15411
[116]15412 </td>
15413
15414
15415
15416
[153]15417
15418
[116]15419 </tr>
15420
15421
15422
15423
[153]15424
15425
[116]15426 <tr>
15427
15428
15429
15430
[153]15431
15432
[116]15433 <td style="vertical-align: top;"> 
15434     
15435     
15436     
15437     
[153]15438     
15439     
[116]15440      <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p>
15441
15442
15443
15444
15445
[153]15446
15447
[116]15448      </td>
15449
15450
15451
15452
[153]15453
15454
[116]15455 <td style="vertical-align: top;">R</td>
15456
15457
15458
15459
15460
[153]15461
15462
[116]15463      <td style="vertical-align: top;"><i>0.0</i></td>
15464
15465
15466
15467
15468
[153]15469
15470
[116]15471      <td style="vertical-align: top;"> 
15472     
15473     
15474     
15475     
[153]15476     
15477     
[116]15478      <p>Temperature
15479difference used as criterion for applying&nbsp;
15480the upstream scheme when upstream-spline advection&nbsp; is
15481switched on
15482(in K).&nbsp; </p>
15483
15484
15485
15486
[153]15487
15488
[116]15489 
15490     
15491     
15492     
15493     
[153]15494     
15495     
[116]15496      <p>This criterion is used if the
15497upstream-spline scheme is
15498switched on (see <a href="#scalar_advec">scalar_advec</a>).<br>
15499
15500
15501
15502
15503
[153]15504
15505
[116]15506If, for a given gridpoint, the absolute temperature difference with
15507respect to the upstream
15508grid point is smaller than the value given for <b>ups_limit_pt</b>,
15509the upstream scheme is used for this gridpoint (by default, the
15510upstream-spline scheme is always used). Reason: in case of a very small
15511upstream gradient, the advection should cause only a very small
15512tendency. However, in such situations the upstream-spline scheme may
15513give wrong tendencies at a
15514grid point due to spline overshooting, if simultaneously the downstream
15515gradient is very large. In such cases it may be more reasonable to use
15516the upstream scheme. The numerical diffusion caused by the upstream
15517schme remains small as long as the upstream gradients are small.<br>
15518
15519
15520
15521
15522
[153]15523
15524
[116]15525      </p>
15526
15527
15528
15529
[153]15530
15531
[116]15532 
15533     
15534     
15535     
15536     
[153]15537     
15538     
[116]15539      <p>The percentage of grid points for which the
15540upstream
15541scheme is actually used, can be output as a time series with respect to
15542the
15543three directions in space with run parameter (see <a href="chapter_4.2.html#dt_dots">dt_dots</a>, the
15544timeseries names in the NetCDF file are <i>'splptx'</i>, <i>'splpty'</i>,
15545      <i>'splptz'</i>). The percentage
15546of gridpoints&nbsp; should stay below a certain limit, however, it
15547is
15548not possible to give
15549a general limit, since it depends on the respective flow.&nbsp; </p>
15550
15551
15552
15553
15554
[153]15555
15556
[116]15557     
15558     
15559     
15560     
[153]15561     
15562     
[116]15563      <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br>
15564
15565
15566
15567
15568
[153]15569
15570
[116]15571      </p>
15572
15573
15574
15575
15576
[153]15577
15578
[116]15579A more effective control of
15580the &ldquo;overshoots&rdquo; can be achieved with parameter <a href="#cut_spline_overshoot">cut_spline_overshoot</a>.
