source: palm/trunk/DOC/app/chapter_4.1.html @ 160

Last change on this file since 160 was 160, checked in by steinfeld, 16 years ago

Update of chapter 4.1 of the palm documentation

  • Property svn:keywords set to Id
File size: 205.7 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head>
3
4
5
6
7
8
9
10 
11 
12 
13 
14 
15 
16  <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
17
18
19
20
21
22
23 
24 
25 
26 
27 
28 
29  <title>PALM chapter 4.1</title></head>
30
31<body>
32
33
34
35
36
37
38<h3><a name="chapter4.1"></a>4.1
39Initialization parameters</h3>
40
41
42
43
44
45
46
47<br>
48
49
50
51
52
53
54<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
55
56
57
58
59
60
61 <tbody>
62
63
64
65
66
67
68
69    <tr>
70
71
72
73
74
75
76 <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td>
77
78
79
80
81
82
83
84      <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
85
86
87
88
89
90
91
92      <td style="vertical-align: top;"> 
93     
94     
95     
96     
97     
98     
99      <p><b><font size="4">Default</font></b> <br>
100
101
102
103
104
105
106 <b><font size="4">value</font></b></p>
107
108
109
110
111
112
113 </td>
114
115
116
117
118
119
120
121      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
122
123
124
125
126
127
128
129    </tr>
130
131
132
133
134
135
136 <tr>
137
138
139
140
141
142
143 <td style="vertical-align: top;">
144     
145     
146     
147     
148     
149     
150      <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p>
151
152
153
154
155
156
157
158      </td>
159
160
161
162
163
164
165 <td style="vertical-align: top;">L</td>
166
167
168
169
170
171
172
173      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
174
175
176
177
178
179
180 <td style="vertical-align: top;"> 
181     
182     
183     
184     
185     
186     
187      <p style="font-style: normal;">Near-surface adjustment of the
188mixing length to the Prandtl-layer law.&nbsp; </p>
189
190
191
192
193
194
195 
196     
197     
198     
199     
200     
201     
202      <p>Usually
203the mixing length in LES models l<sub>LES</sub>
204depends (as in PALM) on the grid size and is possibly restricted
205further in case of stable stratification and near the lower wall (see
206parameter <a href="#wall_adjustment">wall_adjustment</a>).
207With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span>
208the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi
209is calculated
210and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>,
211l<sub>PR</sub>). This usually gives a decrease of the
212mixing length at
213the bottom boundary and considers the fact that eddy sizes
214decrease in the vicinity of the wall.&nbsp; </p>
215
216
217
218
219
220
221 
222     
223     
224     
225     
226     
227     
228      <p style="font-style: normal;"><b>Warning:</b> So
229far, there is
230no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> !&nbsp; </p>
231
232
233
234
235
236
237
238     
239     
240     
241     
242     
243     
244      <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the
245Prandtl-layer being
246switched on (see <a href="#prandtl_layer">prandtl_layer</a>)
247      <span style="font-style: italic;">'(u*)** 2+neumann'</span>
248should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>),
249otherwise the near-surface value of the TKE is not in agreement with
250the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz
251should provide the same value for K<sub>m</sub>). A warning
252is given,
253if this is not the case.</p>
254
255
256
257
258
259
260 </td>
261
262
263
264
265
266
267 </tr>
268
269
270
271
272
273
274 <tr>
275
276
277
278
279
280
281
282      <td style="vertical-align: top;"> 
283     
284     
285     
286     
287     
288     
289      <p><a name="alpha_surface"></a><b>alpha_surface</b></p>
290
291
292
293
294
295
296
297      </td>
298
299
300
301
302
303
304 <td style="vertical-align: top;">R<br>
305
306
307
308
309
310
311 </td>
312
313
314
315
316
317
318
319      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
320
321
322
323
324
325
326 </td>
327
328
329
330
331
332
333
334      <td style="vertical-align: top;"> 
335     
336     
337     
338     
339     
340     
341      <p style="font-style: normal;">Inclination of the model domain
342with respect to the horizontal (in degrees).&nbsp; </p>
343
344
345
346
347
348
349 
350     
351     
352     
353     
354     
355     
356      <p style="font-style: normal;">By means of <b>alpha_surface</b>
357the model domain can be inclined in x-direction with respect to the
358horizontal. In this way flows over inclined surfaces (e.g. drainage
359flows, gravity flows) can be simulated. In case of <b>alpha_surface
360      </b>/= <span style="font-style: italic;">0</span>
361the buoyancy term
362appears both in
363the equation of motion of the u-component and of the w-component.<br>
364
365
366
367
368
369
370
371      </p>
372
373
374
375
376
377
378 
379     
380     
381     
382     
383     
384     
385      <p style="font-style: normal;">An inclination
386is only possible in
387case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a>
388and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p>
389
390
391
392
393
394
395
396     
397     
398     
399     
400     
401     
402      <p>Runs with inclined surface still require additional
403user-defined code as well as modifications to the default code. Please
404ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM
405developer&nbsp; group</a>.</p>
406
407
408
409
410
411
412 </td>
413
414
415
416
417
418
419 </tr>
420
421
422
423
424
425
426
427    <tr>
428
429
430
431
432
433
434 <td style="vertical-align: top;"> 
435     
436     
437     
438     
439     
440     
441      <p><a name="bc_e_b"></a><b>bc_e_b</b></p>
442
443
444
445
446
447
448 </td>
449
450
451
452
453
454
455
456      <td style="vertical-align: top;">C * 20</td>
457
458
459
460
461
462
463 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
464
465
466
467
468
469
470
471      <td style="vertical-align: top;"> 
472     
473     
474     
475     
476     
477     
478      <p style="font-style: normal;">Bottom boundary condition of the
479TKE.&nbsp; </p>
480
481
482
483
484
485
486 
487     
488     
489     
490     
491     
492     
493      <p><b>bc_e_b</b> may be
494set to&nbsp;<span style="font-style: italic;">'neumann'</span>
495or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>.
496      <b>bc_e_b</b>
497= <span style="font-style: italic;">'neumann'</span>
498yields to
499e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated
500via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span>
501also yields to
502e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated
503diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if
504a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>).
505If this is not the case, a warning is given and <b>bc_e_b</b>
506is reset
507to <span style="font-style: italic;">'neumann'</span>.&nbsp;
508      </p>
509
510
511
512
513
514
515 
516     
517     
518     
519     
520     
521     
522      <p style="font-style: normal;">At the top
523boundary a Neumann
524boundary condition is generally used: (e(nz+1) = e(nz)).</p>
525
526
527
528
529
530
531 </td>
532
533
534
535
536
537
538
539    </tr>
540
541
542
543
544
545
546 <tr>
547
548
549
550
551
552
553 <td style="vertical-align: top;">
554     
555     
556     
557     
558     
559     
560      <p><a name="bc_lr"></a><b>bc_lr</b></p>
561
562
563
564
565
566
567
568      </td>
569
570
571
572
573
574
575 <td style="vertical-align: top;">C * 20</td>
576
577
578
579
580
581
582
583      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
584
585
586
587
588
589
590
591      <td style="vertical-align: top;">Boundary
592condition along x (for all quantities).<br>
593
594
595
596
597
598
599 <br>
600
601
602
603
604
605
606
607By default, a cyclic boundary condition is used along x.<br>
608
609
610
611
612
613
614 <br>
615
616
617
618
619
620
621
622      <span style="font-weight: bold;">bc_lr</span> may
623also be
624assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
625(inflow from left, outflow to the right) or <span style="font-style: italic;">'radiation/dirichlet'</span>
626(inflow from
627right, outflow to the left). This requires the multi-grid method to be
628used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
629and it also requires cyclic boundary conditions along y (see&nbsp;<a href="#bc_ns">bc_ns</a>).<br>
630
631
632
633
634
635
636 <br>
637
638
639
640
641
642
643
644In case of these non-cyclic lateral boundaries, a Dirichlet condition
645is used at the inflow for all quantities (initial vertical profiles -
646see <a href="#initializing_actions">initializing_actions</a>
647- are fixed during the run) except u, to which a Neumann (zero
648gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
649gradient) condition is used for the scalars. For perturbation
650pressure Neumann (zero gradient) conditions are assumed both at the
651inflow and at the outflow.<br>
652
653
654
655
656
657
658 <br>
659
660
661
662
663
664
665
666When using non-cyclic lateral boundaries, a filter is applied to the
667velocity field in the vicinity of the outflow in order to suppress any
668reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a>
669and <a href="#outflow_damping_width">outflow_damping_width</a>).<br>
670
671
672
673
674
675
676
677      <br>
678
679
680
681
682
683
684
685In order to maintain a turbulent state of the flow, it may be
686neccessary to continuously impose perturbations on the horizontal
687velocity field in the vicinity of the inflow throughout the whole run.
688This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>.
689The horizontal range to which these perturbations are applied is
690controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a>
691and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>.
692The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>,
693      <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,
694and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>.
695The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br>
696
697
698
699
700
701
702
703      <br>
704
705
706
707
708
709
710
711In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver
712at_all_substeps</a> = .T. should be used.<br>
713
714
715
716
717
718
719 <br>
720
721
722
723
724
725
726 <span style="font-weight: bold;">Note:</span><br>
727
728
729
730
731
732
733
734Using non-cyclic lateral boundaries requires very sensitive adjustments
735of the inflow (vertical profiles) and the bottom boundary conditions,
736e.g. a surface heating should not be applied near the inflow boundary
737because this may significantly disturb the inflow. Please check the
738model results very carefully.</td>
739
740
741
742
743
744
745 </tr>
746
747
748
749
750
751
752 <tr>
753
754
755
756
757
758
759 <td style="vertical-align: top;"> 
760     
761     
762     
763     
764     
765     
766      <p><a name="bc_ns"></a><b>bc_ns</b></p>
767
768
769
770
771
772
773
774      </td>
775
776
777
778
779
780
781 <td style="vertical-align: top;">C * 20</td>
782
783
784
785
786
787
788
789      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
790
791
792
793
794
795
796
797      <td style="vertical-align: top;">Boundary
798condition along y (for all quantities).<br>
799
800
801
802
803
804
805 <br>
806
807
808
809
810
811
812
813By default, a cyclic boundary condition is used along y.<br>
814
815
816
817
818
819
820 <br>
821
822
823
824
825
826
827
828      <span style="font-weight: bold;">bc_ns</span> may
829also be
830assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
831(inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'radiation/dirichlet'</span>
832(inflow from front ("south"), outflow to the rear ("north")). This
833requires the multi-grid
834method to be used for solving the Poisson equation for perturbation
835pressure (see <a href="chapter_4.2.html#psolver">psolver</a>)
836and it also requires cyclic boundary conditions along x (see<br>
837
838
839
840
841
842
843 <a href="#bc_lr">bc_lr</a>).<br>
844
845
846
847
848
849
850 <br>
851
852
853
854
855
856
857
858In case of these non-cyclic lateral boundaries, a Dirichlet condition
859is used at the inflow for all quantities (initial vertical profiles -
860see <a href="chapter_4.1.html#initializing_actions">initializing_actions</a>
861- are fixed during the run) except u, to which a Neumann (zero
862gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
863gradient) condition is used for the scalars. For perturbation
864pressure Neumann (zero gradient) conditions are assumed both at the
865inflow and at the outflow.<br>
866
867
868
869
870
871
872 <br>
873
874
875
876
877
878
879
880For further details regarding non-cyclic lateral boundary conditions
881see <a href="#bc_lr">bc_lr</a>.</td>
882
883
884
885
886
887
888 </tr>
889
890
891
892
893
894
895
896    <tr>
897
898
899
900
901
902
903 <td style="vertical-align: top;"> 
904     
905     
906     
907     
908     
909     
910      <p><a name="bc_p_b"></a><b>bc_p_b</b></p>
911
912
913
914
915
916
917 </td>
918
919
920
921
922
923
924
925      <td style="vertical-align: top;">C * 20</td>
926
927
928
929
930
931
932 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
933
934
935
936
937
938
939
940      <td style="vertical-align: top;"> 
941     
942     
943     
944     
945     
946     
947      <p style="font-style: normal;">Bottom boundary condition of the
948perturbation pressure.&nbsp; </p>
949
950
951
952
953
954
955 
956     
957     
958     
959     
960     
961     
962      <p>Allowed values
963are <span style="font-style: italic;">'dirichlet'</span>,
964      <span style="font-style: italic;">'neumann'</span>
965and <span style="font-style: italic;">'neumann+inhomo'</span>.&nbsp;
966      <span style="font-style: italic;">'dirichlet'</span>
967sets
968p(k=0)=0.0,&nbsp; <span style="font-style: italic;">'neumann'</span>
969sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span>
970corresponds to an extended Neumann boundary condition where heat flux
971or temperature inhomogeneities near the
972surface (pt(k=1))&nbsp; are additionally regarded (see Shen and
973LeClerc
974(1995, Q.J.R. Meteorol. Soc.,
9751209)). This condition is only permitted with the Prandtl-layer
976switched on (<a href="#prandtl_layer">prandtl_layer</a>),
977otherwise the run is terminated.&nbsp; </p>
978
979
980
981
982
983
984 
985     
986     
987     
988     
989     
990     
991      <p>Since
992at the bottom boundary of the model the vertical
993velocity
994disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>)
995dp/dz = 0 should
996be used, which leaves the vertical component w unchanged when the
997pressure solver is applied. Simultaneous use of the Neumann boundary
998conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>)
999usually yields no consistent solution for the perturbation pressure and
1000should be avoided.</p>
1001
1002
1003
1004
1005
1006
1007 </td>
1008
1009
1010
1011
1012
1013
1014 </tr>
1015
1016
1017
1018
1019
1020
1021 <tr>
1022
1023
1024
1025
1026
1027
1028 <td style="vertical-align: top;"> 
1029     
1030     
1031     
1032     
1033     
1034     
1035      <p><a name="bc_p_t"></a><b>bc_p_t</b></p>
1036
1037
1038
1039
1040
1041
1042
1043      </td>
1044
1045
1046
1047
1048
1049
1050 <td style="vertical-align: top;">C * 20</td>
1051
1052
1053
1054
1055
1056
1057
1058      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1059
1060
1061
1062
1063
1064
1065
1066      <td style="vertical-align: top;"> 
1067     
1068     
1069     
1070     
1071     
1072     
1073      <p style="font-style: normal;">Top boundary condition of the
1074perturbation pressure.&nbsp; </p>
1075
1076
1077
1078
1079
1080
1081 
1082     
1083     
1084     
1085     
1086     
1087     
1088      <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span>
1089(p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span>
1090(p(k=nz+1)=p(k=nz)).&nbsp; </p>
1091
1092
1093
1094
1095
1096
1097 
1098     
1099     
1100     
1101     
1102     
1103     
1104      <p>Simultaneous use
1105of Neumann boundary conditions both at the
1106top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>)
1107usually yields no consistent solution for the perturbation pressure and
1108should be avoided. Since at the bottom boundary the Neumann
1109condition&nbsp; is a good choice (see <a href="#bc_p_b">bc_p_b</a>),
1110a Dirichlet condition should be set at the top boundary.</p>
1111
1112
1113
1114
1115
1116
1117 </td>
1118
1119
1120
1121
1122
1123
1124
1125    </tr>
1126
1127
1128
1129
1130
1131
1132 <tr>
1133
1134
1135
1136
1137
1138
1139 <td style="vertical-align: top;">
1140     
1141     
1142     
1143     
1144     
1145     
1146      <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p>
1147
1148
1149
1150
1151
1152
1153
1154      </td>
1155
1156
1157
1158
1159
1160
1161 <td style="vertical-align: top;">C*20</td>
1162
1163
1164
1165
1166
1167
1168
1169      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1170
1171
1172
1173
1174
1175
1176
1177      <td style="vertical-align: top;"> 
1178     
1179     
1180     
1181     
1182     
1183     
1184      <p style="font-style: normal;">Bottom boundary condition of the
1185potential temperature.&nbsp; </p>
1186
1187
1188
1189
1190
1191
1192 
1193     
1194     
1195     
1196     
1197     
1198     
1199      <p>Allowed values
1200are <span style="font-style: italic;">'dirichlet'</span>
1201(pt(k=0) = const. = <a href="#pt_surface">pt_surface</a>
1202+ <a href="#pt_surface_initial_change">pt_surface_initial_change</a>;
1203the user may change this value during the run using user-defined code)
1204and <span style="font-style: italic;">'neumann'</span>
1205(pt(k=0)=pt(k=1)).&nbsp; <br>
1206
1207
1208
1209
1210
1211
1212
1213When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b>
1214= <span style="font-style: italic;">'neumann'</span>
1215must be used, because otherwise the resolved scale may contribute to
1216the surface flux so that a constant value cannot be guaranteed.</p>
1217
1218
1219
1220
1221
1222
1223     
1224     
1225     
1226     
1227     
1228     
1229      <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable,&nbsp;<a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p>
1230
1231
1232
1233
1234
1235
1236
1237      </td>
1238
1239
1240
1241
1242
1243
1244 </tr>
1245
1246
1247
1248
1249
1250
1251 <tr>
1252
1253
1254
1255
1256
1257
1258 <td style="vertical-align: top;"> 
1259     
1260     
1261     
1262     
1263     
1264     
1265      <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p>
1266
1267
1268
1269
1270
1271
1272
1273      </td>
1274
1275
1276
1277
1278
1279
1280 <td style="vertical-align: top;">C * 20</td>
1281
1282
1283
1284
1285
1286
1287
1288      <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td>
1289
1290
1291
1292
1293
1294
1295
1296      <td style="vertical-align: top;"> 
1297     
1298     
1299     
1300     
1301     
1302     
1303      <p style="font-style: normal;">Top boundary condition of the
1304potential temperature.&nbsp; </p>
1305
1306
1307
1308
1309
1310
1311 
1312     
1313     
1314     
1315     
1316     
1317     
1318      <p>Allowed are the
1319values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1)
1320does not change during the run), <span style="font-style: italic;">'neumann'</span>
1321(pt(k=nz+1)=pt(k=nz)), and <span style="font-style: italic;">'initial_gradient'</span>.
