Changes between Version 2 and Version 3 of doc/tec/lpm


Ignore:
Timestamp:
Jun 23, 2016 4:31:28 PM (9 years ago)
Author:
Giersch
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/lpm

    v2 v3  
    4747}}}
    4848considering Stoke's drag, gravity and buoyancy (on the right-hand side, from left to right). Note that this Eq. is solved analytically assuming all variables but ''u'',,p,i,, as constants for one time step. Here, ''u'',,i,,''(x'',,p,i,,'')'' is the velocity of air at the particles location gathered from the eight adjacent grid points of the LES by tri-linear interpolation (see
    49 Sect. [wiki:/doc/tec/particle particle code structure]).
     49Sect. [wiki:/doc/tec/particle particle code structure]). Since Stoke's drag is only valid for radii ''≤ 30 ''μm (e.g., [#rogers1989 Rogers and Yau, 1989]), a nonlinear correction is applied to the Stokes's drag relaxation time scale:
     50{{{
     51#!Latex
     52\begin{align*}
     53  & \tau_\mathrm{p}^{-1} =
     54  \frac{9\,\nu\,\rho_0}{2\,r^2\,\rho_{\mathrm{p},0}}\,\cdot\,\left(1 +
     55    0.15 \cdot {Re}_\mathrm{p}^{0.687} \right).
     56  \label{eq:lpm2}
     57\end{align*}
     58}}}
     59Here, ''r'' is the radius of the particle, ''ν = 1.461 x 10^-5^'' m^2^ s the molecular viscosity of air, and ''ρ'',,p,0,, the density of the particle. The particle Reynolds number is given by
     60{{{
     61#!Latex
     62\begin{align*}
     63  & {Re}_\mathrm{p}=\frac{2\,r\,\left|\,u_i(x_{\mathrm{p},i}) -
     64      u_{\mathrm{p},i}\,\right|}{\nu}.
     65\end{align*}
     66}}}
     67Following [#lamb1978 Lamb (1978)] and the concept of LES modeling, the Lagrangian velocity of a weightless particle can be split into
     68a resolved-scale contribution ''u'',,p,,^res^ and an SGS contribution ''u'',,p,,^sgs^:
     69{{{
     70#!Latex
     71\begin{align*}
     72 u_{\mathrm{p},i} = u_{\mathrm{p},i}^{\text{res}} +
     73 u_{\mathrm{p},i}^{\text{sgs}}\,.
     74\end{align*}
     75}}}
     76''u'',,p,i,,^res^ is determined by interpolation of the respective LES velocity components ''u'',,i,, to the position of the particle. The SGS part of the particle velocity at time ''t'' is given by
     77{{{
     78#!Latex
     79\begin{align*}
     80 u_{\mathrm{p},i}^{\text{sgs}}(t) = u_{\mathrm{p},i}^{\text{sgs}}(t -
     81 \Delta t_\mathrm{L}) + \mathrm{d} u_{\mathrm{p},i}^{\text{sgs}}\,,
     82\end{align*}
     83}}}
     84where d''u'',,p,i,,^sgs^  describes the temporal change of the SGS particle velocity during a time step of the LPM based on [#thomson1987 Thomson (1987)]. Note that the SGS part of ''u'',,p,i,, in the second equation of this section is always computed using the (1st-order) Euler
     85time-stepping scheme. [#weil2004 Weil et al. (2004)] developed a formulation of the Langevin equation under assumption of isotropic Gaussian turbulence in order to treat the SGS particle dispersion in terms of a stochastic differential equation. This equation reads as
     86{{{
     87#!Latex
     88\begin{align*}
     89  \mathrm{d}u_{\mathrm{p},i}^{\text{sgs}} = &-\frac{3 c_{\text{sgs}}
     90    C_\mathrm{L}\epsilon}{4}\frac{u_{\mathrm{p},i}^{\text{sgs}}}{e}
     91    \Delta t_\mathrm{L} + \frac{1}{2} \left(\frac{1}{e} \frac{\mathrm{d}
     92        e}{\Delta t_\mathrm{L}} u_{\mathrm{p},i}^{\text{sgs}} +
     93      \frac{2}{3}\frac{\partial e}{\partial x_i} \right) \Delta
     94    t_\mathrm{L} + \left(c_{\text{sgs}} C_\mathrm{L} \epsilon
     95    \right)^{\frac{1}{2}} \mathrm{d}\zeta_i\,
     96\end{align*}
     97}}}
     98and is used in PALM for the determination of the change in SGS particle velocities. Here, ''C'',,L,,'' = 3'' is a universal constant (''C'',,L,,'' = 4 ± 2'', see [#thomson1987 Thomson (1987)]). ''ζ'' is a vector composed of Gaussian-shaped random numbers, with each