15581      </td>
15582
15583
15584
15585
[153]15586
15587
[116]15588 </tr>
15589
15590
15591
15592
[153]15593
15594
[116]15595 <tr>
15596
15597
15598
15599
[153]15600
15601
[116]15602 <td style="vertical-align: top;"> 
15603     
15604     
15605     
15606     
[153]15607     
15608     
[116]15609      <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p>
15610
15611
15612
15613
15614
[153]15615
15616
[116]15617      </td>
15618
15619
15620
15621
[153]15622
15623
[116]15624 <td style="vertical-align: top;">R</td>
15625
15626
15627
15628
15629
[153]15630
15631
[116]15632      <td style="vertical-align: top;"><i>0.0</i></td>
15633
15634
15635
15636
15637
[153]15638
15639
[116]15640      <td style="vertical-align: top;"> 
15641     
15642     
15643     
15644     
[153]15645     
15646     
[116]15647      <p>Velocity
15648difference (u-component) used as criterion for
15649applying the upstream scheme
15650when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15651
15652
15653
15654
15655
[153]15656
15657
[116]15658     
15659     
15660     
15661     
[153]15662     
15663     
[116]15664      <p>This variable steers the appropriate treatment of the
15665advection of the u-velocity-component in case that the upstream-spline
15666scheme is used. For further
15667information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15668      </p>
15669
15670
15671
15672
[153]15673
15674
[116]15675 
15676     
15677     
15678     
15679     
[153]15680     
15681     
[116]15682      <p>Only positive values are permitted for <b>ups_limit_u</b>.</p>
15683
15684
15685
15686
15687
[153]15688
15689
[116]15690      </td>
15691
15692
15693
15694
[153]15695
15696
[116]15697 </tr>
15698
15699
15700
15701
[153]15702
15703
[116]15704 <tr>
15705
15706
15707
15708
[153]15709
15710
[116]15711 <td style="vertical-align: top;"> 
15712     
15713     
15714     
15715     
[153]15716     
15717     
[116]15718      <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p>
15719
15720
15721
15722
15723
[153]15724
15725
[116]15726      </td>
15727
15728
15729
15730
[153]15731
15732
[116]15733 <td style="vertical-align: top;">R</td>
15734
15735
15736
15737
15738
[153]15739
15740
[116]15741      <td style="vertical-align: top;"><i>0.0</i></td>
15742
15743
15744
15745
15746
[153]15747
15748
[116]15749      <td style="vertical-align: top;"> 
15750     
15751     
15752     
15753     
[153]15754     
15755     
[116]15756      <p>Velocity
15757difference (v-component) used as criterion for
15758applying the upstream scheme
15759when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15760
15761
15762
15763
15764
[153]15765
15766
[116]15767     
15768     
15769     
15770     
[153]15771     
15772     
[116]15773      <p>This variable steers the appropriate treatment of the
15774advection of the v-velocity-component in case that the upstream-spline
15775scheme is used. For further
15776information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15777      </p>
15778
15779
15780
15781
[153]15782
15783
[116]15784 
15785     
15786     
15787     
15788     
[153]15789     
15790     
[116]15791      <p>Only positive values are permitted for <b>ups_limit_v</b>.</p>
15792
15793
15794
15795
15796
[153]15797
15798
[116]15799      </td>
15800
15801
15802
15803
[153]15804
15805
[116]15806 </tr>
15807
15808
15809
15810
[153]15811
15812
[116]15813 <tr>
15814
15815
15816
15817
[153]15818
15819
[116]15820 <td style="vertical-align: top;"> 
15821     
15822     
15823     
15824     
[153]15825     
15826     
[116]15827      <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p>
15828
15829
15830
15831
15832
[153]15833
15834
[116]15835      </td>
15836
15837
15838
15839
[153]15840
15841
[116]15842 <td style="vertical-align: top;">R</td>
15843
15844
15845
15846
15847
[153]15848
15849
[116]15850      <td style="vertical-align: top;"><i>0.0</i></td>
15851
15852
15853
15854
15855
[153]15856
15857
[116]15858      <td style="vertical-align: top;"> 
15859     
15860     
15861     
15862     
[153]15863     
15864     
[116]15865      <p>Velocity
15866difference (w-component) used as criterion for
15867applying the upstream scheme
15868when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15869
15870
15871
15872
15873
[153]15874
15875
[116]15876     
15877     
15878     
15879     
[153]15880     
15881     