1322With the 'initial_gradient'-condition the value of the temperature
1323gradient at the top is
1324calculated from the initial
1325temperature profile (see <a href="#pt_surface">pt_surface</a>,
1326      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)
1327by bc_pt_t_val = (pt_init(k=nz+1) -
1328pt_init(k=nz)) / dzu(nz+1).<br>
1329
1330
1331
1332
1333
1334
1335
1336Using this value (assumed constant during the
1337run) the temperature boundary values are calculated as&nbsp; </p>
1338
1339
1340
1341
1342
1343
1344
1345     
1346     
1347     
1348     
1349     
1350     
1351      <ul>
1352
1353
1354
1355
1356
1357
1358 
1359       
1360       
1361       
1362       
1363       
1364       
1365        <p style="font-style: normal;">pt(k=nz+1) =
1366pt(k=nz) +
1367bc_pt_t_val * dzu(nz+1)</p>
1368
1369
1370
1371
1372
1373
1374 
1375     
1376     
1377     
1378     
1379     
1380     
1381      </ul>
1382
1383
1384
1385
1386
1387
1388 
1389     
1390     
1391     
1392     
1393     
1394     
1395      <p style="font-style: normal;">(up to k=nz the prognostic
1396equation for the temperature is solved).<br>
1397
1398
1399
1400
1401
1402
1403
1404When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>),
1405      <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span>
1406must be used, because otherwise the resolved scale may contribute to
1407the top flux so that a constant value cannot be guaranteed.</p>
1408
1409
1410
1411
1412
1413
1414 </td>
1415
1416
1417
1418
1419
1420
1421
1422    </tr>
1423
1424
1425
1426
1427
1428
1429 <tr>
1430
1431
1432
1433
1434
1435
1436 <td style="vertical-align: top;">
1437     
1438     
1439     
1440     
1441     
1442     
1443      <p><a name="bc_q_b"></a><b>bc_q_b</b></p>
1444
1445
1446
1447
1448
1449
1450
1451      </td>
1452
1453
1454
1455
1456
1457
1458 <td style="vertical-align: top;">C * 20</td>
1459
1460
1461
1462
1463
1464
1465
1466      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1467
1468
1469
1470
1471
1472
1473
1474      <td style="vertical-align: top;"> 
1475     
1476     
1477     
1478     
1479     
1480     
1481      <p style="font-style: normal;">Bottom boundary condition of the
1482specific humidity / total water content.&nbsp; </p>
1483
1484
1485
1486
1487
1488
1489 
1490     
1491     
1492     
1493     
1494     
1495     
1496      <p>Allowed
1497values are <span style="font-style: italic;">'dirichlet'</span>
1498(q(k=0) = const. = <a href="#q_surface">q_surface</a>
1499+ <a href="#q_surface_initial_change">q_surface_initial_change</a>;
1500the user may change this value during the run using user-defined code)
1501and <span style="font-style: italic;">'neumann'</span>
1502(q(k=0)=q(k=1)).&nbsp; <br>
1503
1504
1505
1506
1507
1508
1509
1510When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b>
1511= <span style="font-style: italic;">'neumann'</span>
1512must be used, because otherwise the resolved scale may contribute to
1513the surface flux so that a constant value cannot be guaranteed.</p>
1514
1515
1516
1517
1518
1519
1520
1521      </td>
1522
1523
1524
1525
1526
1527
1528 </tr>
1529
1530
1531
1532
1533
1534
1535 <tr>
1536
1537
1538
1539
1540
1541
1542 <td style="vertical-align: top;"> 
1543     
1544     
1545     
1546     
1547     
1548     
1549      <p><a name="bc_q_t"></a><b>bc_q_t</b></p>
1550
1551
1552
1553
1554
1555
1556
1557      </td>
1558
1559
1560
1561
1562
1563
1564 <td style="vertical-align: top;"><span style="font-style: italic;">C
1565* 20</span></td>
1566
1567
1568
1569
1570
1571
1572 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1573
1574
1575
1576
1577
1578
1579
1580      <td style="vertical-align: top;"> 
1581     
1582     
1583     
1584     
1585     
1586     
1587      <p style="font-style: normal;">Top boundary condition of the
1588specific humidity / total water content.&nbsp; </p>
1589
1590
1591
1592
1593
1594
1595 
1596     
1597     
1598     
1599     
1600     
1601     
1602      <p>Allowed
1603are the values <span style="font-style: italic;">'dirichlet'</span>
1604(q(k=nz) and q(k=nz+1) do
1605not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1606With the Neumann boundary
1607condition the value of the humidity gradient at the top is calculated
1608from the
1609initial humidity profile (see <a href="#q_surface">q_surface</a>,
1610      <a href="#q_vertical_gradient">q_vertical_gradient</a>)
1611by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br>
1612
1613
1614
1615
1616
1617
1618
1619Using this value (assumed constant during the run) the humidity
1620boundary values
1621are calculated as&nbsp; </p>
1622
1623
1624
1625
1626
1627
1628 
1629     
1630     
1631     
1632     
1633     
1634     
1635      <ul>
1636
1637
1638
1639
1640
1641
1642 
1643       
1644       
1645       
1646       
1647       
1648       
1649        <p style="font-style: normal;">q(k=nz+1) =q(k=nz) +
1650bc_q_t_val * dzu(nz+1)</p>
1651
1652
1653
1654
1655
1656
1657 
1658     
1659     
1660     
1661     
1662     
1663     
1664      </ul>
1665
1666
1667
1668
1669
1670
1671 
1672     
1673     
1674     
1675     
1676     
1677     
1678      <p style="font-style: normal;">(up tp k=nz the prognostic
1679equation for q is solved). </p>
1680
1681
1682
1683
1684
1685
1686 </td>
1687
1688
1689
1690
1691
1692
1693 </tr>
1694
1695
1696
1697
1698
1699
1700 <tr>
1701
1702
1703
1704
1705
1706
1707
1708      <td style="vertical-align: top;"> 
1709     
1710     
1711     
1712     
1713     
1714     
1715      <p><a name="bc_s_b"></a><b>bc_s_b</b></p>
1716
1717
1718
1719
1720
1721
1722 </td>
1723
1724
1725
1726
1727
1728
1729
1730      <td style="vertical-align: top;">C * 20</td>
1731
1732
1733
1734
1735
1736
1737 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1738
1739
1740
1741
1742
1743
1744
1745      <td style="vertical-align: top;"> 
1746     
1747     
1748     
1749     
1750     
1751     
1752      <p style="font-style: normal;">Bottom boundary condition of the
1753scalar concentration.&nbsp; </p>
1754
1755
1756
1757
1758
1759
1760 
1761     
1762     
1763     
1764     
1765     
1766     
1767      <p>Allowed values
1768are <span style="font-style: italic;">'dirichlet'</span>
1769(s(k=0) = const. = <a href="#s_surface">s_surface</a>
1770+ <a href="#s_surface_initial_change">s_surface_initial_change</a>;
1771the user may change this value during the run using user-defined code)
1772and <span style="font-style: italic;">'neumann'</span>
1773(s(k=0) =
1774s(k=1)).&nbsp; <br>
1775
1776
1777
1778
1779
1780
1781
1782When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b>
1783= <span style="font-style: italic;">'neumann'</span>
1784must be used, because otherwise the resolved scale may contribute to
1785the surface flux so that a constant value cannot be guaranteed.</p>
1786
1787
1788
1789
1790
1791
1792
1793      </td>
1794
1795
1796
1797
1798
1799
1800 </tr>
1801
1802
1803
1804
1805
1806
1807 <tr>
1808
1809
1810
1811
1812
1813
1814 <td style="vertical-align: top;"> 
1815     
1816     
1817     
1818     
1819     
1820     
1821      <p><a name="bc_s_t"></a><b>bc_s_t</b></p>
1822
1823
1824
1825
1826
1827
1828
1829      </td>
1830
1831
1832
1833
1834
1835
1836 <td style="vertical-align: top;">C * 20</td>
1837
1838
1839
1840
1841
1842
1843
1844      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1845
1846
1847
1848
1849
1850
1851
1852      <td style="vertical-align: top;"> 
1853     
1854     
1855     
1856     
1857     
1858     
1859      <p style="font-style: normal;">Top boundary condition of the
1860scalar concentration.&nbsp; </p>
1861
1862
1863
1864
1865
1866
1867 
1868     
1869     
1870     
1871     
1872     
1873     
1874      <p>Allowed are the
1875values <span style="font-style: italic;">'dirichlet'</span>
1876(s(k=nz) and s(k=nz+1) do
1877not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1878With the Neumann boundary
1879condition the value of the scalar concentration gradient at the top is
1880calculated
1881from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>)
1882by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br>
1883
1884
1885
1886
1887
1888
1889
1890Using this value (assumed constant during the run) the concentration
1891boundary values
1892are calculated as </p>
1893
1894
1895
1896
1897
1898
1899 
1900     
1901     
1902     
1903     
1904     
1905     
1906      <ul>
1907
1908
1909
1910
1911
1912
1913 
1914       
1915       
1916       
1917       
1918       
1919       
1920        <p style="font-style: normal;">s(k=nz+1) = s(k=nz) +
1921bc_s_t_val * dzu(nz+1)</p>
1922
1923
1924
1925
1926
1927
1928 
1929     
1930     
1931     
1932     
1933     
1934     
1935      </ul>
1936
1937
1938
1939
1940
1941
1942 
1943     
1944     
1945     
1946     
1947     
1948     
1949      <p style="font-style: normal;">(up to k=nz the prognostic
1950equation for the scalar concentration is
1951solved).</p>
1952
1953
1954
1955
1956
1957
1958 </td>
1959
1960
1961
1962
1963
1964
1965 </tr>
1966
1967
1968
1969
1970
1971
1972 <tr>
1973
1974
1975
1976
1977
1978
1979      <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td>
1980
1981
1982
1983
1984
1985
1986      <td style="vertical-align: top;">C * 20</td>
1987
1988
1989
1990
1991
1992
1993      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1994
1995
1996
1997
1998
1999
2000      <td style="vertical-align: top;">
2001     
2002     
2003     
2004     
2005     
2006     
2007      <p style="font-style: normal;">Top boundary condition of the salinity.&nbsp; </p>
2008
2009
2010
2011
2012
2013
2014 
2015     
2016     
2017     
2018     
2019     
2020     
2021      <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p>
2022
2023
2024
2025
2026
2027
2028     
2029     
2030     
2031     
2032     
2033     
2034      <p style="font-style: normal;">Allowed are the
2035values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1)
2036does not change during the run) and <span style="font-style: italic;">'neumann'</span>
2037(sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>.&nbsp;<br>
2038
2039
2040
2041
2042
2043
2044      <br>
2045
2046
2047
2048
2049
2050
2051
2052When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>),
2053      <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span>
2054must be used, because otherwise the resolved scale may contribute to
2055the top flux so that a constant value cannot be guaranteed.</p>
2056
2057
2058
2059
2060
2061
2062      </td>
2063
2064
2065
2066
2067
2068
2069    </tr>
2070
2071
2072
2073
2074
2075
2076    <tr>
2077
2078
2079
2080
2081
2082
2083 <td style="vertical-align: top;"> 
2084     
2085     
2086     
2087     
2088     
2089     
2090      <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p>
2091
2092
2093
2094
2095
2096
2097
2098      </td>
2099
2100
2101
2102
2103
2104
2105 <td style="vertical-align: top;">C * 20</td>
2106
2107
2108
2109
2110
2111
2112
2113      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2114
2115
2116
2117
2118
2119
2120
2121      <td style="vertical-align: top;"> 
2122     
2123     
2124     
2125     
2126     
2127     
2128      <p style="font-style: normal;">Bottom boundary condition of the
2129horizontal velocity components u and v.&nbsp; </p>
2130
2131
2132
2133
2134
2135
2136 
2137     
2138     
2139     
2140     
2141     
2142     
2143      <p>Allowed
2144values are <span style="font-style: italic;">'dirichlet' </span>and
2145      <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>
2146= <span style="font-style: italic;">'dirichlet'</span>
2147yields the
2148no-slip condition with u=v=0 at the bottom. Due to the staggered grid
2149u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a>
2150(below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 *
2151dz. u=v=0 at the bottom is guaranteed using mirror boundary
2152condition:&nbsp; </p>
2153
2154
2155
2156
2157
2158
2159 
2160     
2161     
2162     
2163     
2164     
2165     
2166      <ul>
2167
2168
2169
2170
2171
2172
2173 
2174       
2175       
2176       
2177       
2178       
2179       
2180        <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = -
2181v(k=1)</p>
2182
2183
2184
2185
2186
2187
2188 
2189     
2190     
2191     
2192     
2193     
2194     
2195      </ul>
2196
2197
2198
2199
2200
2201
2202 
2203     
2204     
2205     
2206     
2207     
2208     
2209      <p style="font-style: normal;">The
2210Neumann boundary condition
2211yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) =
2212v(k=1).
2213With Prandtl - layer switched on, the free-slip condition is not
2214allowed (otherwise the run will be terminated)<font color="#000000">.</font></p>
2215
2216
2217
2218
2219
2220
2221
2222      </td>
2223
2224
2225
2226
2227
2228
2229 </tr>
2230
2231
2232
2233
2234
2235
2236 <tr>
2237
2238
2239
2240
2241
2242
2243 <td style="vertical-align: top;"> 
2244     
2245     
2246     
2247     
2248     
2249     
2250      <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p>
2251
2252
2253
2254
2255
2256
2257
2258      </td>
2259
2260
2261
2262
2263
2264
2265 <td style="vertical-align: top;">C * 20</td>
2266
2267
2268
2269
2270
2271
2272
2273      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2274
2275
2276
2277
2278
2279
2280
2281      <td style="vertical-align: top;"> 
2282     
2283     
2284     
2285     
2286     
2287     
2288      <p style="font-style: normal;">Top boundary condition of the
2289horizontal velocity components u and v.&nbsp; </p>
2290
2291
2292
2293
2294
2295
2296 
2297     
2298     
2299     
2300     
2301     
2302     
2303      <p>Allowed
2304values are <span style="font-style: italic;">'dirichlet'</span>, <span style="font-style: italic;">'dirichlet_0'</span>
2305and <span style="font-style: italic;">'neumann'</span>.
2306The
2307Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) =
2308vg(nz+1),
2309Neumann condition yields the free-slip condition with u(k=nz+1) =
2310u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations
2311for the velocities are solved). The special condition&nbsp;<span style="font-style: italic;">'dirichlet_0'</span> can be used for channel flow, it yields the no-slip condition u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) =
2312vg(nz+1) = 0.</p>
2313
2314
2315
2316
2317
2318
2319     
2320     
2321     
2322     
2323     
2324     
2325      <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a>&nbsp;is internally set ('neumann') and does not need to be prescribed.</p>
2326
2327
2328
2329
2330
2331
2332 </td>
2333
2334
2335
2336
2337
2338
2339 </tr>
2340
2341
2342
2343
2344
2345
2346 <tr>
2347
2348
2349
2350
2351
2352
2353      <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td>
2354
2355
2356
2357
2358
2359
2360      <td style="vertical-align: top;">R</td>
2361
2362
2363
2364
2365
2366
2367      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
2368
2369
2370
2371
2372
2373
2374      <td style="vertical-align: top;">
2375     
2376     
2377     
2378     
2379     
2380     
2381      <p>Kinematic salinity flux near the surface (in psu m/s).&nbsp;</p>
2382
2383
2384
2385
2386
2387
2388This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
2389     
2390     
2391     
2392     
2393     
2394     
2395      <p>The
2396respective salinity flux value is used
2397as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
2398condition must be used for the salinity, which is currently the only available condition.<br>
2399
2400
2401
2402
2403
2404
2405 </p>
2406
2407
2408
2409
2410
2411
2412 </td>
2413
2414
2415
2416
2417
2418
2419    </tr>
2420
2421
2422
2423
2424
2425
2426    <tr>
2427
2428
2429
2430
2431
2432
2433
2434      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td>
2435
2436
2437
2438
2439
2440
2441
2442      <td style="vertical-align: top;">R</td>
2443
2444
2445
2446
2447
2448
2449 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2450
2451
2452
2453
2454
2455
2456 <td>Height
2457of a single building in m.<br>
2458
2459
2460
2461
2462
2463
2464 <br>
2465
2466
2467
2468
2469
2470
2471 <span style="font-weight: bold;">building_height</span> must
2472be less than the height of the model domain. This parameter requires
2473the use of&nbsp;<a href="#topography">topography</a>
2474= <span style="font-style: italic;">'single_building'</span>.</td>
2475
2476
2477
2478
2479
2480
2481
2482    </tr>
2483
2484
2485
2486
2487
2488
2489 <tr>
2490
2491
2492
2493
2494
2495
2496 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td>
2497
2498
2499
2500
2501
2502
2503
2504      <td style="vertical-align: top;">R</td>
2505
2506
2507
2508
2509
2510
2511 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2512
2513
2514
2515
2516
2517
2518 <td><span style="font-style: italic;"></span>Width of a single
2519building in m.<br>
2520
2521
2522
2523
2524
2525
2526 <br>
2527
2528
2529
2530
2531
2532
2533
2534Currently, <span style="font-weight: bold;">building_length_x</span>
2535must be at least <span style="font-style: italic;">3
2536*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a>
2537      </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>.
2538This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2539= <span style="font-style: italic;">'single_building'</span>.</td>
2540
2541
2542
2543
2544
2545
2546
2547    </tr>
2548
2549
2550
2551
2552
2553
2554 <tr>
2555
2556
2557
2558
2559
2560
2561 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td>
2562
2563
2564
2565
2566
2567
2568
2569      <td style="vertical-align: top;">R</td>
2570
2571
2572
2573
2574
2575
2576 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2577
2578
2579
2580
2581
2582
2583 <td>Depth
2584of a single building in m.<br>
2585
2586
2587
2588
2589
2590
2591 <br>
2592
2593
2594
2595
2596
2597
2598
2599Currently, <span style="font-weight: bold;">building_length_y</span>
2600must be at least <span style="font-style: italic;">3
2601*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a></span>. This parameter requires
2602the use of&nbsp;<a href="#topography">topography</a>
2603= <span style="font-style: italic;">'single_building'</span>.</td>
2604
2605
2606
2607
2608
2609
2610
2611    </tr>
2612
2613
2614
2615
2616
2617
2618 <tr>
2619
2620
2621
2622
2623
2624
2625 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td>
2626
2627
2628
2629
2630
2631
2632
2633      <td style="vertical-align: top;">R</td>
2634
2635
2636
2637
2638
2639
2640 <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td>
2641
2642
2643
2644
2645
2646
2647
2648      <td>x-coordinate of the left building wall (distance between the
2649left building wall and the left border of the model domain) in m.<br>
2650
2651
2652
2653
2654
2655
2656
2657      <br>
2658
2659
2660
2661
2662
2663
2664
2665Currently, <span style="font-weight: bold;">building_wall_left</span>
2666must be at least <span style="font-style: italic;">1
2667*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a>&nbsp;
2668- 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a></span>.
2669This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2670= <span style="font-style: italic;">'single_building'</span>.<br>
2671
2672
2673
2674
2675
2676
2677
2678      <br>
2679
2680
2681
2682
2683
2684
2685
2686The default value&nbsp;<span style="font-weight: bold;">building_wall_left</span>
2687= <span style="font-style: italic;">( ( <a href="#nx">nx</a>&nbsp;+
26881 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a> ) / 2</span>
2689centers the building in x-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2690
2691
2692
2693
2694
2695
2696 </tr>
2697
2698
2699
2700
2701
2702
2703 <tr>
2704
2705
2706
2707
2708
2709
2710
2711      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td>
2712
2713
2714
2715
2716
2717
2718
2719      <td style="vertical-align: top;">R</td>
2720
2721
2722
2723
2724
2725
2726 <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td>
2727
2728
2729
2730
2731
2732
2733
2734      <td>y-coordinate of the South building wall (distance between the
2735South building wall and the South border of the model domain) in m.<br>
2736
2737
2738
2739
2740
2741
2742
2743      <br>
2744
2745
2746
2747
2748
2749
2750
2751Currently, <span style="font-weight: bold;">building_wall_south</span>
2752must be at least <span style="font-style: italic;">1
2753*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a>&nbsp;
2754- 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a></span>.
2755This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2756= <span style="font-style: italic;">'single_building'</span>.<br>
2757
2758
2759
2760
2761
2762
2763
2764      <br>
2765
2766
2767
2768
2769
2770
2771
2772The default value&nbsp;<span style="font-weight: bold;">building_wall_south</span>
2773= <span style="font-style: italic;">( ( <a href="#ny">ny</a>&nbsp;+
27741 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a> ) / 2</span>
2775centers the building in y-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2776
2777
2778
2779
2780
2781
2782 </tr>
2783
2784
2785
2786
2787
2788
2789 <tr>
2790
2791      <td style="vertical-align: top;"><a name="canopy_mode"></a><span style="font-weight: bold;">canopy_mode</span></td>
2792
2793      <td style="vertical-align: top;">C * 20</td>
2794
2795      <td style="vertical-align: top;"><span style="font-style: italic;">'block'</span></td>
2796
2797      <td style="vertical-align: top;">Canopy mode.<br>
2798
2799      <br>
2800
2801      <font color="#000000">
2802Besides using the default value, that will create a horizontally
2803homogeneous plant canopy that extends over the total horizontal
2804extension of the model domain, the user may add code to the user
2805interface subroutine <a href="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</a>
2806to allow further canopy&nbsp;modes. <br>
2807
2808      <br>
2809
2810The setting of <a href="#canopy_mode">canopy_mode</a> becomes only active, if&nbsp;<a href="#plant_canopy">plant_canopy</a> has been set <span style="font-style: italic;">.T.</span> and a non-zero <a href="#drag_coefficient">drag_coefficient</a> has been defined.</font></td>
2811
2812    </tr>
2813
2814    <tr>
2815
2816
2817
2818
2819
2820
2821
2822      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br>
2823
2824
2825
2826
2827
2828
2829
2830      </td>
2831
2832
2833
2834
2835
2836
2837 <td style="vertical-align: top;">L<br>
2838
2839
2840
2841
2842
2843
2844 </td>
2845
2846
2847
2848
2849
2850
2851
2852      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br>
2853
2854
2855
2856
2857
2858
2859 </td>
2860
2861
2862
2863
2864
2865
2866
2867      <td style="vertical-align: top;">Parameter to switch on
2868usage of cloud droplets.<br>
2869
2870
2871
2872
2873
2874
2875 <br>
2876
2877
2878
2879
2880
2881
2882
2883      <span style="font-weight: bold;"></span><span style="font-family: monospace;"></span>
2884
2885
2886
2887
2888Cloud droplets require to use&nbsp;particles (i.e. the NAMELIST group <span style="font-family: Courier New,Courier,monospace;">particles_par</span> has to be included in the parameter file<span style="font-family: monospace;"></span>). Then each particle is a representative for a certain number of droplets. The droplet
2889features (number of droplets, initial radius, etc.) can be steered with
2890the&nbsp; respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>).
