14 | | Here the documentation of the TKE-l model shall follow... |
| 15 | The //TKE-l// model uses the following prognostic equation to calculate //e//: |
| 16 | {{{ |
| 17 | #!Latex |
| 18 | \begin{equation*} |
| 19 | \frac{\partial{e}}{\partial t} = |
| 20 | - u_j\frac{\partial e}{\partial x_j} |
| 21 | + K_\mathrm{m} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} |
| 22 | - \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z} |
| 23 | + K_\mathrm{e} \frac{\partial^2 e}{\partial x_j^2} |
| 24 | - \varepsilon. |
| 25 | \end{equation*} |
| 26 | }}} |
| 27 | where //K//,,m,,, //K//,,h,,, and //K//,,e,, are the eddy diffusivities of momentum and heat, and the diffusivity coefficient of the TKE, respectively, which are calculated via |
| 28 | {{{ |
| 29 | #!Latex |
| 30 | \begin{align*} |
| 31 | K_\mathrm{m} &= c_0 \ l \ \sqrt{e}, \\ |
| 32 | K_\mathrm{h} &= \frac{K_\mathrm{m}}{\mathrm{Pr}}, \\ |
| 33 | K_\mathrm{e} &= \frac{K_\mathrm{m}}{\sigma_e}, |
| 34 | \end{align*} |
| 35 | }}} |
| 36 | with //σ//,,e,, = 1. |
| 37 | This can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_sigma rans_const_sigma]. |
| 38 | Here, //Pr// and //l// denote the Prandtl number and mixing length, respectively. |
| 39 | The model constant //c//,,0,, is set to 0.55 by default, but can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_c rans_const_c]. |
| 40 | The mixing length is defined using the mixing length //l//,,B,, according to Blackadar (1962) and the Dyer-Businger function Φ,,m,, |
| 41 | {{{ |
| 42 | #!Latex |
| 43 | \begin{align*} |
| 44 | l &= \min\left( \frac{l_\mathrm{B}}{\Phi_\mathrm{m}}, l_\mathrm{wall} \right), \\ |
| 45 | l_\mathrm{B} &= \dfrac{\kappa z}{1+\frac{\kappa z}{\lambda}}, \\ |
| 46 | \lambda &= 2.7 \cdot 10^{-4} |U_g| f, \\ |
| 47 | \Phi_\mathrm{m} &= 1+5\frac{z}{L}, |
| 48 | \end{align*} |
| 49 | }}} |
| 50 | where //κ//, //f//, //U//,,g,,, //L//, and //z// denote the von-Karman constant, the Coriolis parameter, the geostrophic wind, the Monin-Obukhov length, and the height, respectively. |
19 | | Here the documentation of the TKE-e model shall follow... |
| 62 | The TKE-ε model uses an additional prognostic equation to calculate the dissipation rate ε of the TKE: |
| 63 | {{{ |
| 64 | #!Latex |
| 65 | \begin{equation*} |
| 66 | \frac{\partial{\varepsilon}}{\partial t} = |
| 67 | - u_j\frac{\partial \varepsilon}{\partial x_j} |
| 68 | + c_1 \frac{\varepsilon}{e} K_\mathrm{m} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} |
| 69 | - c_3 \frac{\varepsilon}{e} \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z} |
| 70 | + K_\varepsilon \frac{\partial^2 \varepsilon}{\partial x_j^2} |
| 71 | - c_2 \frac{\varepsilon^2}{e}. |
| 72 | \end{equation*} |
| 73 | }}} |
| 74 | The diffusivity coefficient //K//,,ε,, is defined as |
| 75 | {{{ |
| 76 | #!Latex |
| 77 | \begin{equation*} |
| 78 | K_\varepsilon = \frac{K_\mathrm{m}}{\sigma_\varepsilon} |
| 79 | \end{equation*} |
| 80 | }}} |
| 81 | with //σ//,,ε,, = 1.3. |
| 82 | This can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_sigma rans_const_sigma]. |