[116]15882      <p>This variable steers the appropriate treatment of the
15883advection of the w-velocity-component in case that the upstream-spline
15884scheme is used. For further
15885information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15886      </p>
15887
15888
15889
15890
[153]15891
15892
[116]15893 
15894     
15895     
15896     
15897     
[153]15898     
15899     
[116]15900      <p>Only positive values are permitted for <b>ups_limit_w</b>.</p>
15901
15902
15903
15904
15905
[153]15906
15907
[116]15908      </td>
15909
15910
15911
15912
[153]15913
15914
[116]15915 </tr>
15916
15917
15918
15919
[153]15920
15921
[116]15922 <tr>
15923
15924
15925
15926
[153]15927
15928
[116]15929 <td style="vertical-align: top;"> 
15930     
15931     
15932     
15933     
[153]15934     
15935     
[116]15936      <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p>
15937
15938
15939
15940
15941
[153]15942
15943
[116]15944      </td>
15945
15946
15947
15948
[153]15949
15950
[116]15951 <td style="vertical-align: top;">L</td>
15952
15953
15954
15955
15956
[153]15957
15958
[116]15959      <td style="vertical-align: top;"><i>.F.</i></td>
15960
15961
15962
15963
15964
[153]15965
15966
[116]15967      <td style="vertical-align: top;"> 
15968     
15969     
15970     
15971     
[153]15972     
15973     
[116]15974      <p>Parameter to
15975steer the treatment of the subgrid-scale vertical
15976fluxes within the diffusion terms at k=1 (bottom boundary).<br>
15977
15978
15979
15980
[153]15981
15982
[116]15983 </p>
15984
15985
15986
15987
15988
[153]15989
15990
[116]15991     
15992     
15993     
15994     
[153]15995     
15996     
[116]15997      <p>By default, the near-surface subgrid-scale fluxes are
15998parameterized (like in the remaining model domain) using the gradient
15999approach. If <b>use_surface_fluxes</b>
16000= <i>.TRUE.</i>, the user-assigned surface fluxes are used
16001instead
16002(see <a href="#surface_heatflux">surface_heatflux</a>,
16003      <a href="#surface_waterflux">surface_waterflux</a>
16004and <a href="#surface_scalarflux">surface_scalarflux</a>)
16005      <span style="font-weight: bold;">or</span> the
16006surface fluxes are
16007calculated via the Prandtl layer relation (depends on the bottom
16008boundary conditions, see <a href="#bc_pt_b">bc_pt_b</a>,
16009      <a href="#bc_q_b">bc_q_b</a>
16010and <a href="#bc_s_b">bc_s_b</a>).<br>
16011
16012
16013
16014
[153]16015
16016
[116]16017 </p>
16018
16019
16020
16021
16022
[153]16023
16024
[116]16025     
16026     
16027     
16028     
[153]16029     
16030     
[116]16031      <p><b>use_surface_fluxes</b>
16032is automatically set <i>.TRUE.</i>, if a Prandtl layer is
16033used (see <a href="#prandtl_layer">prandtl_layer</a>).&nbsp;
16034      </p>
16035
16036
16037
16038
[153]16039
16040
[116]16041 
16042     
16043     
16044     
16045     
[153]16046     
16047     
[116]16048      <p>The user may prescribe the surface fluxes at the
16049bottom
16050boundary without using a Prandtl layer by setting <span style="font-weight: bold;">use_surface_fluxes</span> =
16051      <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this
16052case, the
16053momentum flux (u<sub>*</sub><sup>2</sup>)
16054should also be prescribed,
16055the user must assign an appropriate value within the user-defined code.</p>
16056
16057
16058
16059
16060
[153]16061
16062
[116]16063      </td>
16064
16065
16066
16067
[153]16068
16069
[116]16070 </tr>
16071
16072
16073
16074
[153]16075
16076
[116]16077 <tr>
16078
16079
16080
16081
[153]16082
16083
[116]16084      <td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td>
16085
16086
16087
16088
[153]16089
16090
[116]16091      <td style="vertical-align: top;">L</td>
16092
16093
16094
16095
[153]16096
16097
[116]16098      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
16099
16100
16101
16102
[153]16103
16104
[116]16105      <td style="vertical-align: top;"> 
16106     
16107     
16108     
16109     
[153]16110     
16111     
[116]16112      <p>Parameter to steer
16113the treatment of the subgrid-scale vertical
16114fluxes within the diffusion terms at k=nz (top boundary).</p>
16115
16116
16117
16118
[153]16119
16120
[116]16121     
16122     
16123     
16124     
[153]16125     
16126     
[116]16127      <p>By
16128default, the fluxes at nz are calculated using the gradient approach.