2891The real number of initial droplets in a grid cell is equal to the
2892initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
2893      <span lang="en-GB"><font face="Thorndale, serif">and
2894      </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)
2895times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br>
2896
2897
2898
2899
2900
2901
2902
2903      <br>
2904
2905
2906
2907
2908
2909
2910
2911In case of using cloud droplets, the default condensation scheme in
2912PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a>
2913must be set <span style="font-style: italic;">.F.</span>.<br>
2914
2915
2916
2917
2918
2919
2920
2921      </td>
2922
2923
2924
2925
2926
2927
2928 </tr>
2929
2930
2931
2932
2933
2934
2935 <tr>
2936
2937
2938
2939
2940
2941
2942 <td style="vertical-align: top;"> 
2943     
2944     
2945     
2946     
2947     
2948     
2949      <p><a name="cloud_physics"></a><b>cloud_physics</b></p>
2950
2951
2952
2953
2954
2955
2956
2957      </td>
2958
2959
2960
2961
2962
2963
2964 <td style="vertical-align: top;">L<br>
2965
2966
2967
2968
2969
2970
2971 </td>
2972
2973
2974
2975
2976
2977
2978
2979      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
2980
2981
2982
2983
2984
2985
2986 <td style="vertical-align: top;"> 
2987     
2988     
2989     
2990     
2991     
2992     
2993      <p>Parameter to switch
2994on the condensation scheme.&nbsp; </p>
2995
2996
2997
2998
2999
3000
3001
3002For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations
3003for the
3004liquid water&nbsp;
3005content and the liquid water potential temperature are solved instead
3006of those for specific humidity and potential temperature. Note
3007that a grid volume is assumed to be either completely saturated or
3008completely
3009unsaturated (0%-or-100%-scheme). A simple precipitation scheme can
3010additionally be switched on with parameter <a href="#precipitation">precipitation</a>.
3011Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br>
3012
3013
3014
3015
3016
3017
3018 <b><br>
3019
3020
3021
3022
3023
3024
3025
3026cloud_physics =</b> <span style="font-style: italic;">.TRUE.
3027      </span>requires&nbsp;<a href="#humidity">humidity</a>
3028=<span style="font-style: italic;"> .TRUE.</span> .<br>
3029
3030
3031
3032
3033
3034
3035
3036Detailed information about the condensation scheme is given in the
3037description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud
3038physics module</a> (pdf-file, only in German).<br>
3039
3040
3041
3042
3043
3044
3045 <br>
3046
3047
3048
3049
3050
3051
3052
3053This condensation scheme is not allowed if cloud droplets are simulated
3054explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br>
3055
3056
3057
3058
3059
3060
3061
3062      </td>
3063
3064
3065
3066
3067
3068
3069 </tr>
3070
3071
3072
3073
3074
3075
3076 <tr>
3077
3078
3079
3080
3081
3082
3083 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td>
3084
3085
3086
3087
3088
3089
3090
3091      <td style="vertical-align: top;">L</td>
3092
3093
3094
3095
3096
3097
3098 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3099
3100
3101
3102
3103
3104
3105 <td>Conservation
3106of volume flow in x- and y-direction.<br>
3107
3108
3109
3110
3111
3112
3113 <br>
3114
3115
3116
3117
3118
3119
3120 <span style="font-weight: bold;">conserve_volume_flow</span>
3121= <span style="font-style: italic;">.TRUE.</span>
3122guarantees that the volume flow through the xz- or yz-cross-section of
3123the total model domain remains constant (equal to the initial value at
3124t=0) throughout the run.<br>
3125
3126
3127
3128
3129
3130
3131
3132      </td>
3133
3134
3135
3136
3137
3138
3139 </tr>
3140
3141
3142
3143
3144
3145
3146 <tr>
3147
3148      <td style="vertical-align: top;"><a name="cthf"></a><span style="font-weight: bold;">cthf</span></td>
3149
3150      <td style="vertical-align: top;">R</td>
3151
3152      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3153
3154      <td style="vertical-align: top;">Average heat flux that is prescribed at the top of the plant canopy.<br>
3155
3156
3157      <br>
3158
3159
3160If <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>, the user can prescribe a heat flux at the top of the plant canopy.<br>
3161
3162
3163It is assumed that solar radiation penetrates the canopy and warms the
3164foliage which, in turn, warms the air in contact with it. <br>
3165
3166
3167Note: Instead of using the value prescribed by <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#surface_heatflux">surface_heatflux</a>,
3168the near surface heat flux is determined from an exponential function
3169that is dependent on the cumulative leaf_area_index (Shaw and Schumann
3170(1992, Boundary Layer Meteorol., 61, 47-64)).</td>
3171
3172    </tr>
3173
3174    <tr>
3175
3176
3177
3178
3179
3180
3181 <td style="vertical-align: top;"> 
3182     
3183     
3184     
3185     
3186     
3187     
3188      <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p>
3189
3190
3191
3192
3193
3194
3195
3196      </td>
3197
3198
3199
3200
3201
3202
3203 <td style="vertical-align: top;">L</td>
3204
3205
3206
3207
3208
3209
3210
3211      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td>
3212
3213
3214
3215
3216
3217
3218 <td style="vertical-align: top;"> 
3219     
3220     
3221     
3222     
3223     
3224     
3225      <p>Cuts off of
3226so-called overshoots, which can occur with the
3227upstream-spline scheme.&nbsp; </p>
3228
3229
3230
3231
3232
3233
3234 
3235     
3236     
3237     
3238     
3239     
3240     
3241      <p><font color="#000000">The cubic splines tend to overshoot in
3242case of discontinuous changes of variables between neighbouring grid
3243points.</font><font color="#ff0000"> </font><font color="#000000">This
3244may lead to errors in calculating the advection tendency.</font>
3245Choice
3246of <b>cut_spline_overshoot</b> = <i>.TRUE.</i>
3247(switched on by
3248default)
3249allows variable values not to exceed an interval defined by the
3250respective adjacent grid points. This interval can be adjusted
3251seperately for every prognostic variable (see initialization parameters
3252      <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,
3253etc.). This might be necessary in case that the
3254default interval has a non-tolerable effect on the model
3255results.&nbsp; </p>
3256
3257
3258
3259
3260
3261
3262 
3263     
3264     
3265     
3266     
3267     
3268     
3269      <p>Overshoots may also be removed
3270using the parameters <a href="#ups_limit_e">ups_limit_e</a>,
3271      <a href="#ups_limit_pt">ups_limit_pt</a>,
3272etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p>
3273
3274
3275
3276
3277
3278
3279
3280      </td>
3281
3282
3283
3284
3285
3286
3287 </tr>
3288
3289
3290
3291
3292
3293
3294 <tr>
3295
3296
3297
3298
3299
3300
3301 <td style="vertical-align: top;"> 
3302     
3303     
3304     
3305     
3306     
3307     
3308      <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p>
3309
3310
3311
3312
3313
3314
3315
3316      </td>
3317
3318
3319
3320
3321
3322
3323 <td style="vertical-align: top;">R</td>
3324
3325
3326
3327
3328
3329
3330
3331      <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td>
3332
3333
3334
3335
3336
3337
3338
3339      <td style="vertical-align: top;"> 
3340     
3341     
3342     
3343     
3344     
3345     
3346      <p>Height where
3347the damping layer begins in the 1d-model
3348(in m).&nbsp; </p>
3349
3350
3351
3352
3353
3354
3355 
3356     
3357     
3358     
3359     
3360     
3361     
3362      <p>This parameter is used to
3363switch on a damping layer for the
33641d-model, which is generally needed for the damping of inertia
3365oscillations. Damping is done by gradually increasing the value
3366of the eddy diffusivities about 10% per vertical grid level
3367(starting with the value at the height given by <b>damp_level_1d</b>,
3368or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1)
3369=
33701.1 * K<sub>m</sub>(k).
3371The values of K<sub>m</sub> are limited to 10 m**2/s at
3372maximum.&nbsp; <br>
3373
3374
3375
3376
3377
3378
3379
3380This parameter only comes into effect if the 1d-model is switched on
3381for
3382the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a>
3383= <span style="font-style: italic;">'set_1d-model_profiles'</span>.
3384      <br>
3385
3386
3387
3388
3389
3390
3391 </p>
3392
3393
3394
3395
3396
3397
3398 </td>
3399
3400
3401
3402
3403
3404
3405 </tr>
3406
3407
3408
3409
3410
3411
3412 <tr>
3413
3414
3415
3416
3417
3418
3419 <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br>
3420
3421
3422
3423
3424
3425
3426
3427      </td>
3428
3429
3430
3431
3432
3433
3434 <td style="vertical-align: top;">C*20<br>
3435
3436
3437
3438
3439
3440
3441
3442      </td>
3443
3444
3445
3446
3447
3448
3449 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
3450
3451
3452
3453
3454
3455
3456 <span style="font-style: italic;">model'</span><br>
3457
3458
3459
3460
3461
3462
3463 </td>
3464
3465
3466
3467
3468
3469
3470
3471      <td style="vertical-align: top;">Calculation method for
3472the energy dissipation term in the TKE equation of the 1d-model.<br>
3473
3474
3475
3476
3477
3478
3479
3480      <br>
3481
3482
3483
3484
3485
3486
3487
3488By default the dissipation is calculated as in the 3d-model using diss
3489= (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br>
3490
3491
3492
3493
3494
3495
3496 <br>
3497
3498
3499
3500
3501
3502
3503
3504Setting <span style="font-weight: bold;">dissipation_1d</span>
3505= <span style="font-style: italic;">'detering'</span>
3506forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br>
3507
3508
3509
3510
3511
3512
3513
3514      </td>
3515
3516
3517
3518
3519
3520
3521 </tr>
3522
3523
3524
3525
3526
3527
3528
3529    <tr>
3530
3531      <td style="vertical-align: top;"><a name="drag_coefficient"></a><span style="font-weight: bold;">drag_coefficient</span></td>
3532
3533      <td style="vertical-align: top;">R</td>
3534
3535      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3536
3537      <td style="vertical-align: top;">Drag coefficient used in the plant canopy model.<br>
3538
3539      <br>
3540
3541This parameter has to be non-zero, if the parameter <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>.</td>
3542
3543    </tr>
3544
3545    <tr>
3546
3547
3548
3549
3550
3551
3552 <td style="vertical-align: top;"> 
3553     
3554     
3555     
3556     
3557     
3558     
3559      <p><a name="dt"></a><b>dt</b></p>
3560
3561
3562
3563
3564
3565
3566 </td>
3567
3568
3569
3570
3571
3572
3573
3574      <td style="vertical-align: top;">R</td>
3575
3576
3577
3578
3579
3580
3581 <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td>
3582
3583
3584
3585
3586
3587
3588
3589      <td style="vertical-align: top;"> 
3590     
3591     
3592     
3593     
3594     
3595     
3596      <p>Time step for
3597the 3d-model (in s).&nbsp; </p>
3598
3599
3600
3601
3602
3603
3604 
3605     
3606     
3607     
3608     
3609     
3610     
3611      <p>By default, (i.e.
3612if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>)
3613the value of the time step is calculating after each time step
3614(following the time step criteria) and
3615used for the next step.</p>
3616
3617
3618
3619
3620
3621
3622 
3623     
3624     
3625     
3626     
3627     
3628     
3629      <p>If the user assigns <b>dt</b>
3630a value, then the time step is
3631fixed to this value throughout the whole run (whether it fulfills the
3632time step
3633criteria or not). However, changes are allowed for restart runs,
3634because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run
3635parameter</a>.&nbsp; </p>
3636
3637
3638
3639
3640
3641
3642 
3643     
3644     
3645     
3646     
3647     
3648     
3649      <p>In case that the
3650calculated time step meets the condition<br>
3651
3652
3653
3654
3655
3656
3657 </p>
3658
3659
3660
3661
3662
3663
3664 
3665     
3666     
3667     
3668     
3669     
3670     
3671      <ul>
3672
3673
3674
3675
3676
3677
3678
3679       
3680       
3681       
3682       
3683       
3684       
3685        <p><b>dt</b> &lt; 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max
3686= 20.0)</p>
3687
3688
3689
3690
3691
3692
3693 
3694     
3695     
3696     
3697     
3698     
3699     
3700      </ul>
3701
3702
3703
3704
3705
3706
3707 
3708     
3709     
3710     
3711     
3712     
3713     
3714      <p>the simulation will be
3715aborted. Such situations usually arise
3716in case of any numerical problem / instability which causes a
3717non-realistic increase of the wind speed.&nbsp; </p>
3718
3719
3720
3721
3722
3723
3724 
3725     
3726     
3727     
3728     
3729     
3730     
3731      <p>A
3732small time step due to a large mean horizontal windspeed
3733speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
3734in order to spare CPU time.<br>
3735
3736
3737
3738
3739
3740
3741 </p>
3742
3743
3744
3745
3746
3747
3748 
3749     
3750     
3751     
3752     
3753     
3754     
3755      <p>If the
3756leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>)
3757a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a>
3758* dt_crit where dt_crit is the maximum timestep allowed by the CFL and
3759diffusion condition. Next it is examined whether dt_new exceeds or
3760falls below the
3761value of the previous timestep by at
3762least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span>
3763= dt_new is immediately used for the next timestep. If it is larger,
3764then <span style="font-weight: bold;">dt </span>=
37651.02 * dt_prev
3766(previous timestep) is used as the new timestep, however the time
3767step is only increased if the last change of the time step is dated
3768back at
3769least 30 iterations. If dt_new is located in the interval mentioned
3770above, then dt
3771does not change at all. By doing so, permanent time step changes as
3772well as large
3773sudden changes (increases) in the time step are avoided.</p>
3774
3775
3776
3777
3778
3779
3780 </td>
3781
3782
3783
3784
3785
3786
3787
3788    </tr>
3789
3790
3791
3792
3793
3794
3795 <tr>
3796
3797
3798
3799
3800
3801
3802 <td style="vertical-align: top;">
3803     
3804     
3805     
3806     
3807     
3808     
3809      <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p>
3810
3811
3812
3813
3814
3815
3816
3817      </td>
3818
3819
3820
3821
3822
3823
3824 <td style="vertical-align: top;">R</td>
3825
3826
3827
3828
3829
3830
3831
3832      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
3833
3834
3835
3836
3837
3838
3839
3840      <td style="vertical-align: top;"> 
3841     
3842     
3843     
3844     
3845     
3846     
3847      <p>Temporal
3848interval of vertical profile output of the 1D-model
3849(in s).&nbsp; </p>
3850
3851
3852
3853
3854
3855
3856 
3857     
3858     
3859     
3860     
3861     
3862     
3863      <p>Data are written in ASCII
3864format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>.
3865This parameter is only in effect if the 1d-model has been switched on
3866for the
3867initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
3868= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
3869
3870
3871
3872
3873
3874
3875
3876      </td>
3877
3878
3879
3880
3881
3882
3883 </tr>
3884
3885
3886
3887
3888
3889
3890 <tr>
3891
3892
3893
3894
3895
3896
3897 <td style="vertical-align: top;"> 
3898     
3899     
3900     
3901     
3902     
3903     
3904      <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p>
3905
3906
3907
3908
3909
3910
3911
3912      </td>
3913
3914
3915
3916
3917
3918
3919 <td style="vertical-align: top;">R</td>
3920
3921
3922
3923
3924
3925
3926
3927      <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td>
3928
3929
3930
3931
3932
3933
3934 <td style="vertical-align: top;"> 
3935     
3936     
3937     
3938     
3939     
3940     
3941      <p>Temporal interval of
3942runtime control output of the 1d-model
3943(in s).&nbsp; </p>
3944
3945
3946
3947
3948
3949
3950 
3951     
3952     
3953     
3954     
3955     
3956     
3957      <p>Data are written in ASCII
3958format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
3959This parameter is only in effect if the 1d-model is switched on for the
3960initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
3961= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
3962
3963
3964
3965
3966
3967
3968
3969      </td>
3970
3971
3972
3973
3974
3975
3976 </tr>
3977
3978
3979
3980
3981
3982
3983 <tr>
3984
3985
3986
3987
3988
3989
3990 <td style="vertical-align: top;"> 
3991     
3992     
3993     
3994     
3995     
3996     
3997      <p><a name="dx"></a><b>dx</b></p>
3998
3999
4000
4001
4002
4003
4004
4005      </td>
4006
4007
4008
4009
4010
4011
4012 <td style="vertical-align: top;">R</td>
4013
4014
4015
4016
4017
4018
4019
4020      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4021
4022
4023
4024
4025
4026
4027 <td style="vertical-align: top;"> 
4028     
4029     
4030     
4031     
4032     
4033     
4034      <p>Horizontal grid
4035spacing along the x-direction (in m).&nbsp; </p>
4036
4037
4038
4039
4040
4041
4042 
4043     
4044     
4045     
4046     
4047     
4048     
4049      <p>Along
4050x-direction only a constant grid spacing is allowed.</p>
4051
4052
4053
4054
4055
4056
4057     
4058     
4059     
4060     
4061     
4062     
4063      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4064and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4065
4066
4067
4068
4069
4070
4071 </td>
4072
4073
4074
4075
4076
4077
4078
4079    </tr>
4080
4081
4082
4083
4084
4085
4086 <tr>
4087
4088
4089
4090
4091
4092
4093 <td style="vertical-align: top;">
4094     
4095     
4096     
4097     
4098     
4099     
4100      <p><a name="dy"></a><b>dy</b></p>
4101
4102
4103
4104
4105
4106
4107
4108      </td>
4109
4110
4111
4112
4113
4114
4115 <td style="vertical-align: top;">R</td>
4116
4117
4118
4119
4120
4121
4122
4123      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4124
4125
4126
4127
4128
4129
4130 <td style="vertical-align: top;"> 
4131     
4132     
4133     
4134     
4135     
4136     
4137      <p>Horizontal grid
4138spacing along the y-direction (in m).&nbsp; </p>
4139
4140
4141
4142
4143
4144
4145 
4146     
4147     
4148     
4149     
4150     
4151     
4152      <p>Along y-direction only a constant grid spacing is allowed.</p>
4153
4154
4155
4156
4157
4158
4159     
4160     
4161     
4162     
4163     
4164     
4165      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4166and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4167
4168
4169
4170
4171
4172
4173 </td>
4174
4175
4176
4177
4178
4179
4180
4181    </tr>
4182
4183
4184
4185
4186
4187
4188 <tr>
4189
4190
4191
4192
4193
4194
4195 <td style="vertical-align: top;">
4196     
4197     
4198     
4199     
4200     
4201     
4202      <p><a name="dz"></a><b>dz</b></p>
4203
4204
4205
4206
4207
4208
4209
4210      </td>
4211
4212
4213
4214
4215
4216
4217 <td style="vertical-align: top;">R</td>
4218
4219
4220
4221
4222
4223
4224
4225      <td style="vertical-align: top;"><br>
4226
4227
4228
4229
4230
4231
4232 </td>
4233
4234
4235
4236
4237
4238
4239 <td style="vertical-align: top;"> 
4240     
4241     
4242     
4243     
4244     
4245     
4246      <p>Vertical grid
4247spacing (in m).&nbsp; </p>
4248
4249
4250
4251
4252
4253
4254 
4255     
4256     
4257     
4258     
4259     
4260     
4261      <p>This parameter must be
4262assigned by the user, because no
4263default value is given.<br>
4264
4265
4266
4267
4268
4269
4270 </p>
4271
4272
4273
4274
4275
4276
4277 
4278     
4279     
4280     
4281     
4282     
4283     
4284      <p>By default, the
4285model uses constant grid spacing along z-direction, but it can be
4286stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a>
4287and <a href="#dz_stretch_factor">dz_stretch_factor</a>.
