Changes between Version 3 and Version 4 of doc/tec/turbulence_parameterization


Ignore:
Timestamp:
Nov 19, 2018 4:49:53 PM (6 years ago)
Author:
gronemeier
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/turbulence_parameterization

    v3 v4  
    1 = Turbulence Paramereization =
     1\varepsilon\varepsilon= Turbulence Paramereization =
    22
    33[[NoteBox(warn,Page is under construction!)]]
    44
    55Since r????, PALM can be operated as a RANS (Reynolds-averaged Navier-Stokes) model.
    6 When running PALM as a RANS model, a different turbulence closure is used compared to the LES model where the turbulence kinetic energy (TKE) ''e'' is completely parameterized.
     6When running PALM as a RANS model, a different turbulence closure is used compared to the LES model where the turbulence kinetic energy (TKE) //e// is completely parameterized.
    77
    88Two different turbulence models are available:
    9 * TKE-l model
    10 * [#tkee_model TKE-ε model]
     9* [#tkel_model TKE-l model],
     10* [#tkee_model TKE-ε model],
     11which are described below.
    1112
    12 == TKE-l model ==
     13== [=#tkel_model TKE-l model] ==
    1314
    14 Here the documentation of the TKE-l model shall follow...
     15The //TKE-l// model uses the following prognostic equation to calculate //e//:
     16{{{
     17#!Latex
     18\begin{equation*}
     19   \frac{\partial{e}}{\partial t} =
     20      - u_j\frac{\partial e}{\partial x_j}
     21      + K_\mathrm{m} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j}
     22      - \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z}
     23      + K_\mathrm{e} \frac{\partial^2 e}{\partial x_j^2}
     24      - \varepsilon.
     25\end{equation*}
     26}}}
     27where //K//,,m,,, //K//,,h,,, and //K//,,e,, are the eddy diffusivities of momentum and heat, and the diffusivity coefficient of the TKE, respectively, which are calculated via
     28{{{
     29#!Latex
     30\begin{align*}
     31   K_\mathrm{m} &= c_0 \ l \ \sqrt{e}, \\
     32   K_\mathrm{h} &= \frac{K_\mathrm{m}}{\mathrm{Pr}}, \\
     33   K_\mathrm{e} &= \frac{K_\mathrm{m}}{\sigma_e},
     34\end{align*}
     35}}}
     36with //σ//,,e,, = 1.
     37This can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_sigma rans_const_sigma].
     38Here, //Pr// and //l// denote the Prandtl number and mixing length, respectively.
     39The model constant //c//,,0,, is set to 0.55 by default, but can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_c rans_const_c].
     40The mixing length is defined using the mixing length //l//,,B,, according to Blackadar (1962) and the Dyer-Businger function Φ,,m,,
     41{{{
     42#!Latex
     43\begin{align*}
     44   l &= \min\left( \frac{l_\mathrm{B}}{\Phi_\mathrm{m}}, l_\mathrm{wall} \right), \\
     45   l_\mathrm{B} &= \dfrac{\kappa z}{1+\frac{\kappa z}{\lambda}}, \\
     46   \lambda &= 2.7 \cdot 10^{-4} |U_g| f, \\
     47   \Phi_\mathrm{m} &= 1+5\frac{z}{L},
     48\end{align*}
     49}}}
     50where //κ//, //f//, //U//,,g,,, //L//, and //z// denote the von-Karman constant, the Coriolis parameter, the geostrophic wind, the Monin-Obukhov length, and the height, respectively.
    1551
    16 == TKE-e model [=#tkee_model]
     52The dissipation rate of the TKE, ε, is calculated via
     53{{{
     54#!Latex
     55\begin{equation*}
     56   \varepsilon = c_0^3 \ e \ \frac{\sqrt{e}}{l}.
     57\end{equation*}
     58}}}
    1759
     60== [=#tkee_model TKE-ε model] ==
    1861
    19 Here the documentation of the TKE-e model shall follow...
     62The TKE-ε model uses an additional prognostic equation to calculate the dissipation rate ε of the TKE:
     63{{{
     64#!Latex
     65\begin{equation*}
     66   \frac{\partial{\varepsilon}}{\partial t} =
     67      - u_j\frac{\partial \varepsilon}{\partial x_j}
     68      + c_1 \frac{\varepsilon}{e} K_\mathrm{m} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j}
     69      - c_3 \frac{\varepsilon}{e} \frac{g}{\theta_{\mathrm{v},0}} K_\mathrm{h} \frac{\partial \theta_{\mathrm{v},0}}{\partial z}
     70      + K_\varepsilon \frac{\partial^2 \varepsilon}{\partial x_j^2}
     71      - c_2 \frac{\varepsilon^2}{e}.
     72\end{equation*}
     73}}}
     74The diffusivity coefficient //K//,,ε,, is defined as
     75{{{
     76#!Latex
     77\begin{equation*}
     78   K_\varepsilon = \frac{K_\mathrm{m}}{\sigma_\varepsilon}
     79\end{equation*}
     80}}}
     81with //σ//,,ε,, = 1.3.
     82This can be altered via the namelist parameter [/wiki/doc/app/inipar#rans_const_sigma rans_const_sigma].