16129If <b>use_top_fluxes</b>
16130= <i>.TRUE.</i>, the user-assigned top fluxes are used
16131instead
16132(see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p>
16133
16134
16135
16136
[153]16137
16138
[116]16139     
16140     
16141     
16142     
[153]16143     
16144     
[116]16145      <p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent
16146heat flux at the top will be automatically set to zero.</p>
16147
16148
16149
16150
[153]16151
16152
[116]16153      </td>
16154
16155
16156
16157
[153]16158
16159
[116]16160    </tr>
16161
16162
16163
16164
[153]16165
16166
[116]16167    <tr>
16168
16169
16170
16171
16172
[153]16173
16174
[116]16175      <td style="vertical-align: top;"> 
16176     
16177     
16178     
16179     
[153]16180     
16181     
[116]16182      <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p>
16183
16184
16185
16186
16187
[153]16188
16189
[116]16190      </td>
16191
16192
16193
16194
[153]16195
16196
[116]16197 <td style="vertical-align: top;">L</td>
16198
16199
16200
16201
16202
[153]16203
16204
[116]16205      <td style="vertical-align: top;"><i>.T.</i></td>
16206
16207
16208
16209
16210
[153]16211
16212
[116]16213      <td style="vertical-align: top;"> 
16214     
16215     
16216     
16217     
[153]16218     
16219     
[116]16220      <p>Switch to
16221determine the translation velocity in case that a
16222Galilean transformation is used.<br>
16223
16224
16225
16226
[153]16227
16228
[116]16229 </p>
16230
16231
16232
16233
[153]16234
16235
[116]16236 
16237     
16238     
16239     
16240     
[153]16241     
16242     
[116]16243      <p>In
16244case of a Galilean transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
16245      <b>use_ug_for_galilei_tr</b>
16246= <i>.T.</i>&nbsp; ensures
16247that the coordinate system is translated with the geostrophic windspeed.<br>
16248
16249
16250
16251
16252
[153]16253
16254
[116]16255      </p>
16256
16257
16258
16259
[153]16260
16261
[116]16262 
16263     
16264     
16265     
16266     
[153]16267     
16268     
[116]16269      <p>Alternatively, with <b>use_ug_for_galilei_tr</b>
16270= <i>.F</i>.,
16271the
16272geostrophic wind can be replaced as translation speed by the (volume)
16273averaged velocity. However, in this case the user must be aware of fast
16274growing gravity waves, so this
16275choice is usually not recommended!</p>
16276
16277
16278
16279
[153]16280
16281
[116]16282 </td>
16283
16284
16285
16286
[153]16287
16288
[116]16289 </tr>
16290
16291
16292
16293
[153]16294
16295
[116]16296 <tr>
16297
16298
16299
16300
[153]16301
16302
[116]16303      <td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td>
16304
16305
16306
16307
[153]16308
16309
[116]16310      <td align="left" valign="top">L</td>
16311
16312
16313
16314
[153]16315
16316
[116]16317      <td align="left" valign="top"><span style="font-style: italic;">.F.</span></td>
16318
16319
16320
16321
[153]16322
16323
[116]16324      <td align="left" valign="top">Parameter to choose the
16325advection/timestep scheme to be used for the subgrid-scale TKE.<br>
16326
16327
16328
16329
[153]16330
16331
[116]16332      <br>
16333
16334
16335
16336
[153]16337
16338
[116]16339By
16340default, the advection scheme and the timestep scheme to be used for
16341the subgrid-scale TKE are set by the initialization parameters <a href="#scalar_advec">scalar_advec</a> and <a href="#timestep_scheme">timestep_scheme</a>,
16342respectively. <span style="font-weight: bold;">use_upstream_for_tke</span>
16343= <span style="font-style: italic;">.T.</span>
16344forces the Euler-scheme and the upstream-scheme to be used as timestep
16345scheme and advection scheme, respectively. By these methods, the strong
16346(artificial) near-surface vertical gradients of the subgrid-scale TKE
16347are significantly reduced. This is required when subgrid-scale