4288In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br>
4289
4290
4291
4292
4293
4294
4295 </p>
4296
4297
4298
4299
4300
4301
4302 
4303     
4304     
4305     
4306     
4307     
4308     
4309      <p>Assuming
4310a constant <span style="font-weight: bold;">dz</span>,
4311the scalar levels (zu) are calculated directly by:&nbsp; </p>
4312
4313
4314
4315
4316
4317
4318
4319     
4320     
4321     
4322     
4323     
4324     
4325      <ul>
4326
4327
4328
4329
4330
4331
4332 
4333       
4334       
4335       
4336       
4337       
4338       
4339        <p>zu(0) = - dz * 0.5&nbsp; <br>
4340
4341
4342
4343
4344
4345
4346
4347zu(1) = dz * 0.5</p>
4348
4349
4350
4351
4352
4353
4354 
4355     
4356     
4357     
4358     
4359     
4360     
4361      </ul>
4362
4363
4364
4365
4366
4367
4368 
4369     
4370     
4371     
4372     
4373     
4374     
4375      <p>The w-levels lie
4376half between them:&nbsp; </p>
4377
4378
4379
4380
4381
4382
4383 
4384     
4385     
4386     
4387     
4388     
4389     
4390      <ul>
4391
4392
4393
4394
4395
4396
4397 
4398       
4399       
4400       
4401       
4402       
4403       
4404        <p>zw(k) =
4405( zu(k) + zu(k+1) ) * 0.5</p>
4406
4407
4408
4409
4410
4411
4412 
4413     
4414     
4415     
4416     
4417     
4418     
4419      </ul>
4420
4421
4422
4423
4424
4425
4426 </td>
4427
4428
4429
4430
4431
4432
4433 </tr>
4434
4435
4436
4437
4438
4439
4440
4441    <tr>
4442
4443
4444
4445
4446
4447
4448      <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td>
4449
4450
4451
4452
4453
4454
4455      <td style="vertical-align: top;">R</td>
4456
4457
4458
4459
4460
4461
4462      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4463
4464
4465
4466
4467
4468
4469      <td style="vertical-align: top;">Allowed maximum vertical grid
4470spacing (in m).<br>
4471
4472
4473
4474
4475
4476
4477      <br>
4478
4479
4480
4481
4482
4483
4484If the vertical grid is stretched
4485(see <a href="#dz_stretch_factor">dz_stretch_factor</a>
4486and <a href="#dz_stretch_level">dz_stretch_level</a>),
4487      <span style="font-weight: bold;">dz_max</span> can
4488be used to limit the vertical grid spacing.</td>
4489
4490
4491
4492
4493
4494
4495    </tr>
4496
4497
4498
4499
4500
4501
4502    <tr>
4503
4504
4505
4506
4507
4508
4509
4510      <td style="vertical-align: top;"> 
4511     
4512     
4513     
4514     
4515     
4516     
4517      <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p>
4518
4519
4520
4521
4522
4523
4524
4525      </td>
4526
4527
4528
4529
4530
4531
4532 <td style="vertical-align: top;">R</td>
4533
4534
4535
4536
4537
4538
4539
4540      <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td>
4541
4542
4543
4544
4545
4546
4547 <td style="vertical-align: top;"> 
4548     
4549     
4550     
4551     
4552     
4553     
4554      <p>Stretch factor for a
4555vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>).&nbsp;
4556      </p>
4557
4558
4559
4560
4561
4562
4563 
4564     
4565     
4566     
4567     
4568     
4569     
4570      <p>The stretch factor should not exceed a value of
4571approx. 1.10 -
45721.12, otherwise the discretization errors due to the stretched grid not
4573negligible any more. (refer Kalnay de Rivas)</p>
4574
4575
4576
4577
4578
4579
4580 </td>
4581
4582
4583
4584
4585
4586
4587 </tr>
4588
4589
4590
4591
4592
4593
4594
4595    <tr>
4596
4597
4598
4599
4600
4601
4602 <td style="vertical-align: top;"> 
4603     
4604     
4605     
4606     
4607     
4608     
4609      <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p>
4610
4611
4612
4613
4614
4615
4616
4617      </td>
4618
4619
4620
4621
4622
4623
4624 <td style="vertical-align: top;">R</td>
4625
4626
4627
4628
4629
4630
4631
4632      <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br>
4633
4634
4635
4636
4637
4638
4639 </td>
4640
4641
4642
4643
4644
4645
4646
4647      <td style="vertical-align: top;"> 
4648     
4649     
4650     
4651     
4652     
4653     
4654      <p>Height level
4655above/below which the grid is to be stretched
4656vertically (in m).&nbsp; </p>
4657
4658
4659
4660
4661
4662
4663 
4664     
4665     
4666     
4667     
4668     
4669     
4670      <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m)&nbsp;<span style="font-weight: bold;">above </span>which the grid is to be stretched
4671vertically. The vertical grid
4672spacings <a href="#dz">dz</a>
4673above this level are calculated as&nbsp; </p>
4674
4675
4676
4677
4678
4679
4680 
4681     
4682     
4683     
4684     
4685     
4686     
4687      <ul>
4688
4689
4690
4691
4692
4693
4694 
4695       
4696       
4697       
4698       
4699       
4700       
4701        <p><b>dz</b>(k+1)
4702= <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p>
4703
4704
4705
4706
4707
4708
4709
4710     
4711     
4712     
4713     
4714     
4715     
4716      </ul>
4717
4718
4719
4720
4721
4722
4723 
4724     
4725     
4726     
4727     
4728     
4729     
4730      <p>and used as spacings for the scalar levels (zu).
4731The
4732w-levels are then defined as:&nbsp; </p>
4733
4734
4735
4736
4737
4738
4739 
4740     
4741     
4742     
4743     
4744     
4745     
4746      <ul>
4747
4748
4749
4750
4751
4752
4753 
4754       
4755       
4756       
4757       
4758       
4759       
4760        <p>zw(k)
4761= ( zu(k) + zu(k+1) ) * 0.5.
4762
4763 
4764     
4765      </p>
4766
4767
4768
4769
4770     
4771     
4772     
4773     
4774      </ul>
4775
4776
4777
4778
4779     
4780     
4781     
4782     
4783      <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched
4784vertically. The vertical grid
4785spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as
4786
4787 
4788     
4789      </p>
4790
4791
4792
4793
4794     
4795     
4796     
4797     
4798      <ul>
4799
4800
4801
4802
4803       
4804       
4805       
4806       
4807        <p><b>dz</b>(k-1)
4808= <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p>
4809
4810
4811
4812
4813     
4814     
4815     
4816     
4817      </ul>
4818
4819
4820
4821
4822
4823
4824 </td>
4825
4826
4827
4828
4829
4830
4831 </tr>
4832
4833
4834
4835
4836
4837
4838
4839    <tr>
4840
4841
4842
4843
4844
4845      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td>
4846
4847
4848
4849
4850
4851      <td style="vertical-align: top;">R</td>
4852
4853
4854
4855
4856
4857      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
4858
4859
4860
4861
4862
4863      <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
4864
4865
4866
4867
4868
4869
4870
4871      <br>
4872
4873
4874
4875
4876
4877
4878This
4879option prescribes an initial&nbsp;subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if&nbsp;<a href="#km_constant">km_constant</a> is not set.</td>
4880
4881
4882
4883
4884
4885    </tr>
4886
4887
4888
4889
4890
4891    <tr>
4892
4893
4894
4895
4896
4897
4898 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td>
4899
4900
4901
4902
4903
4904
4905
4906      <td style="vertical-align: top;">R</td>
4907
4908
4909
4910
4911
4912
4913 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
4914
4915
4916
4917
4918
4919
4920 <td>Minimum
4921subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
4922
4923
4924
4925
4926
4927
4928
4929      <br>
4930
4931
4932
4933
4934
4935
4936This
4937option&nbsp;adds artificial viscosity to the flow by ensuring that
4938the
4939subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td>
4940
4941
4942
4943
4944
4945
4946 </tr>
4947
4948
4949
4950
4951
4952
4953
4954    <tr>
4955
4956
4957
4958
4959
4960
4961 <td style="vertical-align: top;"> 
4962     
4963     
4964     
4965     
4966     
4967     
4968      <p><a name="end_time_1d"></a><b>end_time_1d</b></p>
4969
4970
4971
4972
4973
4974
4975
4976      </td>
4977
4978
4979
4980
4981
4982
4983 <td style="vertical-align: top;">R</td>
4984
4985
4986
4987
4988
4989
4990
4991      <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br>
4992
4993
4994
4995
4996
4997
4998 </td>
4999
5000
5001
5002
5003
5004
5005
5006      <td style="vertical-align: top;"> 
5007     
5008     
5009     
5010     
5011     
5012     
5013      <p>Time to be
5014simulated for the 1d-model (in s).&nbsp; </p>
5015
5016
5017
5018
5019
5020
5021 
5022     
5023     
5024     
5025     
5026     
5027     
5028      <p>The
5029default value corresponds to a simulated time of 10 days.
5030Usually, after such a period the inertia oscillations have completely
5031decayed and the solution of the 1d-model can be regarded as stationary
5032(see <a href="#damp_level_1d">damp_level_1d</a>).
5033This parameter is only in effect if the 1d-model is switched on for the
5034initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
5035= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
5036
5037
5038
5039
5040
5041
5042
5043      </td>
5044
5045
5046
5047
5048
5049
5050 </tr>
5051
5052
5053
5054
5055
5056
5057 <tr>
5058
5059
5060
5061
5062
5063
5064 <td style="vertical-align: top;"> 
5065     
5066     
5067     
5068     
5069     
5070     
5071      <p><a name="fft_method"></a><b>fft_method</b></p>
5072
5073
5074
5075
5076
5077
5078
5079      </td>
5080
5081
5082
5083
5084
5085
5086 <td style="vertical-align: top;">C * 20</td>
5087
5088
5089
5090
5091
5092
5093
5094      <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;">
5095
5096
5097
5098
5099
5100
5101 <span style="font-style: italic;">specific'</span></td>
5102
5103
5104
5105
5106
5107
5108
5109      <td style="vertical-align: top;"> 
5110     
5111     
5112     
5113     
5114     
5115     
5116      <p>FFT-method to
5117be used.<br>
5118
5119
5120
5121
5122
5123
5124 </p>
5125
5126
5127
5128
5129
5130
5131 
5132     
5133     
5134     
5135     
5136     
5137     
5138      <p><br>
5139
5140
5141
5142
5143
5144
5145
5146The fast fourier transformation (FFT) is used for solving the
5147perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>)
5148and for calculating power spectra (see optional software packages,
5149section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p>
5150
5151
5152
5153
5154
5155
5156
5157     
5158     
5159     
5160     
5161     
5162     
5163      <p><br>
5164
5165
5166
5167
5168
5169
5170
5171By default, system-specific, optimized routines from external
5172vendor libraries are used. However, these are available only on certain
5173computers and there are more or less severe restrictions concerning the
5174number of gridpoints to be used with them.<br>
5175
5176
5177
5178
5179
5180
5181 </p>
5182
5183
5184
5185
5186
5187
5188 
5189     
5190     
5191     
5192     
5193     
5194     
5195      <p>There
5196are two other PALM internal methods available on every
5197machine (their respective source code is part of the PALM source code):</p>
5198
5199
5200
5201
5202
5203
5204
5205     
5206     
5207     
5208     
5209     
5210     
5211      <p>1.: The <span style="font-weight: bold;">Temperton</span>-method
5212from Clive Temperton (ECWMF) which is computationally very fast and
5213switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>.
5214The number of horizontal gridpoints (nx+1, ny+1) to be used with this
5215method must be composed of prime factors 2, 3 and 5.<br>
5216
5217
5218
5219
5220
5221
5222 </p>
5223
5224
5225
5226
5227
5228
5229
52302.: The <span style="font-weight: bold;">Singleton</span>-method
5231which is very slow but has no restrictions concerning the number of
5232gridpoints to be used with, switched on with <b>fft_method</b>
5233= <span style="font-style: italic;">'singleton-algorithm'</span>.
5234      </td>
5235
5236
5237
5238
5239
5240
5241 </tr>
5242
5243
5244
5245
5246
5247
5248 <tr>
5249
5250
5251
5252
5253
5254
5255 <td style="vertical-align: top;"> 
5256     
5257     
5258     
5259     
5260     
5261     
5262      <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p>
5263
5264
5265
5266
5267
5268
5269
5270      </td>
5271
5272
5273
5274
5275
5276
5277 <td style="vertical-align: top;">L</td>
5278
5279
5280
5281
5282
5283
5284
5285      <td style="vertical-align: top;"><i>.F.</i></td>
5286
5287
5288
5289
5290
5291
5292
5293      <td style="vertical-align: top;">Application of a
5294Galilei-transformation to the
5295coordinate
5296system of the model.<br>
5297
5298
5299
5300
5301
5302
5303     
5304     
5305     
5306     
5307     
5308     
5309      <p>With <b>galilei_transformation</b>
5310= <i>.T.,</i> a so-called
5311Galilei-transformation is switched on which ensures that the coordinate
5312system of the model is moved along with the geostrophical wind.
5313Alternatively, the model domain can be moved along with the averaged
5314horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>,
5315this can and will naturally change in time). With this method,
5316numerical inaccuracies of the Piascek - Williams - scheme (concerns in
5317particular the momentum advection) are minimized. Beyond that, in the
5318majority of cases the lower relative velocities in the moved system
5319permit a larger time step (<a href="#dt">dt</a>).
5320Switching the transformation on is only worthwhile if the geostrophical
5321wind (ug, vg)
5322and the averaged horizontal wind clearly deviate from the value 0. In
5323each case, the distance the coordinate system has been moved is written
5324to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
5325      </p>
5326
5327
5328
5329
5330
5331
5332 
5333     
5334     
5335     
5336     
5337     
5338     
5339      <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
5340and <a href="#bc_ns">bc_ns</a>), the specification
5341of a gestrophic
5342wind that is not constant with height
5343as well as e.g. stationary inhomogeneities at the bottom boundary do
5344not allow the use of this transformation.</p>
5345
5346
5347
5348
5349
5350
5351 </td>
5352
5353
5354
5355
5356
5357
5358 </tr>
5359
5360
5361
5362
5363
5364
5365
5366    <tr>
5367
5368
5369
5370
5371
5372
5373 <td style="vertical-align: top;"> 
5374     
5375     
5376     
5377     
5378     
5379     
5380      <p><a name="grid_matching"></a><b>grid_matching</b></p>
5381
5382
5383
5384
5385
5386
5387
5388      </td>
5389
5390
5391
5392
5393
5394
5395 <td style="vertical-align: top;">C * 6</td>
5396
5397
5398
5399
5400
5401
5402
5403      <td style="vertical-align: top;"><span style="font-style: italic;">'match'</span></td>
5404
5405
5406
5407
5408
5409
5410 <td style="vertical-align: top;">Variable to adjust the
5411subdomain
5412sizes in parallel runs.<br>
5413
5414
5415
5416
5417
5418
5419 <br>
5420
5421
5422
5423
5424
5425
5426
5427For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>,
5428the subdomains are forced to have an identical
5429size on all processors. In this case the processor numbers in the
5430respective directions of the virtual processor net must fulfill certain
5431divisor conditions concerning the grid point numbers in the three
5432directions (see <a href="#nx">nx</a>, <a href="#ny">ny</a>
5433and <a href="#nz">nz</a>).
5434Advantage of this method is that all PEs bear the same computational
5435load.<br>
5436
5437
5438
5439
5440
5441
5442 <br>
5443
5444
5445
5446
5447
5448
5449
5450There is no such restriction by default, because then smaller
5451subdomains are allowed on those processors which
5452form the right and/or north boundary of the virtual processor grid. On
5453all other processors the subdomains are of same size. Whether smaller
5454subdomains are actually used, depends on the number of processors and
5455the grid point numbers used. Information about the respective settings
5456are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br>
5457
5458
5459
5460
5461
5462
5463
5464      <br>
5465
5466
5467
5468
5469
5470
5471
5472When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
5473only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>
5474is allowed.<br>
5475
5476
5477
5478
5479
5480
5481 <br>
5482
5483
5484
5485
5486
5487
5488 <b>Note:</b><br>
5489
5490
5491
5492
5493
5494
5495
5496In some cases for small processor numbers there may be a very bad load
5497balancing among the
5498processors which may reduce the performance of the code.</td>
5499
5500
5501
5502
5503
5504
5505 </tr>
5506
5507
5508
5509
5510
5511
5512
5513    <tr>
5514
5515
5516
5517
5518
5519
5520 <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br>
5521
5522
5523
5524
5525
5526
5527
5528begin</b></td>
5529
5530
5531
5532
5533
5534
5535 <td style="vertical-align: top;">I</td>
5536
5537
5538
5539
5540
5541
5542
5543      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;">
5544
5545
5546
5547
5548
5549
5550 <span style="font-style: italic;">nx/2 or ny/2)</span></td>
5551
5552
5553
5554
5555
5556
5557
5558      <td style="vertical-align: top;">Lower
5559limit of the horizontal range for which random perturbations are to be
5560imposed on the horizontal velocity field (gridpoints).<br>
5561
5562
5563
5564
5565
5566
5567 <br>
5568
5569
5570
5571
5572
5573
5574
5575If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5576or <a href="#bc_ns">bc_ns</a>),
5577this parameter gives the gridpoint number (counted horizontally from
5578the inflow)&nbsp; from which on perturbations are imposed on the
5579horizontal velocity field. Perturbations must be switched on with
5580parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5581
5582
5583
5584
5585
5586
5587
5588    </tr>
5589
5590
5591
5592
5593
5594
5595 <tr>
5596
5597
5598
5599
5600
5601
5602 <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br>
5603
5604
5605
5606
5607
5608
5609
5610end</b></td>
5611
5612
5613
5614
5615
5616
5617 <td style="vertical-align: top;">I</td>
5618
5619
5620
5621
5622
5623
5624
5625      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;">
5626
5627
5628
5629
5630
5631
5632 <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;">
5633
5634
5635
5636
5637
5638
5639 <span style="font-style: italic;">3/4*ny)</span></td>
5640
5641
5642
5643
5644
5645
5646 <td style="vertical-align: top;">Upper
5647limit of the horizontal range for which random perturbations are
5648to be imposed on the horizontal velocity field (gridpoints).<br>
5649
5650
5651
5652
5653
5654
5655 <br>
5656
5657
5658
5659
5660
5661
5662
5663If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5664or <a href="#bc_ns">bc_ns</a>),
5665this parameter gives the gridpoint number (counted horizontally from
5666the inflow)&nbsp; unto which perturbations are imposed on the
5667horizontal
5668velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5669
5670
5671
5672
5673
5674
5675
5676    </tr>
5677
5678
5679
5680
5681
5682
5683 <tr>
5684
5685
5686
5687
5688
5689
5690 <td style="vertical-align: top;">
5691     
5692     
5693     
5694     
5695     
5696     
5697      <p><a name="initializing_actions"></a><b>initializing_actions</b></p>
5698
5699
5700
5701
5702
5703
5704
5705      </td>
5706
5707
5708
5709
5710
5711
5712 <td style="vertical-align: top;">C * 100</td>
5713
5714
5715
5716
5717
5718
5719
5720      <td style="vertical-align: top;"><br>
5721
5722
5723
5724
5725
5726
5727 </td>
5728
5729
5730
5731
5732
5733
5734 <td style="vertical-align: top;"> 
5735     
5736     
5737     
5738     
5739     
5740     
5741      <p style="font-style: normal;">Initialization actions
5742to be carried out.&nbsp; </p>
5743
5744
5745
5746
5747
5748
5749 
5750     
5751     
5752     
5753     
5754     
5755     
5756      <p style="font-style: normal;">This parameter does not have a
5757default value and therefore must be assigned with each model run. For
5758restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span>
5759must be set. For the initial run of a job chain the following values
5760are allowed:&nbsp; </p>
5761
5762
5763
5764
5765
5766
5767 
5768     
5769     
5770     
5771     
5772     
5773     
5774      <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span>
5775      </p>
5776
5777
5778
5779
5780
5781
5782 
5783     
5784     
5785     
5786     
5787     
5788     
5789      <ul>
5790
5791
5792
5793
5794
5795
5796 
5797       
5798       
5799       
5800       
5801       
5802       
5803        <p>A horizontal wind profile consisting
5804of linear sections (see <a href="#ug_surface">ug_surface</a>,
5805        <a href="#ug_vertical_gradient">ug_vertical_gradient</a>,
5806        <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
5807and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>,
5808        <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
5809respectively) as well as a vertical temperature (humidity) profile
5810consisting of
5811linear sections (see <a href="#pt_surface">pt_surface</a>,
5812        <a href="#pt_vertical_gradient">pt_vertical_gradient</a>,
5813        <a href="#q_surface">q_surface</a>
5814and <a href="#q_vertical_gradient">q_vertical_gradient</a>)
5815are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub>
5816and K<sub>h</sub> are set to very small values because
5817otherwise no TKE
5818would be generated.</p>
5819
5820
5821
5822
5823
5824
5825 
5826     
5827     
5828     
5829     
5830     
5831     
5832      </ul>
5833
5834
5835
5836
5837
5838
5839 
5840     
5841     
5842     
5843     
5844     
5845     
5846      <p style="font-style: italic;">'set_1d-model_profiles' </p>
5847
5848
5849
5850
5851
5852
5853
5854     
5855     
5856     
5857     
5858     
5859     
5860      <ul>
5861
5862
5863
5864
5865
5866
5867 
5868       
5869       
5870       
5871       
5872       
5873       
5874        <p>The arrays of the 3d-model are initialized with
5875the
5876(stationary) solution of the 1d-model. These are the variables e, kh,
5877km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The
5878temperature (humidity) profile consisting of linear sections is set as
5879for 'set_constant_profiles' and assumed as constant in time within the
58801d-model. For steering of the 1d-model a set of parameters with suffix
5881"_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>,
5882        <a href="#damp_level_1d">damp_level_1d</a>)
5883is available.</p>
5884
5885
5886
5887
5888
5889
5890 
5891     
5892     
5893     
5894     
5895     
5896     
5897      </ul>
5898
5899
5900
5901
5902
5903
5904 
5905     
5906     
5907     
5908     
5909     
5910     
5911      <p><span style="font-style: italic;">'by_user'</span></p>
5912
5913
5914
5915
5916
5917
5918     
5919     
5920     
5921     
5922     
5923     
5924      <p style="margin-left: 40px;">The initialization of the arrays
5925of the 3d-model is under complete control of the user and has to be
5926done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a>
5927of the user-interface.<span style="font-style: italic;"></span></p>
5928
5929
5930
5931
5932
5933
5934     
5935     
5936     
5937     
5938     
5939     
5940      <p><span style="font-style: italic;">'initialize_vortex'</span>
5941      </p>
5942
5943
5944
5945
5946
5947
5948 
5949     
5950     
5951     
5952     
5953     
5954     
5955      <div style="margin-left: 40px;">The initial
5956velocity field of the
59573d-model corresponds to a
5958Rankine-vortex with vertical axis. This setting may be used to test
5959advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>)
5960are necessary. In order not to distort the vortex, an initial
5961horizontal wind profile constant
5962with height is necessary (to be set by <b>initializing_actions</b>
5963= <span style="font-style: italic;">'set_constant_profiles'</span>)
5964and some other conditions have to be met (neutral stratification,
5965diffusion must be
5966switched off, see <a href="#km_constant">km_constant</a>).
5967The center of the vortex is located at jc = (nx+1)/2. It
5968extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a>
5969and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a>
5970(see init_rankine.f90). </div>
5971
5972
5973
5974
5975
5976
5977 
5978     
5979     
5980     
5981     
5982     
5983     
5984      <p><span style="font-style: italic;">'initialize_ptanom'</span>
5985      </p>
5986
5987
5988
5989
5990
5991
5992 
5993     
5994     
5995     
5996     
5997     
5998     
5999      <ul>
6000
6001
6002
6003
6004
6005
6006 
6007       
6008       
6009       
6010       
6011       
6012       
6013        <p>A 2d-Gauss-like shape disturbance
6014(x,y) is added to the
6015initial temperature field with radius 10.0 * <a href="#dx">dx</a>
6016and center at jc = (nx+1)/2. This may be used for tests of scalar
6017advection schemes
6018(see <a href="#scalar_advec">scalar_advec</a>).
6019Such tests require a horizontal wind profile constant with hight and
6020diffusion
6021switched off (see <span style="font-style: italic;">'initialize_vortex'</span>).
6022Additionally, the buoyancy term
6023must be switched of in the equation of motion&nbsp; for w (this
6024requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the
6025source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p>
6026
6027
6028
6029
6030
6031
6032
6033     
6034     
6035     
6036     
6037     
6038     
6039      </ul>
6040
6041
6042
6043
6044
6045
6046 
6047     
6048     
6049     
6050     
6051     
6052     
6053      <p style="font-style: normal;">Values may be
6054combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles
6055initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>,
6056      <span style="font-style: italic;">'set_1d-model_profiles'</span>
6057, and <span style="font-style: italic;">'by_user'</span>
6058must not be given at the same time.</p>
6059
6060
6061
6062
6063
6064
6065 
6066     
6067     
6068     
6069     
6070     
6071     
6072      <p style="font-style: italic;"> </p>
6073
6074
6075
6076
6077
6078
6079 </td>
6080
6081
6082
6083
6084
6085
6086 </tr>
6087
6088
6089
6090
6091
6092
6093
6094    <tr>
6095
6096
6097
6098
6099
6100
6101 <td style="vertical-align: top;"> 
6102     
6103     
6104     
6105     
6106     
6107     
6108      <p><a name="km_constant"></a><b>km_constant</b></p>
6109
6110
6111
6112
6113
6114
6115
6116      </td>
6117
6118
6119
6120
6121
6122
6123 <td style="vertical-align: top;">R</td>
6124
6125
6126
6127
6128
6129
6130
6131      <td style="vertical-align: top;"><i>variable<br>
6132
6133
6134
6135
6136
6137
6138
6139(computed from TKE)</i></td>
6140
6141
6142
6143
6144
6145
6146 <td style="vertical-align: top;"> 
6147     
6148     
6149     
6150     
6151     
6152     
6153      <p>Constant eddy
6154diffusivities are used (laminar
6155simulations).&nbsp; </p>
6156
6157
6158
6159
6160
6161
6162 
6163     
6164     
6165     
6166     
6167     
6168     
6169      <p>If this parameter is
6170specified, both in the 1d and in the
61713d-model constant values for the eddy diffusivities are used in
6172space and time with K<sub>m</sub> = <b>km_constant</b>
6173and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>.
6174The prognostic equation for the subgrid-scale TKE is switched off.
6175Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>)
6176switched off.</p>
6177
6178
6179
6180
6181
6182
6183 </td>
6184
6185
6186
6187
6188
6189
6190 </tr>
6191
6192
6193
6194
6195
6196
6197 <tr>
6198
6199
6200
6201
6202
6203
6204 <td style="vertical-align: top;"> 
6205     
6206     
6207     
6208     
6209     
6210     
6211      <p><a name="km_damp_max"></a><b>km_damp_max</b></p>
6212
6213
6214
6215
6216
6217
6218
6219      </td>
6220
6221
6222
6223
6224
6225
6226 <td style="vertical-align: top;">R</td>
6227
6228
6229
6230
6231
6232
6233
6234      <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx
6235or dy)</span></td>
6236
6237
6238
6239
6240
6241
6242 <td style="vertical-align: top;">Maximum
6243diffusivity used for filtering the velocity field in the vicinity of
6244the outflow (in m<sup>2</sup>/s).<br>
6245
6246
6247
6248
6249
6250
6251 <br>
6252
6253
6254
6255
6256
6257
6258
6259When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a>
6260or <a href="#bc_ns">bc_ns</a>),
6261a smoothing has to be applied to the
6262velocity field in the vicinity of the outflow in order to suppress any
6263reflections of outgoing disturbances. Smoothing is done by increasing
6264the eddy diffusivity along the horizontal direction which is
6265perpendicular to the outflow boundary. Only velocity components
6266parallel to the outflow boundary are filtered (e.g. v and w, if the
6267outflow is along x). Damping is applied from the bottom to the top of
6268the domain.<br>
6269
6270
6271
6272
6273
6274
6275 <br>
6276
6277
6278
6279
6280
6281
6282
6283The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a>
6284which defines the number of gridpoints (counted from the outflow
6285boundary) from where on the smoothing is applied. Starting from that
6286point, the eddy diffusivity is linearly increased (from zero to its
6287maximum value given by <span style="font-weight: bold;">km_damp_max</span>)
6288until half of the damping range width, from where it remains constant
6289up to the outflow boundary. If at a certain grid point the eddy
6290diffusivity calculated from the flow field is larger than as described
6291above, it is used instead.<br>
6292
6293
6294
6295
6296
6297
6298 <br>
6299
6300
6301
6302
6303
6304
6305
6306The default value of <span style="font-weight: bold;">km_damp_max</span>
6307has been empirically proven to be sufficient.</td>
6308
6309
6310
6311
6312
6313
6314 </tr>
6315
6316
6317
6318
6319
6320
6321 <tr>
6322
6323      <td style="vertical-align: top;"><a name="lad_surface"></a><span style="font-weight: bold;">lad_surface</span></td>
6324
6325      <td style="vertical-align: top;">R</td>
6326
6327      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
6328
6329      <td style="vertical-align: top;">Surface value of the leaf area density (in m<sup>2</sup>/m<sup>3</sup>).<br>
6330
6331      <br>
6332
6333This
6334parameter assigns the value of the leaf area density <span style="font-weight: bold;">lad</span> at the surface (k=0)<b>.</b> Starting from this value,
6335the leaf area density profile is constructed with <a href="chapter_4.1.html#lad_vertical_gradient">lad_vertical_gradient</a>
6336and <a href="chapter_4.1.html#lad_vertical_gradient_level">lad_vertical_gradient_level
6337      </a>.</td>
6338
6339    </tr>
6340
6341    <tr>
6342
6343      <td style="vertical-align: top;"><a name="lad_vertical_gradient"></a><span style="font-weight: bold;">lad_vertical_gradient</span></td>
6344
6345      <td style="vertical-align: top;">R (10)</td>
6346
6347      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6348
6349      <td style="vertical-align: top;">Gradient(s) of the leaf area density (in&nbsp;m<sup>2</sup>/m<sup>4</sup>).<br>
6350
6351      <br>
6352
6353     
6354      <p>This leaf area density gradient
6355holds starting from the height&nbsp;
6356level defined by <a href="chapter_4.1.html#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6357(precisely: for all uv levels k where zu(k) &gt; lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + dzu(k) * <b>lad_vertical_gradient</b>)
6358up to the level defined by <a href="#pch_index">pch_index</a>. Above that level lad(k) will automatically set to 0.0. A total of 10 different gradients for 11 height intervals (10 intervals
6359if <a href="chapter_4.1.html#lad_vertical_gradient_level">lad_vertical_gradient_level</a>(1)
6360= <i>0.0</i>) can be assigned. The leaf area density at the surface is
6361assigned via <a href="chapter_4.1.html#lad_surface">lad_surface</a>.&nbsp;
6362      </p>
6363
6364      </td>
6365
6366    </tr>
6367
6368    <tr>
6369
6370      <td style="vertical-align: top;"><a name="lad_vertical_gradient_level"></a><span style="font-weight: bold;">lad_vertical_gradient_level</span></td>
6371
6372      <td style="vertical-align: top;">R (10)</td>
6373
6374      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6375
6376      <td style="vertical-align: top;">Height level from which on the&nbsp;gradient
6377of the leaf area density defined by <a href="chapter_4.1.html#lad_vertical_gradient">lad_vertical_gradient_level</a>
6378is effective (in m).<br>
6379
6380      <br>
6381
6382The height levels have to be assigned in ascending order. The
6383default values result in a leaf area density that is constant with height uup to the top of the plant canopy layer defined by <a href="#pch_index">pch_index</a>. For the piecewise construction of temperature profiles see <a href="chapter_4.1.html#lad_vertical_gradient">lad_vertical_gradient</a>.</td>
6384
6385    </tr>
6386
6387    <tr>
6388
6389      <td style="vertical-align: top;"><a name="leaf_surface_concentration"></a><b>leaf_surface_concentration</b></td>
6390
6391      <td style="vertical-align: top;">R</td>
6392
6393      <td style="vertical-align: top;"><i>0.0</i></td>
6394
6395      <td style="vertical-align: top;">Concentration of a passive scalar at the surface of a leaf (in K m/s).<br>
6396
6397
6398      <br>
6399
6400
6401This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
6402The value of the concentration of a passive scalar at the surface of a
6403leaf is required for the parametrisation of the sources and sinks of
6404scalar concentration due to the canopy.</td>
6405
6406    </tr>
6407
6408    <tr>
6409
6410
6411
6412
6413
6414
6415
6416      <td style="vertical-align: top;"> 
6417     
6418     
6419     
6420     
6421     
6422     
6423      <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p>
6424
6425
6426
6427
6428
6429
6430
6431      </td>
6432
6433
6434
6435
6436
6437
6438 <td style="vertical-align: top;">R</td>
6439
6440
6441
6442
6443
6444
6445
6446      <td style="vertical-align: top;"><i>0.0</i></td>
6447
6448
6449
6450
6451
6452
6453
6454      <td style="vertical-align: top;"> 
6455     
6456     
6457     
6458     
6459     
6460     
6461      <p>Filter factor
6462for the so-called Long-filter.<br>
6463
6464
6465
6466
6467
6468
6469 </p>
6470
6471
6472
6473
6474
6475
6476 
6477     
6478     
6479     
6480     
6481     
6482     
6483      <p><br>
6484
6485
6486
6487
6488
6489
6490
6491This filter very efficiently
6492eliminates 2-delta-waves sometimes cauesed by the upstream-spline
6493scheme (see Mahrer and
6494Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three
6495directions in space. A value of <b>long_filter_factor</b>
6496= <i>0.01</i>
6497sufficiently removes the small-scale waves without affecting the
6498longer waves.<br>
6499
6500
6501
6502
6503
6504
6505 </p>
6506
6507
6508
6509
6510
6511
6512 
6513     
6514     
6515     
6516     
6517     
6518     
6519      <p>By default, the filter is
6520switched off (= <i>0.0</i>).
6521It is exclusively applied to the tendencies calculated by the
6522upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a>
6523and <a href="#scalar_advec">scalar_advec</a>),
6524not to the prognostic variables themselves. At the bottom and top
6525boundary of the model domain the filter effect for vertical
65262-delta-waves is reduced. There, the amplitude of these waves is only
6527reduced by approx. 50%, otherwise by nearly 100%.&nbsp; <br>
6528
6529
6530
6531
6532
6533
6534
6535Filter factors with values &gt; <i>0.01</i> also
6536reduce the amplitudes
6537of waves with wavelengths longer than 2-delta (see the paper by Mahrer
6538and
6539Pielke, quoted above). </p>
6540
6541
6542
6543
6544
6545
6546 </td>
6547
6548
6549
6550
6551
6552
6553 </tr>
6554
6555
6556
6557
6558
6559
6560 <tr>
6561
6562
6563
6564
6565
6566
6567      <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td>
6568
6569
6570
6571
6572
6573
6574      <td style="vertical-align: top;">C*16</td>
6575
6576
6577
6578
6579
6580
6581      <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
6582
6583
6584
6585
6586
6587
6588      <td>Method used to optimize loops for solving the prognostic equations .<br>
6589
6590
6591
6592
6593
6594
6595      <br>
6596
6597
6598
6599
6600
6601
6602By
6603default, the optimization method depends on the host on which PALM is
6604running. On machines with vector-type CPUs, single 3d-loops are used to
6605calculate each tendency term of each prognostic equation, while on all
6606other machines, all prognostic equations are solved within one big loop
6607over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br>
6608
6609
6610
6611
6612
6613
6614      <br>
6615
6616
6617
6618
6619
6620
6621The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td>
6622
6623
6624
6625
6626
6627
6628    </tr>
6629
6630
6631
6632
6633
6634
6635    <tr>
6636
6637
6638
6639
6640
6641
6642
6643      <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br>
6644
6645
6646
6647
6648
6649
6650
6651      </td>
6652
6653
6654
6655
6656
6657
6658 <td style="vertical-align: top;">C*20<br>
6659
6660
6661
6662
6663
6664
6665
6666      </td>
6667
6668
6669
6670
6671
6672
6673 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
6674
6675
6676
6677
6678
6679
6680 <span style="font-style: italic;">model'</span><br>
6681
6682
6683
6684
6685
6686
6687 </td>
6688
6689
6690
6691
6692
6693
6694
6695      <td style="vertical-align: top;">Mixing length used in the
66961d-model.<br>
6697
6698
6699
6700
6701
6702
6703 <br>
6704
6705
6706
6707
6708
6709
6710
6711By default the mixing length is calculated as in the 3d-model (i.e. it
6712depends on the grid spacing).<br>
6713
6714
6715
6716
6717
6718
6719 <br>
6720
6721
6722
6723
6724
6725
6726
6727By setting <span style="font-weight: bold;">mixing_length_1d</span>
6728= <span style="font-style: italic;">'blackadar'</span>,
6729the so-called Blackadar mixing length is used (l = kappa * z / ( 1 +
6730kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br>
6731
6732
6733
6734
6735
6736
6737
6738      </td>
6739
6740
6741
6742
6743
6744
6745 </tr>
6746
6747
6748
6749
6750
6751
6752 <tr>
6753
6754
6755
6756
6757
6758
6759 <td style="vertical-align: top;"> 
6760     
6761     
6762     
6763     
6764     
6765     
6766      <p><a name="humidity"></a><b>humidity</b></p>
6767
6768
6769
6770
6771
6772
6773
6774      </td>
6775
6776
6777
6778
6779
6780
6781 <td style="vertical-align: top;">L</td>
6782
6783
6784
6785
6786
6787
6788
6789      <td style="vertical-align: top;"><i>.F.</i></td>
6790
6791
6792
6793
6794
6795
6796
6797      <td style="vertical-align: top;"> 
6798     
6799     
6800     
6801     
6802     
6803     
6804      <p>Parameter to
6805switch on the prognostic equation for specific
6806humidity q.<br>
6807
6808
6809
6810
6811
6812
6813 </p>
6814
6815
6816
6817
6818
6819
6820 
6821     
6822     
6823     
6824     
6825     
6826     
6827      <p>The initial vertical
6828profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a>
6829and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>.&nbsp;
6830Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a>
6831and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br>
6832
6833
6834
6835
6836
6837
6838
6839      </p>
6840
6841
6842
6843
6844
6845
6846
6847If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
6848= .TRUE.), q becomes the total liquid water content (sum of specific
6849humidity and liquid water content).</td>
6850
6851
6852
6853
6854
6855
6856 </tr>
6857
6858
6859
6860
6861
6862
6863
6864    <tr>
6865
6866
6867
6868
6869
6870
6871 <td style="vertical-align: top;"> 
6872     
6873     
6874     
6875     
6876     
6877     
6878      <p><a name="momentum_advec"></a><b>momentum_advec</b></p>
6879
6880
6881
6882
6883
6884
6885
6886      </td>
6887
6888
6889
6890
6891
6892
6893 <td style="vertical-align: top;">C * 10</td>
6894
6895
6896
6897
6898
6899
6900
6901      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
6902
6903
6904
6905
6906
6907
6908
6909      <td style="vertical-align: top;"> 
6910     
6911     
6912     
6913     
6914     
6915     
6916      <p>Advection
6917scheme to be used for the momentum equations.<br>
6918
6919
6920
6921
6922
6923
6924 <br>
6925
6926
6927
6928
6929
6930
6931
6932The user can choose between the following schemes:<br>
6933
6934
6935
6936
6937
6938
6939
6940&nbsp;<br>
6941
6942
6943
6944
6945
6946
6947 <br>
6948
6949
6950
6951
6952
6953
6954 <span style="font-style: italic;">'pw-scheme'</span><br>
6955
6956
6957
6958
6959
6960
6961
6962      </p>
6963
6964
6965
6966
6967
6968
6969 
6970     
6971     
6972     
6973     
6974     
6975     
6976      <div style="margin-left: 40px;">The scheme of
6977Piascek and
6978Williams (1970, J. Comp. Phys., 6,
6979392-405) with central differences in the form C3 is used.<br>
6980
6981
6982
6983
6984
6985
6986
6987If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
6988= <span style="font-style: italic;">'leapfrog+euler'</span>
6989the
6990advection scheme is - for the Euler-timestep - automatically switched
6991to an upstream-scheme.<br>
6992
6993
6994
6995
6996
6997
6998 </div>
6999
7000
7001
7002
7003
7004
7005 
7006     
7007     
7008     
7009     
7010     
7011     
7012      <p> </p>
7013
7014
7015
7016
7017
7018
7019 
7020     
7021     
7022     
7023     
7024     
7025     
7026      <p><span style="font-style: italic;">'ups-scheme'</span><br>
7027
7028
7029
7030
7031
7032
7033
7034      </p>
7035
7036
7037
7038
7039
7040
7041 
7042     
7043     
7044     
7045     
7046     
7047     
7048      <div style="margin-left: 40px;">The
7049upstream-spline scheme is
7050used
7051(see Mahrer and Pielke,
70521978: Mon. Wea. Rev., 106, 818-830). In opposite to the
7053Piascek-Williams scheme, this is characterized by much better numerical
7054features (less numerical diffusion, better preservation of flow
7055structures, e.g. vortices), but computationally it is much more
7056expensive. In
7057addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
7058= <span style="font-style: italic;">'</span><i>euler'</i>),
7059i.e. the
7060timestep accuracy is only of first order.