16348velocities are used for advection of particles (see particle package
16349parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td>
16350
16351
16352
16353
[153]16354
16355
[116]16356    </tr>
16357
16358
16359
16360
[153]16361
16362
[116]16363    <tr>
16364
16365
16366
16367
16368
[153]16369
16370
[116]16371      <td style="vertical-align: top;"> 
16372     
16373     
16374     
16375     
[153]16376     
16377     
[116]16378      <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p>
16379
16380
16381
16382
16383
[153]16384
16385
[116]16386      </td>
16387
16388
16389
16390
[153]16391
16392
[116]16393 <td style="vertical-align: top;">R<br>
16394
16395
16396
16397
[153]16398
16399
[116]16400 </td>
16401
16402
16403
16404
16405
[153]16406
16407
[116]16408      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
16409
16410
16411
16412
[153]16413
16414
[116]16415 </td>
16416
16417
16418
16419
16420
[153]16421
16422
[116]16423      <td style="vertical-align: top;">v-component of the
16424geostrophic
16425wind at the surface (in m/s).<br>
16426
16427
16428
16429
[153]16430
16431
[116]16432 <br>
16433
16434
16435
16436
16437
[153]16438
16439
[116]16440This parameter assigns the value of the v-component of the geostrophic
16441wind (vg) at the surface (k=0). Starting from this value, the initial
16442vertical profile of the <br>
16443
16444
16445
16446
16447
[153]16448
16449
[116]16450v-component of the geostrophic wind is constructed with <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16451and <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16452The
16453profile
16454constructed in that way is used for creating the initial vertical
16455velocity profile of the 3d-model. Either it is applied, as it has been
16456specified by the user (<a href="#initializing_actions">initializing_actions</a>
16457= 'set_constant_profiles')
16458or it is used for calculating a stationary boundary layer wind profile
16459(<a href="#initializing_actions">initializing_actions</a>
16460=
16461'set_1d-model_profiles'). If vg is constant
16462with height (i.e. vg(k)=<span style="font-weight: bold;">vg_surface</span>)
16463and&nbsp; has a large value, it is
16464recommended to use a Galilei-transformation of the coordinate system,
16465if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
16466in order to obtain larger
16467time steps.<br>
16468
16469
16470
16471
[153]16472
16473
[116]16474      <br>
16475
16476
16477
16478
[153]16479
16480
[116]16481      <span style="font-weight: bold;">Attention:</span><br>
16482
16483
16484
16485
[153]16486
16487
[116]16488In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16489this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
16490at k=nzt. The profile is then constructed from the surface down to the
16491bottom of the model.</td>
16492
16493
16494
16495
[153]16496
16497
[116]16498 </tr>
16499
16500
16501
16502
[153]16503
16504
[116]16505 <tr>
16506
16507
16508
16509
[153]16510
16511
[116]16512 <td style="vertical-align: top;"> 
16513     
16514     
16515     
16516     
[153]16517     
16518     
[116]16519      <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p>
16520
16521
16522
16523
16524
[153]16525
16526
[116]16527      </td>
16528
16529
16530
16531
[153]16532
16533
[116]16534 <td style="vertical-align: top;">R(10)<br>
16535
16536
16537
16538
16539
[153]16540
16541
[116]16542      </td>
16543
16544
16545
16546
[153]16547
16548
[116]16549 <td style="vertical-align: top;"><span style="font-style: italic;">10
16550* 0.0</span><br>
16551
16552
16553
16554
[153]16555
16556
[116]16557 </td>
16558
16559
16560
16561
[153]16562
16563
[116]16564 <td style="vertical-align: top;">Gradient(s) of the initial
16565profile of the&nbsp; v-component of the geostrophic wind (in
165661/100s).<br>
16567