7061For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>)
7062should then also be carried out with the upstream-spline scheme,
7063because otherwise the scalar variables would
7064be subject to large numerical diffusion due to the upstream
7065scheme.&nbsp; </div>
7066
7067
7068
7069
7070
7071
7072 
7073     
7074     
7075     
7076     
7077     
7078     
7079      <p style="margin-left: 40px;">Since
7080the cubic splines used tend
7081to overshoot under
7082certain circumstances, this effect must be adjusted by suitable
7083filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
7084      <a href="#long_filter_factor">long_filter_factor</a>,
7085      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
7086This is always neccessary for runs with stable stratification,
7087even if this stratification appears only in parts of the model domain.<br>
7088
7089
7090
7091
7092
7093
7094
7095      </p>
7096
7097
7098
7099
7100
7101
7102 
7103     
7104     
7105     
7106     
7107     
7108     
7109      <div style="margin-left: 40px;">With stable
7110stratification the
7111upstream-spline scheme also
7112produces gravity waves with large amplitude, which must be
7113suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
7114
7115
7116
7117
7118
7119
7120
7121      <br>
7122
7123
7124
7125
7126
7127
7128 <span style="font-weight: bold;">Important: </span>The&nbsp;
7129upstream-spline scheme is not implemented for humidity and passive
7130scalars (see&nbsp;<a href="#humidity">humidity</a>
7131and <a href="#passive_scalar">passive_scalar</a>)
7132and requires the use of a 2d-domain-decomposition. The last conditions
7133severely restricts code optimization on several machines leading to
7134very long execution times! The scheme is also not allowed for
7135non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
7136and <a href="#bc_ns">bc_ns</a>).</div>
7137
7138
7139
7140
7141
7142
7143 </td>
7144
7145
7146
7147
7148
7149
7150
7151    </tr>
7152
7153
7154
7155
7156
7157
7158 <tr>
7159
7160
7161
7162
7163
7164
7165 <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br>
7166
7167
7168
7169
7170
7171
7172
7173      </td>
7174
7175
7176
7177
7178
7179
7180 <td style="vertical-align: top;">C*20<br>
7181
7182
7183
7184
7185
7186
7187
7188(10)<br>
7189
7190
7191
7192
7193
7194
7195 </td>
7196
7197
7198
7199
7200
7201
7202 <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;">
7203
7204
7205
7206
7207
7208
7209 <span style="font-style: italic;">sion for all</span><br style="font-style: italic;">
7210
7211
7212
7213
7214
7215
7216 <span style="font-style: italic;">output quan-</span><br style="font-style: italic;">
7217
7218
7219
7220
7221
7222
7223 <span style="font-style: italic;">tities</span><br>
7224
7225
7226
7227
7228
7229
7230 </td>
7231
7232
7233
7234
7235
7236
7237
7238      <td style="vertical-align: top;">Defines the accuracy of
7239the NetCDF output.<br>
7240
7241
7242
7243
7244
7245
7246 <br>
7247
7248
7249
7250
7251
7252
7253
7254By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
7255have single precision&nbsp; (4 byte) accuracy. Double precision (8
7256byte) can be choosen alternatively.<br>
7257
7258
7259
7260
7261
7262
7263
7264Accuracy for the different output data (cross sections, 3d-volume data,
7265spectra, etc.) can be set independently.<br>
7266
7267
7268
7269
7270
7271
7272 <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL4'</span>
7273(single precision) or <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL8'</span>
7274(double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>,
7275where the string <span style="font-style: italic;">'&lt;out&gt;'
7276      </span>can be chosen out of the following list:<br>
7277
7278
7279
7280
7281
7282
7283 <br>
7284
7285
7286
7287
7288
7289
7290
7291     
7292     
7293     
7294     
7295     
7296     
7297      <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2">
7298
7299
7300
7301
7302
7303
7304 <tbody>
7305
7306
7307
7308
7309
7310
7311
7312          <tr>
7313
7314
7315
7316
7317
7318
7319 <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br>
7320
7321
7322
7323
7324
7325
7326 </td>
7327
7328
7329
7330
7331
7332
7333
7334            <td style="vertical-align: top;">horizontal cross section<br>
7335
7336
7337
7338
7339
7340
7341
7342            </td>
7343
7344
7345
7346
7347
7348
7349 </tr>
7350
7351
7352
7353
7354
7355
7356 <tr>
7357
7358
7359
7360
7361
7362
7363 <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br>
7364
7365
7366
7367
7368
7369
7370 </td>
7371
7372
7373
7374
7375
7376
7377
7378            <td style="vertical-align: top;">vertical (xz) cross
7379section<br>
7380
7381
7382
7383
7384
7385
7386 </td>
7387
7388
7389
7390
7391
7392
7393 </tr>
7394
7395
7396
7397
7398
7399
7400 <tr>
7401
7402
7403
7404
7405
7406
7407 <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br>
7408
7409
7410
7411
7412
7413
7414 </td>
7415
7416
7417
7418
7419
7420
7421
7422            <td style="vertical-align: top;">vertical (yz) cross
7423section<br>
7424
7425
7426
7427
7428
7429
7430 </td>
7431
7432
7433
7434
7435
7436
7437 </tr>
7438
7439
7440
7441
7442
7443
7444 <tr>
7445
7446
7447
7448
7449
7450
7451 <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br>
7452
7453
7454
7455
7456
7457
7458 </td>
7459
7460
7461
7462
7463
7464
7465
7466            <td style="vertical-align: top;">all cross sections<br>
7467
7468
7469
7470
7471
7472
7473
7474            </td>
7475
7476
7477
7478
7479
7480
7481 </tr>
7482
7483
7484
7485
7486
7487
7488 <tr>
7489
7490
7491
7492
7493
7494
7495 <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br>
7496
7497
7498
7499
7500
7501
7502 </td>
7503
7504
7505
7506
7507
7508
7509
7510            <td style="vertical-align: top;">volume data<br>
7511
7512
7513
7514
7515
7516
7517 </td>
7518
7519
7520
7521
7522
7523
7524
7525          </tr>
7526
7527
7528
7529
7530
7531
7532 <tr>
7533
7534
7535
7536
7537
7538
7539 <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br>
7540
7541
7542
7543
7544
7545
7546 </td>
7547
7548
7549
7550
7551
7552
7553
7554            <td style="vertical-align: top;">vertical profiles<br>
7555
7556
7557
7558
7559
7560
7561
7562            </td>
7563
7564
7565
7566
7567
7568
7569 </tr>
7570
7571
7572
7573
7574
7575
7576 <tr>
7577
7578
7579
7580
7581
7582
7583 <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br>
7584
7585
7586
7587
7588
7589
7590 </td>
7591
7592
7593
7594
7595
7596
7597
7598            <td style="vertical-align: top;">time series, particle
7599time series<br>
7600
7601
7602
7603
7604
7605
7606 </td>
7607
7608
7609
7610
7611
7612
7613 </tr>
7614
7615
7616
7617
7618
7619
7620 <tr>
7621
7622
7623
7624
7625
7626
7627 <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br>
7628
7629
7630
7631
7632
7633
7634 </td>
7635
7636
7637
7638
7639
7640
7641
7642            <td style="vertical-align: top;">spectra<br>
7643
7644
7645
7646
7647
7648
7649 </td>
7650
7651
7652
7653
7654
7655
7656
7657          </tr>
7658
7659
7660
7661
7662
7663
7664 <tr>
7665
7666
7667
7668
7669
7670
7671 <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br>
7672
7673
7674
7675
7676
7677
7678 </td>
7679
7680
7681
7682
7683
7684
7685
7686            <td style="vertical-align: top;">particles<br>
7687
7688
7689
7690
7691
7692
7693 </td>
7694
7695
7696
7697
7698
7699
7700
7701          </tr>
7702
7703
7704
7705
7706
7707
7708 <tr>
7709
7710
7711
7712
7713
7714
7715 <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br>
7716
7717
7718
7719
7720
7721
7722 </td>
7723
7724
7725
7726
7727
7728
7729
7730            <td style="vertical-align: top;">all output quantities<br>
7731
7732
7733
7734
7735
7736
7737
7738            </td>
7739
7740
7741
7742
7743
7744
7745 </tr>
7746
7747
7748
7749
7750
7751
7752 
7753       
7754       
7755       
7756       
7757       
7758       
7759        </tbody> 
7760     
7761     
7762     
7763     
7764     
7765     
7766      </table>
7767
7768
7769
7770
7771
7772
7773 <br>
7774
7775
7776
7777
7778
7779
7780 <span style="font-weight: bold;">Example:</span><br>
7781
7782
7783
7784
7785
7786
7787
7788If all cross section data and the particle data shall be output in
7789double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span>
7790has to be assigned.<br>
7791
7792
7793
7794
7795
7796
7797 </td>
7798
7799
7800
7801
7802
7803
7804 </tr>
7805
7806
7807
7808
7809
7810
7811
7812    <tr>
7813
7814
7815
7816
7817
7818
7819 <td style="vertical-align: top;"> 
7820     
7821     
7822     
7823     
7824     
7825     
7826      <p><a name="npex"></a><b>npex</b></p>
7827
7828
7829
7830
7831
7832
7833 </td>
7834
7835
7836
7837
7838
7839
7840
7841      <td style="vertical-align: top;">I</td>
7842
7843
7844
7845
7846
7847
7848 <td style="vertical-align: top;"><br>
7849
7850
7851
7852
7853
7854
7855 </td>
7856
7857
7858
7859
7860
7861
7862 <td style="vertical-align: top;"> 
7863     
7864     
7865     
7866     
7867     
7868     
7869      <p>Number of processors
7870along x-direction of the virtual
7871processor
7872net.&nbsp; </p>
7873
7874
7875
7876
7877
7878
7879 
7880     
7881     
7882     
7883     
7884     
7885     
7886      <p>For parallel runs, the total
7887number of processors to be used
7888is given by
7889the <span style="font-weight: bold;">mrun</span>
7890option <a href="http://www.muk.uni-hannover.de/software/mrun_beschreibung.html#Opt-X">-X</a>.
7891By default, depending on the type of the parallel computer, PALM
7892generates a 1d processor
7893net (domain decomposition along x, <span style="font-weight: bold;">npey</span>
7894= <span style="font-style: italic;">1</span>) or a
78952d-net (this is
7896favored on machines with fast communication network). In case of a
78972d-net, it is tried to make it more or less square-shaped. If, for
7898example, 16 processors are assigned (-X 16), a 4 * 4 processor net is
7899generated (<span style="font-weight: bold;">npex</span>
7900= <span style="font-style: italic;">4</span>, <span style="font-weight: bold;">npey</span>
7901= <span style="font-style: italic;">4</span>).
7902This choice is optimal for square total domains (<a href="#nx">nx</a>
7903= <a href="#ny">ny</a>),
7904since then the number of ghost points at the lateral boundarys of
7905the subdomains is minimal. If <span style="font-weight: bold;">nx</span>
7906nd <span style="font-weight: bold;">ny</span>
7907differ extremely, the
7908processor net should be manually adjusted using adequate values for <span style="font-weight: bold;">npex</span> and <span style="font-weight: bold;">npey</span>.&nbsp; </p>
7909
7910
7911
7912
7913
7914
7915
7916     
7917     
7918     
7919     
7920     
7921     
7922      <p><b>Important:</b> The value of <span style="font-weight: bold;">npex</span> * <span style="font-weight: bold;">npey</span> must exactly
7923correspond to the
7924value assigned by the <span style="font-weight: bold;">mrun</span>-option
7925      <tt>-X</tt>.
7926Otherwise the model run will abort with a corresponding error
7927message.&nbsp; <br>
7928
7929
7930
7931
7932
7933
7934
7935Additionally, the specification of <span style="font-weight: bold;">npex</span>
7936and <span style="font-weight: bold;">npey</span>
7937may of course
7938override the default setting for the domain decomposition (1d or 2d)
7939which may have a significant (negative) effect on the code performance.
7940      </p>
7941
7942
7943
7944
7945
7946
7947 </td>
7948
7949
7950
7951
7952
7953
7954 </tr>
7955
7956
7957
7958
7959
7960
7961 <tr>
7962
7963
7964
7965
7966
7967
7968 <td style="vertical-align: top;"> 
7969     
7970     
7971     
7972     
7973     
7974     
7975      <p><a name="npey"></a><b>npey</b></p>
7976
7977
7978
7979
7980
7981
7982
7983      </td>
7984
7985
7986
7987
7988
7989
7990 <td style="vertical-align: top;">I</td>
7991
7992
7993
7994
7995
7996
7997
7998      <td style="vertical-align: top;"><br>
7999
8000
8001
8002
8003
8004
8005 </td>
8006
8007
8008
8009
8010
8011
8012 <td style="vertical-align: top;"> 
8013     
8014     
8015     
8016     
8017     
8018     
8019      <p>Number of processors
8020along y-direction of the virtual
8021processor
8022net.&nbsp; </p>
8023
8024
8025
8026
8027
8028
8029 
8030     
8031     
8032     
8033     
8034     
8035     
8036      <p>For further information see <a href="#npex">npex</a>.</p>
8037
8038
8039
8040
8041
8042
8043 </td>
8044
8045
8046
8047
8048
8049
8050 </tr>
8051
8052
8053
8054
8055
8056
8057
8058    <tr>
8059
8060
8061
8062
8063
8064
8065 <td style="vertical-align: top;"> 
8066     
8067     
8068     
8069     
8070     
8071     
8072      <p><a name="nsor_ini"></a><b>nsor_ini</b></p>
8073
8074
8075
8076
8077
8078
8079
8080      </td>
8081
8082
8083
8084
8085
8086
8087 <td style="vertical-align: top;">I</td>
8088
8089
8090
8091
8092
8093
8094
8095      <td style="vertical-align: top;"><i>100</i></td>
8096
8097
8098
8099
8100
8101
8102
8103      <td style="vertical-align: top;"> 
8104     
8105     
8106     
8107     
8108     
8109     
8110      <p>Initial number
8111of iterations with the SOR algorithm.&nbsp; </p>
8112
8113
8114
8115
8116
8117
8118 
8119     
8120     
8121     
8122     
8123     
8124     
8125      <p>This
8126parameter is only effective if the SOR algorithm was
8127selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a>
8128= <span style="font-style: italic;">'sor'</span>)
8129and specifies the
8130number of initial iterations of the SOR
8131scheme (at t = 0). The number of subsequent iterations at the following
8132timesteps is determined
8133with the parameter <a href="#nsor">nsor</a>.
8134Usually <b>nsor</b> &lt; <b>nsor_ini</b>,
8135since in each case
8136subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a>
8137use the solution of the previous call as initial value. Suitable
8138test runs should determine whether sufficient convergence of the
8139solution is obtained with the default value and if necessary the value
8140of <b>nsor_ini</b> should be changed.</p>
8141
8142
8143
8144
8145
8146
8147 </td>
8148
8149
8150
8151
8152
8153
8154
8155    </tr>
8156
8157
8158
8159
8160
8161
8162 <tr>
8163
8164
8165
8166
8167
8168
8169 <td style="vertical-align: top;">
8170     
8171     
8172     
8173     
8174     
8175     
8176      <p><a name="nx"></a><b>nx</b></p>
8177
8178
8179
8180
8181
8182
8183
8184      </td>
8185
8186
8187
8188
8189
8190
8191 <td style="vertical-align: top;">I</td>
8192
8193
8194
8195
8196
8197
8198
8199      <td style="vertical-align: top;"><br>
8200
8201
8202
8203
8204
8205
8206 </td>
8207
8208
8209
8210
8211
8212
8213 <td style="vertical-align: top;"> 
8214     
8215     
8216     
8217     
8218     
8219     
8220      <p>Number of grid
8221points in x-direction.&nbsp; </p>
8222
8223
8224
8225
8226
8227
8228 
8229     
8230     
8231     
8232     
8233     
8234     
8235      <p>A value for this
8236parameter must be assigned. Since the lower
8237array bound in PALM
8238starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>.
8239In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)*
8240      <a href="#dx">dx</a>.</p>
8241
8242
8243
8244
8245
8246
8247 
8248     
8249     
8250     
8251     
8252     
8253     
8254      <p>For
8255parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8256= <span style="font-style: italic;">'strict'</span>,
8257      <b>nx+1</b> must
8258be an integral multiple
8259of the processor numbers (see <a href="#npex">npex</a>
8260and <a href="#npey">npey</a>)
8261along x- as well as along y-direction (due to data
8262transposition restrictions).</p>
8263
8264
8265
8266
8267
8268
8269     
8270     
8271     
8272     
8273     
8274     
8275      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8276and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8277
8278
8279
8280
8281
8282
8283 </td>
8284
8285
8286
8287
8288
8289
8290 </tr>
8291
8292
8293
8294
8295
8296
8297 <tr>
8298
8299
8300
8301
8302
8303
8304
8305      <td style="vertical-align: top;"> 
8306     
8307     
8308     
8309     
8310     
8311     
8312      <p><a name="ny"></a><b>ny</b></p>
8313
8314
8315
8316
8317
8318
8319
8320      </td>
8321
8322
8323
8324
8325
8326
8327 <td style="vertical-align: top;">I</td>
8328
8329
8330
8331
8332
8333
8334
8335      <td style="vertical-align: top;"><br>
8336
8337
8338
8339
8340
8341
8342 </td>
8343
8344
8345
8346
8347
8348
8349 <td style="vertical-align: top;"> 
8350     
8351     
8352     
8353     
8354     
8355     
8356      <p>Number of grid
8357points in y-direction.&nbsp; </p>
8358
8359
8360
8361
8362
8363
8364 
8365     
8366     
8367     
8368     
8369     
8370     
8371      <p>A value for this
8372parameter must be assigned. Since the lower
8373array bound in PALM starts with j = 0, the actual number of grid points
8374is equal to <b>ny+1</b>. In case of cyclic boundary
8375conditions along
8376y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p>
8377
8378
8379
8380
8381
8382
8383
8384     
8385     
8386     
8387     
8388     
8389     
8390      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8391= <span style="font-style: italic;">'strict'</span>,
8392      <b>ny+1</b> must
8393be an integral multiple
8394of the processor numbers (see <a href="#npex">npex</a>
8395and <a href="#npey">npey</a>)&nbsp;
8396along y- as well as along x-direction (due to data
8397transposition restrictions).</p>
8398
8399
8400
8401
8402
8403
8404     
8405     
8406     
8407     
8408     
8409     
8410      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8411and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8412
8413
8414
8415
8416
8417
8418 </td>
8419
8420
8421
8422
8423
8424
8425 </tr>
8426
8427
8428
8429
8430
8431
8432 <tr>
8433
8434
8435
8436
8437
8438
8439
8440      <td style="vertical-align: top;"> 
8441     
8442     
8443     
8444     
8445     
8446     
8447      <p><a name="nz"></a><b>nz</b></p>
8448
8449
8450
8451
8452
8453
8454
8455      </td>
8456
8457
8458
8459
8460
8461
8462 <td style="vertical-align: top;">I</td>
8463
8464
8465
8466
8467
8468
8469
8470      <td style="vertical-align: top;"><br>
8471
8472
8473
8474
8475
8476
8477 </td>
8478
8479
8480
8481
8482
8483
8484 <td style="vertical-align: top;"> 
8485     
8486     
8487     
8488     
8489     
8490     
8491      <p>Number of grid
8492points in z-direction.&nbsp; </p>
8493
8494
8495
8496
8497
8498
8499 
8500     
8501     
8502     
8503     
8504     
8505     
8506      <p>A value for this
8507parameter must be assigned. Since the lower
8508array bound in PALM
8509starts with k = 0 and since one additional grid point is added at the
8510top boundary (k = <b>nz+1</b>), the actual number of grid
8511points is <b>nz+2</b>.
8512However, the prognostic equations are only solved up to <b>nz</b>
8513(u,
8514v)
8515or up to <b>nz-1</b> (w, scalar quantities). The top
8516boundary for u
8517and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b>
8518for all
8519other quantities.&nbsp; </p>
8520
8521
8522
8523
8524
8525
8526 
8527     
8528     
8529     
8530     
8531     
8532     
8533      <p>For parallel
8534runs,&nbsp; in case of <a href="#grid_matching">grid_matching</a>
8535= <span style="font-style: italic;">'strict'</span>,
8536      <b>nz</b> must
8537be an integral multiple of
8538the number of processors in x-direction (due to data transposition
8539restrictions).</p>
8540
8541
8542
8543
8544
8545
8546 </td>
8547
8548
8549
8550
8551
8552
8553 </tr>
8554
8555
8556
8557
8558
8559
8560 <tr>
8561
8562
8563
8564
8565
8566
8567      <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td>
8568
8569
8570
8571
8572
8573
8574      <td style="vertical-align: top;">L</td>
8575
8576
8577
8578
8579
8580
8581      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
8582
8583
8584
8585
8586
8587
8588      <td style="vertical-align: top;">Parameter to switch on&nbsp;ocean runs.<br>
8589
8590
8591
8592
8593
8594
8595      <br>
8596
8597
8598
8599
8600
8601
8602By default PALM is configured to simulate&nbsp;atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows&nbsp;simulation of ocean turbulent flows. Setting this switch has several effects:<br>
8603
8604
8605
8606
8607
8608
8609      <br>
8610
8611
8612
8613
8614
8615
8616     
8617     
8618     
8619     
8620     
8621     
8622      <ul>
8623
8624
8625
8626
8627
8628
8629        <li>An additional prognostic equation for salinity is solved.</li>
8630
8631
8632
8633
8634
8635
8636        <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li>
8637
8638
8639
8640
8641
8642
8643        <li>Potential
8644density is calculated from the equation of state for seawater after
8645each timestep, using the algorithm proposed by Jackett et al. (2006, J.
8646Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br>
8647
8648
8649
8650
8651
8652
8653So far, only the initial hydrostatic pressure is entered into this equation.</li>
8654
8655
8656
8657
8658
8659
8660        <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li>
8661
8662
8663
8664
8665
8666
8667        <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values&nbsp;given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li>
8668
8669
8670
8671
8672
8673
8674        <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li>
8675
8676
8677
8678
8679
8680
8681        <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li>
8682
8683
8684
8685
8686
8687
8688     
8689     
8690     
8691     
8692     
8693     
8694      </ul>
8695
8696
8697
8698
8699
8700
8701      <br>
8702
8703
8704
8705
8706
8707
8708Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br>
8709
8710
8711
8712
8713
8714
8715      <br>
8716
8717
8718
8719
8720
8721
8722Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br>
8723
8724
8725
8726
8727
8728
8729      <br>
8730
8731
8732
8733
8734
8735
8736      <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br>
8737
8738
8739
8740      </td>
8741
8742
8743
8744
8745
8746
8747    </tr>
8748
8749
8750
8751
8752
8753
8754    <tr>
8755
8756
8757
8758
8759
8760
8761 <td style="vertical-align: top;"> 
8762     
8763     
8764     
8765     
8766     
8767     
8768      <p><a name="omega"></a><b>omega</b></p>
8769
8770
8771
8772
8773
8774
8775
8776      </td>
8777
8778
8779
8780
8781
8782
8783 <td style="vertical-align: top;">R</td>
8784
8785
8786
8787
8788
8789
8790
8791      <td style="vertical-align: top;"><i>7.29212E-5</i></td>
8792
8793
8794
8795
8796
8797
8798
8799      <td style="vertical-align: top;"> 
8800     
8801     
8802     
8803     
8804     
8805     
8806      <p>Angular
8807velocity of the rotating system (in rad s<sup>-1</sup>).&nbsp;
8808      </p>
8809
8810
8811
8812
8813
8814
8815 
8816     
8817     
8818     
8819     
8820     
8821     
8822      <p>The angular velocity of the earth is set by
8823default. The
8824values
8825of the Coriolis parameters are calculated as:&nbsp; </p>
8826
8827
8828
8829
8830
8831
8832 
8833     
8834     
8835     
8836     
8837     
8838     
8839      <ul>
8840
8841
8842
8843
8844
8845
8846
8847       
8848       
8849       
8850       
8851       
8852       
8853        <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>)&nbsp;
8854        <br>
8855
8856
8857
8858
8859
8860
8861f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p>
8862
8863
8864
8865
8866
8867
8868
8869     
8870     
8871     
8872     
8873     
8874     
8875      </ul>
8876
8877
8878
8879
8880
8881
8882 </td>
8883
8884
8885
8886
8887
8888
8889 </tr>
8890
8891
8892
8893
8894
8895
8896 <tr>
8897
8898
8899
8900
8901
8902
8903 <td style="vertical-align: top;"> 
8904     
8905     
8906     
8907     
8908     
8909     
8910      <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p>
8911
8912
8913
8914
8915
8916
8917
8918      </td>
8919
8920
8921
8922
8923
8924
8925 <td style="vertical-align: top;">I</td>
8926
8927
8928
8929
8930
8931
8932
8933      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20,
8934nx/2</span> or <span style="font-style: italic;">ny/2)</span></td>
8935
8936
8937
8938
8939
8940
8941
8942      <td style="vertical-align: top;">Width of
8943the damping range in the vicinity of the outflow (gridpoints).<br>
8944
8945
8946
8947
8948
8949
8950
8951      <br>
8952
8953
8954
8955
8956
8957
8958
8959When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
8960or <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
8961a smoothing has to be applied to the
8962velocity field in the vicinity of the outflow in order to suppress any
8963reflections of outgoing disturbances. This parameter controlls the
8964horizontal range to which the smoothing is applied. The range is given
8965in gridpoints counted from the respective outflow boundary. For further
8966details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>,
8967which defines the magnitude of the damping.</td>
8968
8969
8970
8971
8972
8973
8974 </tr>
8975
8976
8977
8978
8979
8980
8981
8982    <tr>
8983
8984
8985
8986
8987
8988
8989 <td style="vertical-align: top;"> 
8990     
8991     
8992     
8993     
8994     
8995     
8996      <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p>
8997
8998
8999
9000
9001
9002
9003
9004      </td>
9005
9006
9007
9008
9009
9010
9011 <td style="vertical-align: top;">R</td>
9012
9013
9014
9015
9016
9017
9018
9019      <td style="vertical-align: top;"><i>0.0</i></td>
9020
9021
9022
9023
9024
9025
9026
9027      <td style="vertical-align: top;"> 
9028     
9029     
9030     
9031     
9032     
9033     
9034      <p>Allowed limit
9035for the overshooting of subgrid-scale TKE in
9036case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
9037      </p>
9038
9039
9040
9041
9042
9043
9044 
9045     
9046     
9047     
9048     
9049     
9050     
9051      <p>By deafult, if cut-off of overshoots is switched
9052on for the
9053upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>),
9054no overshoots are permitted at all. If <b>overshoot_limit_e</b>
9055is given a non-zero value, overshoots with the respective
9056amplitude (both upward and downward) are allowed.&nbsp; </p>
9057
9058
9059
9060
9061
9062
9063
9064     
9065     
9066     
9067     
9068     
9069     
9070      <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p>
9071
9072
9073
9074
9075
9076
9077
9078      </td>
9079
9080
9081
9082
9083
9084
9085 </tr>
9086
9087
9088
9089
9090
9091
9092 <tr>
9093
9094
9095
9096
9097
9098
9099 <td style="vertical-align: top;"> 
9100     
9101     
9102     
9103     
9104     
9105     
9106      <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p>
9107
9108
9109
9110
9111
9112
9113
9114      </td>
9115
9116
9117
9118
9119
9120
9121 <td style="vertical-align: top;">R</td>
9122
9123
9124
9125
9126
9127
9128
9129      <td style="vertical-align: top;"><i>0.0</i></td>
9130
9131
9132
9133
9134
9135
9136
9137      <td style="vertical-align: top;"> 
9138     
9139     
9140     
9141     
9142     
9143     
9144      <p>Allowed limit
9145for the overshooting of potential temperature in
9146case that the upstream-spline scheme is switched on (in K).&nbsp; </p>
9147
9148
9149
9150
9151
9152
9153
9154     
9155     
9156     
9157     
9158     
9159     
9160      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9161      </p>
9162
9163
9164
9165
9166
9167
9168 
9169     
9170     
9171     
9172     
9173     
9174     
9175      <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p>
9176
9177
9178
9179
9180
9181
9182
9183      </td>
9184
9185
9186
9187
9188
9189
9190 </tr>
9191
9192
9193
9194
9195
9196
9197 <tr>
9198
9199
9200
9201
9202
9203
9204 <td style="vertical-align: top;"> 
9205     
9206     
9207     
9208     
9209     
9210     
9211      <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p>
9212
9213
9214
9215
9216
9217
9218
9219      </td>
9220
9221
9222
9223
9224
9225
9226 <td style="vertical-align: top;">R</td>
9227
9228
9229
9230
9231
9232
9233
9234      <td style="vertical-align: top;"><i>0.0</i></td>
9235
9236
9237
9238
9239
9240
9241
9242      <td style="vertical-align: top;">Allowed limit for the
9243overshooting of
9244the u-component of velocity in case that the upstream-spline scheme is
9245switched on (in m/s).
9246     
9247     
9248     
9249     
9250     
9251     
9252      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9253      </p>
9254
9255
9256
9257
9258
9259
9260 
9261     
9262     
9263     
9264     
9265     
9266     
9267      <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p>
9268
9269
9270
9271
9272
9273
9274
9275      </td>
9276
9277
9278
9279
9280
9281
9282 </tr>
9283
9284
9285
9286
9287
9288
9289 <tr>
9290
9291
9292
9293
9294
9295
9296 <td style="vertical-align: top;"> 
9297     
9298     
9299     
9300     
9301     
9302     
9303      <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p>
9304
9305
9306
9307
9308
9309
9310
9311      </td>
9312
9313
9314
9315
9316
9317
9318 <td style="vertical-align: top;">R</td>
9319
9320
9321
9322
9323
9324
9325
9326      <td style="vertical-align: top;"><i>0.0</i></td>
9327
9328
9329
9330
9331
9332
9333
9334      <td style="vertical-align: top;"> 
9335     
9336     
9337     
9338     
9339     
9340     
9341      <p>Allowed limit
9342for the overshooting of the v-component of
9343velocity in case that the upstream-spline scheme is switched on
9344(in m/s).&nbsp; </p>
9345
9346
9347
9348
9349
9350
9351 
9352     
9353     
9354     
9355     
9356     
9357     
9358      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9359      </p>
9360
9361
9362
9363
9364
9365
9366 
9367     
9368     
9369     
9370     
9371     
9372     
9373      <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p>
9374
9375
9376
9377
9378
9379
9380
9381      </td>
9382
9383
9384
9385
9386
9387
9388 </tr>
9389
9390
9391
9392
9393
9394
9395 <tr>
9396
9397
9398
9399
9400
9401
9402 <td style="vertical-align: top;"> 
9403     
9404     
9405     
9406     
9407     
9408     
9409      <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p>
9410
9411
9412
9413
9414
9415
9416
9417      </td>
9418
9419
9420
9421
9422
9423
9424 <td style="vertical-align: top;">R</td>
9425
9426
9427
9428
9429
9430
9431
9432      <td style="vertical-align: top;"><i>0.0</i></td>
9433
9434
9435
9436
9437
9438
9439
9440      <td style="vertical-align: top;"> 
9441     
9442     
9443     
9444     
9445     
9446     
9447      <p>Allowed limit
9448for the overshooting of the w-component of
9449velocity in case that the upstream-spline scheme is switched on
9450(in m/s).&nbsp; </p>
9451
9452
9453
9454
9455
9456
9457 
9458     
9459     
9460     
9461     
9462     
9463     
9464      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9465      </p>
9466
9467
9468
9469
9470
9471
9472 
9473     
9474     
9475     
9476     
9477     
9478     
9479      <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p>
9480
9481
9482
9483
9484
9485
9486
9487      </td>
9488
9489
9490
9491
9492
9493
9494 </tr>
9495
9496
9497
9498
9499
9500
9501 <tr>
9502
9503
9504
9505
9506
9507
9508 <td style="vertical-align: top;"> 
9509     
9510     
9511     
9512     
9513     
9514     
9515      <p><a name="passive_scalar"></a><b>passive_scalar</b></p>
9516
9517
9518
9519
9520
9521
9522
9523      </td>
9524
9525
9526
9527
9528
9529
9530 <td style="vertical-align: top;">L</td>
9531
9532
9533
9534
9535
9536
9537
9538      <td style="vertical-align: top;"><i>.F.</i></td>
9539
9540
9541
9542
9543
9544
9545
9546      <td style="vertical-align: top;"> 
9547     
9548     
9549     
9550     
9551     
9552     
9553      <p>Parameter to
9554switch on the prognostic equation for a passive
9555scalar. <br>
9556
9557
9558
9559
9560
9561
9562 </p>
9563
9564
9565
9566
9567
9568
9569 
9570     
9571     
9572     
9573     
9574     
9575     
9576      <p>The initial vertical profile
9577of s can be set via parameters <a href="#s_surface">s_surface</a>,
9578      <a href="#s_vertical_gradient">s_vertical_gradient</a>
9579and&nbsp; <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
9580Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a>
9581and <a href="#surface_scalarflux">surface_scalarflux</a>.&nbsp;
9582      </p>
9583
9584
9585
9586
9587
9588
9589 
9590     
9591     
9592     
9593     
9594     
9595     
9596      <p><b>Note:</b> <br>
9597
9598
9599
9600
9601
9602
9603
9604With <span style="font-weight: bold;">passive_scalar</span>
9605switched
9606on, the simultaneous use of humidity (see&nbsp;<a href="#humidity">humidity</a>)
9607is impossible.</p>
9608
9609
9610
9611
9612
9613
9614 </td>
9615
9616
9617
9618
9619
9620
9621 </tr>
9622
9623
9624
9625
9626
9627
9628 <tr>
9629
9630      <td style="vertical-align: top;"><a name="pch_index"></a><span style="font-weight: bold;">pch_index</span></td>
9631
9632      <td style="vertical-align: top;">I</td>
9633
9634      <td style="vertical-align: top;"><span style="font-style: italic;">0</span></td>
9635
9636      <td style="vertical-align: top;">Grid point index (scalar) of the upper boundary of the plant canopy layer.<br>
9637
9638      <br>
9639
9640Above <span style="font-weight: bold;">pch_index</span> the arrays of leaf area density and drag_coeffient are automatically set to zero in case of <a href="#plant_canopy">plant_canopy</a> = .T.. Up to <span style="font-weight: bold;">pch_index</span> a leaf area density profile can be prescribed by using the parameters <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a> and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>.</td>
9641
9642    </tr>
9643
9644    <tr>
9645
9646
9647
9648
9649
9650
9651 <td style="vertical-align: top;"> 
9652     
9653     
9654     
9655     
9656     
9657     
9658      <p><a name="phi"></a><b>phi</b></p>
9659
9660
9661
9662
9663
9664
9665
9666      </td>
9667
9668
9669
9670
9671
9672
9673 <td style="vertical-align: top;">R</td>
9674
9675
9676
9677
9678
9679
9680
9681      <td style="vertical-align: top;"><i>55.0</i></td>
9682
9683
9684
9685
9686
9687
9688
9689      <td style="vertical-align: top;"> 
9690     
9691     
9692     
9693     
9694     
9695     
9696      <p>Geographical
9697latitude (in degrees).&nbsp; </p>
9698
9699
9700
9701
9702
9703
9704 
9705     
9706     
9707     
9708     
9709     
9710     
9711      <p>The value of
9712this parameter determines the value of the
9713Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>)
9714is non-zero.</p>
9715
9716
9717
9718
9719
9720
9721 </td>
9722
9723
9724
9725
9726
9727
9728 </tr>
9729
9730
9731
9732
9733
9734
9735 <tr>
9736
9737      <td style="vertical-align: top;"><a name="plant_canopy"></a><span style="font-weight: bold;">plant_canopy</span></td>
9738
9739      <td style="vertical-align: top;">L</td>
9740
9741      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9742
9743      <td style="vertical-align: top;">Switch for the plant_canopy_model.<br>
9744
9745      <br>
9746
9747If <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>, the plant canopy model of Watanabe (2004, BLM 112, 307-341) is used. <br>
9748
9749The
9750impact of a plant canopy on a turbulent flow is considered by an
9751additional drag term in the momentum equations and an additional sink
9752term in the prognostic equation for the subgrid-scale TKE. These
9753additional terms are dependent on the leaf drag coefficient (see <a href="#drag_coefficient">drag_coefficient</a>) and the leaf area density (see <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a>, <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>). <br>
9754
9755By default, a horizontally homogeneous plant canopy is prescribed, if&nbsp; <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>. However, the user can define other types of plant canopies (see <a href="#canopy_mode">canopy_mode</a>).<br>
9756
9757      <br>
9758
9759      <span style="font-weight: bold;">plant_canopy</span> = <span style="font-style: italic;">.T. </span>is only allowed together with a non-zero <a href="#drag_coefficient">drag_coefficient</a>.</td>
9760
9761    </tr>
9762
9763    <tr>
9764
9765
9766
9767
9768
9769
9770 <td style="vertical-align: top;"> 
9771     
9772     
9773     
9774     
9775     
9776     
9777      <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p>
9778
9779
9780
9781
9782
9783
9784
9785      </td>
9786
9787
9788
9789
9790
9791
9792 <td style="vertical-align: top;">L</td>
9793
9794
9795
9796
9797
9798
9799
9800      <td style="vertical-align: top;"><i>.T.</i></td>
9801
9802
9803
9804
9805
9806
9807
9808      <td style="vertical-align: top;"> 
9809     
9810     
9811     
9812     
9813     
9814     
9815      <p>Parameter to
9816switch on a Prandtl layer.&nbsp; </p>
9817
9818
9819
9820
9821
9822
9823 
9824     
9825     
9826     
9827     
9828     
9829     
9830      <p>By default,
9831a Prandtl layer is switched on at the bottom
9832boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a>
9833(the first computational grid point above ground for u, v and the
9834scalar quantities).