16568
16569
16570
[153]16571
16572
[116]16573 <br>
16574
16575
16576
16577
16578
[153]16579
16580
[116]16581The gradient holds starting from the height level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>
16582(precisely: for all uv levels k where zu(k)
16583&gt; <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
16584vg(k) is set: vg(k) = vg(k-1) + dzu(k)
16585* <span style="font-weight: bold;">vg_vertical_gradient</span>)
16586up to
16587the top boundary or up to the next height
16588level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16589A total of 10 different
16590gradients for 11 height intervals (10 intervals&nbsp; if <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>(1)
16591=
165920.0) can be assigned. The surface
16593geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br>
16594
16595
16596
16597
[153]16598
16599
[116]16600      <br>
16601
16602
16603
16604
[153]16605
16606
[116]16607      <span style="font-weight: bold;">Attention:</span><br>
16608
16609
16610
16611
[153]16612
16613
[116]16614In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16615the profile is constructed like described above, but starting from the
16616sea surface (k=nzt) down to the bottom boundary of the model. Height
16617levels have then to be given as negative values, e.g. <span style="font-weight: bold;">vg_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</td>
16618
16619
16620
16621
16622
[153]16623
16624
[116]16625    </tr>
16626
16627
16628
16629
[153]16630
16631
[116]16632 <tr>
16633
16634
16635
16636
[153]16637
16638
[116]16639 <td style="vertical-align: top;">
16640     
16641     
16642     
16643     
[153]16644     
16645     
[116]16646      <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p>
16647
16648
16649
16650
16651
[153]16652
16653
[116]16654      </td>
16655
16656
16657
16658
[153]16659
16660
[116]16661 <td style="vertical-align: top;">R(10)<br>
16662
16663
16664
16665
16666
[153]16667
16668
[116]16669      </td>
16670
16671
16672
16673
[153]16674
16675
[116]16676 <td style="vertical-align: top;"><span style="font-style: italic;">10
16677* 0.0</span><br>
16678
16679
16680
16681
[153]16682
16683
[116]16684 </td>
16685
16686
16687
16688
[153]16689
16690
[116]16691 <td style="vertical-align: top;">Height level from which on the
16692gradient defined by <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16693is effective (in m).<br>
16694
16695
16696
16697
[153]16698
16699
[116]16700 <br>
16701
16702
16703
16704
16705
[153]16706
16707
[116]16708The height levels have to be assigned in ascending order. For the
16709piecewise construction of a profile of the v-component of the
16710geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br>
16711
16712
16713
16714
[153]16715
16716
[116]16717      <br>
16718
16719
16720
16721
[153]16722
16723
[116]16724      <span style="font-weight: bold;">Attention:</span><br>
16725
16726
16727
16728
[153]16729
16730
[116]16731In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
16732
16733
16734
16735
16736
[153]16737
16738
[116]16739    </tr>
16740
16741
16742
16743
[153]16744
16745
[116]16746 <tr>
16747
16748
16749
16750
[153]16751
16752
[116]16753 <td style="vertical-align: top;">
16754     
16755     
16756     
16757     
[153]16758     
16759     
[116]16760      <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p>
16761
16762
16763
16764
16765
[153]16766
16767
[116]16768      </td>
16769
16770
16771
16772
[153]16773
16774
[116]16775 <td style="vertical-align: top;">L</td>
16776
16777
16778
16779
16780
[153]16781
16782
[116]16783      <td style="vertical-align: top;"><i>.T.</i></td>
16784
16785
16786
16787
16788
[153]16789
16790
[116]16791      <td style="vertical-align: top;"> 
16792     
16793     
16794     
16795     
[153]16796     
16797     
[116]16798      <p>Parameter to