9835In this case, at the bottom boundary, free-slip conditions for u and v
9836(see <a href="#bc_uv_b">bc_uv_b</a>)
9837are not allowed. Likewise, laminar
9838simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>)
9839are forbidden.&nbsp; </p>
9840
9841
9842
9843
9844
9845
9846 
9847     
9848     
9849     
9850     
9851     
9852     
9853      <p>With Prandtl-layer
9854switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a>
9855= '<i>(u*)**2+neumann'</i> must not be used and is
9856automatically
9857changed to <i>'neumann'</i> if necessary.&nbsp; Also,
9858the pressure
9859boundary condition <a href="#bc_p_b">bc_p_b</a>
9860= <i>'neumann+inhomo'</i>&nbsp; is not allowed. </p>
9861
9862
9863
9864
9865
9866
9867
9868     
9869     
9870     
9871     
9872     
9873     
9874      <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p>
9875
9876
9877
9878
9879
9880
9881
9882      </td>
9883
9884
9885
9886
9887
9888
9889 </tr>
9890
9891
9892
9893
9894
9895
9896 <tr>
9897
9898
9899
9900
9901
9902
9903 <td style="vertical-align: top;"> 
9904     
9905     
9906     
9907     
9908     
9909     
9910      <p><a name="precipitation"></a><b>precipitation</b></p>
9911
9912
9913
9914
9915
9916
9917
9918      </td>
9919
9920
9921
9922
9923
9924
9925 <td style="vertical-align: top;">L</td>
9926
9927
9928
9929
9930
9931
9932
9933      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9934
9935
9936
9937
9938
9939
9940 <td style="vertical-align: top;"> 
9941     
9942     
9943     
9944     
9945     
9946     
9947      <p>Parameter to switch
9948on the precipitation scheme.<br>
9949
9950
9951
9952
9953
9954
9955 </p>
9956
9957
9958
9959
9960
9961
9962 
9963     
9964     
9965     
9966     
9967     
9968     
9969      <p>For
9970precipitation processes PALM uses a simplified Kessler
9971scheme. This scheme only considers the
9972so-called autoconversion, that means the generation of rain water by
9973coagulation of cloud drops among themselves. Precipitation begins and
9974is immediately removed from the flow as soon as the liquid water
9975content exceeds the critical value of 0.5 g/kg.</p>
9976
9977
9978
9979
9980
9981
9982     
9983     
9984     
9985     
9986     
9987     
9988      <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p>
9989
9990
9991
9992
9993
9994
9995 </td>
9996
9997
9998
9999
10000
10001
10002 </tr>
10003
10004
10005
10006
10007
10008
10009
10010    <tr>
10011
10012
10013
10014
10015
10016
10017      <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td>
10018
10019
10020
10021
10022
10023
10024      <td style="vertical-align: top;">R</td>
10025
10026
10027
10028
10029
10030
10031      <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as
10032refrence</span></td>
10033
10034
10035
10036
10037
10038
10039      <td style="vertical-align: top;">Reference
10040temperature to be used in all buoyancy terms (in K).<br>
10041
10042
10043
10044
10045
10046
10047      <br>
10048
10049
10050
10051
10052
10053
10054By
10055default, the instantaneous horizontal average over the total model
10056domain is used.<br>
10057
10058
10059
10060
10061
10062
10063      <br>
10064
10065
10066
10067
10068
10069
10070      <span style="font-weight: bold;">Attention:</span><br>
10071
10072
10073
10074
10075
10076
10077In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td>
10078
10079
10080
10081
10082
10083
10084    </tr>
10085
10086
10087
10088
10089
10090
10091    <tr>
10092
10093
10094
10095
10096
10097
10098 <td style="vertical-align: top;"> 
10099     
10100     
10101     
10102     
10103     
10104     
10105      <p><a name="pt_surface"></a><b>pt_surface</b></p>
10106
10107
10108
10109
10110
10111
10112
10113      </td>
10114
10115
10116
10117
10118
10119
10120 <td style="vertical-align: top;">R</td>
10121
10122
10123
10124
10125
10126
10127
10128      <td style="vertical-align: top;"><i>300.0</i></td>
10129
10130
10131
10132
10133
10134
10135
10136      <td style="vertical-align: top;"> 
10137     
10138     
10139     
10140     
10141     
10142     
10143      <p>Surface
10144potential temperature (in K).&nbsp; </p>
10145
10146
10147
10148
10149
10150
10151 
10152     
10153     
10154     
10155     
10156     
10157     
10158      <p>This
10159parameter assigns the value of the potential temperature
10160      <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value,
10161the
10162initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10163and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level
10164      </a>.
10165This profile is also used for the 1d-model as a stationary profile.</p>
10166
10167
10168
10169
10170
10171
10172     
10173     
10174     
10175     
10176     
10177     
10178      <p><span style="font-weight: bold;">Attention:</span><br>
10179
10180
10181
10182
10183
10184
10185In case of ocean runs (see <a href="#ocean">ocean</a>),
10186this parameter gives the temperature value at the sea surface, which is
10187at k=nzt. The profile is then constructed from the surface down to the
10188bottom of the model.</p>
10189
10190
10191
10192
10193
10194
10195
10196      </td>
10197
10198
10199
10200
10201
10202
10203 </tr>
10204
10205
10206
10207
10208
10209
10210 <tr>
10211
10212
10213
10214
10215
10216
10217 <td style="vertical-align: top;"> 
10218     
10219     
10220     
10221     
10222     
10223     
10224      <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b>
10225      <br>
10226
10227
10228
10229
10230
10231
10232 <b>_change</b></p>
10233
10234
10235
10236
10237
10238
10239 </td>
10240
10241
10242
10243
10244
10245
10246 <td style="vertical-align: top;">R</td>
10247
10248
10249
10250
10251
10252
10253 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
10254
10255
10256
10257
10258
10259
10260 </td>
10261
10262
10263
10264
10265
10266
10267
10268      <td style="vertical-align: top;"> 
10269     
10270     
10271     
10272     
10273     
10274     
10275      <p>Change in
10276surface temperature to be made at the beginning of
10277the 3d run
10278(in K).&nbsp; </p>
10279
10280
10281
10282
10283
10284
10285 
10286     
10287     
10288     
10289     
10290     
10291     
10292      <p>If <b>pt_surface_initial_change</b>
10293is set to a non-zero
10294value, the near surface sensible heat flux is not allowed to be given
10295simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p>
10296
10297
10298
10299
10300
10301
10302
10303      </td>
10304
10305
10306
10307
10308
10309
10310 </tr>
10311
10312
10313
10314
10315
10316
10317 <tr>
10318
10319
10320
10321
10322
10323
10324 <td style="vertical-align: top;"> 
10325     
10326     
10327     
10328     
10329     
10330     
10331      <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p>
10332
10333
10334
10335
10336
10337
10338
10339      </td>
10340
10341
10342
10343
10344
10345
10346 <td style="vertical-align: top;">R (10)</td>
10347
10348
10349
10350
10351
10352
10353
10354      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10355
10356
10357
10358
10359
10360
10361
10362      <td style="vertical-align: top;"> 
10363     
10364     
10365     
10366     
10367     
10368     
10369      <p>Temperature
10370gradient(s) of the initial temperature profile (in
10371K
10372/ 100 m).&nbsp; </p>
10373
10374
10375
10376
10377
10378
10379 
10380     
10381     
10382     
10383     
10384     
10385     
10386      <p>This temperature gradient
10387holds starting from the height&nbsp;
10388level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>
10389(precisely: for all uv levels k where zu(k) &gt;
10390pt_vertical_gradient_level,
10391pt_init(k) is set: pt_init(k) = pt_init(k-1) + dzu(k) * <b>pt_vertical_gradient</b>)
10392up to the top boundary or up to the next height level defined
10393by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>.
10394A total of 10 different gradients for 11 height intervals (10 intervals
10395if <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>(1)
10396= <i>0.0</i>) can be assigned. The surface temperature is
10397assigned via <a href="#pt_surface">pt_surface</a>.&nbsp;
10398      </p>
10399
10400
10401
10402
10403
10404
10405 
10406     
10407     
10408     
10409     
10410     
10411     
10412      <p>Example:&nbsp; </p>
10413
10414
10415
10416
10417
10418
10419 
10420     
10421     
10422     
10423     
10424     
10425     
10426      <ul>
10427
10428
10429
10430
10431
10432
10433 
10434       
10435       
10436       
10437       
10438       
10439       
10440        <p><b>pt_vertical_gradient</b>
10441= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
10442
10443
10444
10445
10446
10447
10448
10449        <b>pt_vertical_gradient_level</b> = <i>500.0</i>,
10450        <i>1000.0</i>,</p>
10451
10452
10453
10454
10455
10456
10457 
10458     
10459     
10460     
10461     
10462     
10463     
10464      </ul>
10465
10466
10467
10468
10469
10470
10471 
10472     
10473     
10474     
10475     
10476     
10477     
10478      <p>That
10479defines the temperature profile to be neutrally
10480stratified
10481up to z = 500.0 m with a temperature given by <a href="#pt_surface">pt_surface</a>.
10482For 500.0 m &lt; z &lt;= 1000.0 m the temperature gradient is
104831.0 K /
10484100 m and for z &gt; 1000.0 m up to the top boundary it is
104850.5 K / 100 m (it is assumed that the assigned height levels correspond
10486with uv levels).</p>
10487
10488
10489
10490
10491
10492
10493     
10494     
10495     
10496     
10497     
10498     
10499      <p><span style="font-weight: bold;">Attention:</span><br>
10500
10501
10502
10503
10504
10505
10506In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
10507the profile is constructed like described above, but starting from the
10508sea surface (k=nzt) down to the bottom boundary of the model. Height
10509levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p>
10510
10511
10512
10513
10514
10515
10516 </td>
10517
10518
10519
10520
10521
10522
10523 </tr>
10524
10525
10526
10527
10528
10529
10530 <tr>
10531
10532
10533
10534
10535
10536
10537 <td style="vertical-align: top;"> 
10538     
10539     
10540     
10541     
10542     
10543     
10544      <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b>
10545      <br>
10546
10547
10548
10549
10550
10551
10552 <b>_level</b></p>
10553
10554
10555
10556
10557
10558
10559 </td>
10560
10561
10562
10563
10564
10565
10566 <td style="vertical-align: top;">R (10)</td>
10567
10568
10569
10570
10571
10572
10573 <td style="vertical-align: top;"> 
10574     
10575     
10576     
10577     
10578     
10579     
10580      <p><i>10 *</i>&nbsp;
10581      <span style="font-style: italic;">0.0</span><br>
10582
10583
10584
10585
10586
10587
10588
10589      </p>
10590
10591
10592
10593
10594
10595
10596 </td>
10597
10598
10599
10600
10601
10602
10603 <td style="vertical-align: top;">
10604     
10605     
10606     
10607     
10608     
10609     
10610      <p>Height level from which on the temperature gradient defined by
10611      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10612is effective (in m).&nbsp; </p>
10613
10614
10615
10616
10617
10618
10619 
10620     
10621     
10622     
10623     
10624     
10625     
10626      <p>The height levels have to be assigned in ascending order. The
10627default values result in a neutral stratification regardless of the
10628values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10629(unless the top boundary of the model is higher than 100000.0 m).
10630For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p>
10631
10632
10633
10634
10635
10636
10637      <span style="font-weight: bold;">Attention:</span><br>
10638
10639
10640
10641
10642
10643
10644In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.
10645      </td>
10646
10647
10648
10649
10650
10651
10652 </tr>
10653
10654
10655
10656
10657
10658
10659 <tr>
10660
10661
10662
10663
10664
10665
10666 <td style="vertical-align: top;"> 
10667     
10668     
10669     
10670     
10671     
10672     
10673      <p><a name="q_surface"></a><b>q_surface</b></p>
10674
10675
10676
10677
10678
10679
10680
10681      </td>
10682
10683
10684
10685
10686
10687
10688 <td style="vertical-align: top;">R</td>
10689
10690
10691
10692
10693
10694
10695
10696      <td style="vertical-align: top;"><i>0.0</i></td>
10697
10698
10699
10700
10701
10702
10703
10704      <td style="vertical-align: top;"> 
10705     
10706     
10707     
10708     
10709     
10710     
10711      <p>Surface
10712specific humidity / total water content (kg/kg).&nbsp; </p>
10713
10714
10715
10716
10717
10718
10719 
10720     
10721     
10722     
10723     
10724     
10725     
10726      <p>This
10727parameter assigns the value of the specific humidity q at
10728the surface (k=0).&nbsp; Starting from this value, the initial
10729humidity
10730profile is constructed with&nbsp; <a href="#q_vertical_gradient">q_vertical_gradient</a>
10731and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10732This profile is also used for the 1d-model as a stationary profile.</p>
10733
10734
10735
10736
10737
10738
10739
10740      </td>
10741
10742
10743
10744
10745
10746
10747 </tr>
10748
10749
10750
10751
10752
10753
10754 <tr>
10755
10756
10757
10758
10759
10760
10761 <td style="vertical-align: top;"> 
10762     
10763     
10764     
10765     
10766     
10767     
10768      <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b>
10769      <br>
10770
10771
10772
10773
10774
10775
10776 <b>_change</b></p>
10777
10778
10779
10780
10781
10782
10783 </td>
10784
10785
10786
10787
10788
10789
10790 <td style="vertical-align: top;">R<br>
10791
10792
10793
10794
10795
10796
10797 </td>
10798
10799
10800
10801
10802
10803
10804 <td style="vertical-align: top;"><i>0.0</i></td>
10805
10806
10807
10808
10809
10810
10811
10812      <td style="vertical-align: top;"> 
10813     
10814     
10815     
10816     
10817     
10818     
10819      <p>Change in
10820surface specific humidity / total water content to
10821be made at the beginning
10822of the 3d run (kg/kg).&nbsp; </p>
10823
10824
10825
10826
10827
10828
10829 
10830     
10831     
10832     
10833     
10834     
10835     
10836      <p>If <b>q_surface_initial_change</b><i>
10837      </i>is set to a
10838non-zero value the
10839near surface latent heat flux (water flux) is not allowed to be given
10840simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p>
10841
10842
10843
10844
10845
10846
10847
10848      </td>
10849
10850
10851
10852
10853
10854
10855 </tr>
10856
10857
10858
10859
10860
10861
10862 <tr>
10863
10864
10865
10866
10867
10868
10869 <td style="vertical-align: top;"> 
10870     
10871     
10872     
10873     
10874     
10875     
10876      <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p>
10877
10878
10879
10880
10881
10882
10883
10884      </td>
10885
10886
10887
10888
10889
10890
10891 <td style="vertical-align: top;">R (10)</td>
10892
10893
10894
10895
10896
10897
10898
10899      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10900
10901
10902
10903
10904
10905
10906
10907      <td style="vertical-align: top;"> 
10908     
10909     
10910     
10911     
10912     
10913     
10914      <p>Humidity
10915gradient(s) of the initial humidity profile
10916(in 1/100 m).&nbsp; </p>
10917
10918
10919
10920
10921
10922
10923 
10924     
10925     
10926     
10927     
10928     
10929     
10930      <p>This humidity gradient
10931holds starting from the height
10932level&nbsp; defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>
10933(precisely: for all uv levels k, where zu(k) &gt;
10934q_vertical_gradient_level,
10935q_init(k) is set: q_init(k) = q_init(k-1) + dzu(k) * <b>q_vertical_gradient</b>)
10936up to the top boundary or up to the next height level defined
10937by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10938A total of 10 different gradients for 11 height intervals (10 intervals
10939if <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>(1)
10940= <i>0.0</i>) can be asigned. The surface humidity is
10941assigned
10942via <a href="#q_surface">q_surface</a>. </p>
10943
10944
10945
10946
10947
10948
10949
10950     
10951     
10952     
10953     
10954     
10955     
10956      <p>Example:&nbsp; </p>
10957
10958
10959
10960
10961
10962
10963 
10964     
10965     
10966     
10967     
10968     
10969     
10970      <ul>
10971
10972
10973
10974
10975
10976
10977 
10978       
10979       
10980       
10981       
10982       
10983       
10984        <p><b>q_vertical_gradient</b>
10985= <i>0.001</i>, <i>0.0005</i>,&nbsp; <br>
10986
10987
10988
10989
10990
10991
10992
10993        <b>q_vertical_gradient_level</b> = <i>500.0</i>,
10994        <i>1000.0</i>,</p>
10995
10996
10997
10998
10999
11000
11001 
11002     
11003     
11004     
11005     
11006     
11007     
11008      </ul>
11009
11010
11011
11012
11013
11014
11015
11016That defines the humidity to be constant with height up to z =
11017500.0
11018m with a
11019value given by <a href="#q_surface">q_surface</a>.
11020For 500.0 m &lt; z &lt;= 1000.0 m the humidity gradient is
110210.001 / 100
11022m and for z &gt; 1000.0 m up to the top boundary it is
110230.0005 / 100 m (it is assumed that the assigned height levels
11024correspond with uv
11025levels). </td>
11026
11027
11028
11029
11030
11031
11032 </tr>
11033
11034
11035
11036
11037
11038
11039 <tr>
11040
11041
11042
11043
11044
11045
11046 <td style="vertical-align: top;"> 
11047     
11048     
11049     
11050     
11051     
11052     
11053      <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b>
11054      <br>
11055
11056
11057
11058
11059
11060
11061 <b>_level</b></p>
11062
11063
11064
11065
11066
11067
11068 </td>
11069
11070
11071
11072
11073
11074
11075 <td style="vertical-align: top;">R (10)</td>
11076
11077
11078
11079
11080
11081
11082 <td style="vertical-align: top;"> 
11083     
11084     
11085     
11086     
11087     
11088     
11089      <p><i>10 *</i>&nbsp;
11090      <i>0.0</i></p>
11091
11092
11093
11094
11095
11096
11097 </td>
11098
11099
11100
11101
11102
11103
11104 <td style="vertical-align: top;"> 
11105     
11106     
11107     
11108     
11109     
11110     
11111      <p>Height level from
11112which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a>
11113is effective (in m).&nbsp; </p>
11114
11115
11116
11117
11118
11119
11120 
11121     
11122     
11123     
11124     
11125     
11126     
11127      <p>The height levels
11128are to be assigned in ascending order. The
11129default values result in a humidity constant with height regardless of
11130the values of <a href="#q_vertical_gradient">q_vertical_gradient</a>
11131(unless the top boundary of the model is higher than 100000.0 m). For
11132the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p>
11133
11134
11135
11136
11137
11138
11139
11140      </td>
11141
11142
11143
11144
11145
11146
11147 </tr>
11148
11149
11150
11151
11152
11153
11154 <tr>
11155
11156
11157
11158
11159
11160
11161 <td style="vertical-align: top;"> 
11162     
11163     
11164     
11165     
11166     
11167     
11168      <p><a name="radiation"></a><b>radiation</b></p>
11169
11170
11171
11172
11173
11174
11175
11176      </td>
11177
11178
11179
11180
11181
11182
11183 <td style="vertical-align: top;">L</td>
11184
11185
11186
11187
11188
11189
11190
11191      <td style="vertical-align: top;"><i>.F.</i></td>
11192
11193
11194
11195
11196
11197
11198
11199      <td style="vertical-align: top;"> 
11200     
11201     
11202     
11203     
11204     
11205     
11206      <p>Parameter to
11207switch on longwave radiation cooling at
11208cloud-tops.&nbsp; </p>
11209
11210
11211
11212
11213
11214
11215 
11216     
11217     
11218     
11219     
11220     
11221     
11222      <p>Long-wave radiation
11223processes are parameterized by the
11224effective emissivity, which cons