16799restrict the mixing length in the vicinity of the
16800bottom
16801boundary (and near vertical walls of a non-flat <a href="chapter_4.1.html#topography">topography</a>).&nbsp; </p>
16802
16803
16804
16805
[153]16806
16807
[116]16808 
16809     
16810     
16811     
16812     
[153]16813     
16814     
[116]16815      <p>With <b>wall_adjustment</b>
16816= <i>.TRUE., </i>the mixing
16817length is limited to a maximum of&nbsp; 1.8 * z. This condition
16818typically affects only the
16819first grid points above the bottom boundary.</p>
[153]16820
16821
16822     
16823     
[116]16824      <p>In case of&nbsp; a non-flat <a href="chapter_4.1.html#topography">topography</a> the respective horizontal distance from vertical walls is used.</p>
16825
16826
16827
16828
[153]16829
16830
[116]16831 </td>
16832
16833
16834
16835
[153]16836
16837
[116]16838 </tr>
16839
16840
16841
16842
16843
[153]16844
16845
[116]16846    <tr>
16847
16848
16849
16850
[153]16851
16852
[116]16853 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td>
16854
16855
16856
16857
16858
[153]16859
16860
[116]16861      <td style="vertical-align: top;">R(5)</td>
16862
16863
16864
16865
[153]16866
16867
[116]16868 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td>
16869
16870
16871
16872
[153]16873
16874
[116]16875 <td>Prescribed
16876kinematic sensible heat flux in K m/s
16877at the five topography faces:<br>
16878
16879
16880
16881
[153]16882
16883
[116]16884 <br>
16885
16886
16887
16888
[153]16889
16890
[116]16891 
16892     
16893     
16894     
16895     
[153]16896     
16897     
[116]16898      <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0)&nbsp;&nbsp;
16899&nbsp;</span>top face<br>
16900
16901
16902
16903
[153]16904
16905
[116]16906 <span style="font-weight: bold;">wall_heatflux(1)&nbsp;&nbsp;&nbsp;
16907      </span>left face<br>
16908
16909
16910
16911
[153]16912
16913
[116]16914 <span style="font-weight: bold;">wall_heatflux(2)&nbsp;&nbsp;&nbsp;
16915      </span>right face<br>
16916
16917
16918
16919
[153]16920
16921
[116]16922 <span style="font-weight: bold;">wall_heatflux(3)&nbsp;&nbsp;&nbsp;
16923      </span>south face<br>
16924
16925
16926
16927
[153]16928
16929
[116]16930 <span style="font-weight: bold;">wall_heatflux(4)&nbsp;&nbsp;&nbsp;
16931      </span>north face</div>
16932
16933
16934
16935
[153]16936
16937
[116]16938 <br>
16939
16940
16941
16942
16943
[153]16944
16945
[116]16946This parameter applies only in case of a non-flat <a href="#topography">topography</a>.&nbsp;The
16947parameter <a href="#random_heatflux">random_heatflux</a>
16948can be used to impose random perturbations on the internal
16949two-dimensional surface heat
16950flux field <span style="font-style: italic;">shf</span>
16951that is composed of <a href="#surface_heatflux">surface_heatflux</a>
16952at the bottom surface and <span style="font-weight: bold;">wall_heatflux(0)</span>
16953at the topography top face.&nbsp;</td>
16954
16955
16956
16957
[153]16958
16959
[116]16960 </tr>
16961
16962
16963
16964
[153]16965
16966
[116]16967 
16968 
16969 
16970 
16971 
[153]16972 
16973 
[116]16974  </tbody>
16975</table>
16976
16977
16978
16979
[153]16980
16981
[116]16982<br>
16983
16984
16985
16986
16987
[153]16988
16989
[116]16990<p style="line-height: 100%;"><br>
16991
16992
16993
16994
[153]16995
16996
[116]16997<font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p>
16998
16999
17000
17001
17002
[153]17003
17004
[116]17005<p style="line-height: 100%;"><i>Last
17006change:&nbsp;</i> $Id: chapter_4.1.html 160 2008-04-09 08:40:21Z steinfeld $ </p>
17007
17008
17009
17010
17011
[153]17012
17013
[116]17014<br>
17015
17016
17017
17018
[153]17019
17020
[116]17021<br>
17022
17023
17024
17025
17026
[153]17027
17028
[160]17029</body></html>
Note: See TracBrowser for help on using the repository browser.