     99component neither spatially nor temporally correlated. The factor
     100{{{
     101#!Latex
     102\begin{align*}
     103 c_\text{sgs} =
     104 \frac{\langle\,e\,\rangle}{\langle\,e_\text{res}\,\rangle +
     105   \langle\,e\,\rangle}\,,\quad 0 \leq c_\text{sgs} \leq 1\,,
     106\end{align*}
     107}}}
     108where ''e'',,res,, is the resolved-scale TKE as resolved by the numerical grid, assures that the temporal change of the modeled SGS
     109particle velocities is, on average (horizontal mean), smaller than the change of the resolved-scale particle velocities ([#weil2004 Weil et al., 2004]). Values of ''e'' and ''ε'' are provided by the SGS model described in Sect. [wiki:/doc/tec/sgs turbulence closure] (see Eqs. for ''∂e/∂t'' and for the dissipation rate ''ε'',respectively). The first term on the right-hand side of the Eq. for d''u'',,p,i,,^sgs^ represents the influence of the SGS particle velocity from the previous time step (i.e., inertial "memory"). This effect is considered by the Lagrangian time scale after [#weil2004 Weil et al. (2004)]:
     110{{{
     111#!Latex
     112\begin{align*}
     113  &
     114  \label{eq:LS5a}
     115  \tau_\mathrm{L} = \frac{4}{3}\frac{e}{c_{\text{sgs}}
     116    C_\mathrm{L}\epsilon}\,,
     117\end{align*}
     118}}}
     119which describes the time span during which ''u'',,p,,^sgs^''(t - Δt'',,L,,'')'' is correlated to ''u'',,p,,^sgs^''(t)''. The applied time step of the particle model hence must not be larger than τ,,L,,. In PALM, the particle time step is set to be smaller than ''τ'',,L,,'' / 40''. The second term on the right-hand side of the Eq. for d''u'',,p,i,,^sgs^ ensures that the assumption of well-mixed conditions by [#thomson1987 Thomson (1987)] is fulfilled on the subgrid scales. This term can be considered as drift correction, which shall prevent an over-proportional accumulation of particles in regions of weak turbulence (#rodean1996 Rodean, 1996). The third term on the right-hand side is of stochastic nature and describes the SGS diffusion of particles by a Gaussian random process. For a detailed derivation and discussion of
     120the Eq. for d''u'',,p,i,,^sgs^ see [#thomson1987 Thomson (1987)], [#rodean1996 Rodean (1996)] and [#weil2004 Weil et al. (2004)}.
     121
     122The required values of the resolved-scale particle velocity components, ''e'', and ''ε'' are obtained from the respective LES fields using the eight adjacent grid points of the LES and tri-linear interpolation on the current particle location (see Sect. [wiki:/doc/tec/particle particle code structure]). An exception is made in case of no-slip boundary conditions set for the resolved-scale horizontal wind components below the first vertical grid level above the surface. Here, the resolved-scale particle velocities are determined from MOST (see
     123Sect. [wiki:/doc/tec/bc boundary conditions]) in order to capture the logarithmic wind profile within the height interval of ''z'',,0,, to ''z'',,MO,,. The available values of ''u'',,∗,,,
     124{{{
     125#!Latex
     126$\overline{w^{\prime\prime}u^{\prime\prime}}_0$,
     127}}}
     128and
     129{{{
     130#!Latex
     131$\overline{w^{\prime\prime}v^{\prime\prime}}_0$
     132}}}
     133are first bi-linearly interpolated to the horizontal location of the particle. In a second step the velocities are determined using the Eqs. for ''u'',,∗,,, ''∂u/∂z'' and ''∂v/∂z'' (\ref{eq:most:begin})--(\ref{eq:most:end}). Resolved-scale horizontal
     134velocities of particles residing at height levels below $z_0$ are set
     135to zero. The LPM allows to switch off the transport by the SGS
     136velocities.
    50137
    51138== Boundary conditions and release of particles ==
    52139
    53140== Recent applications ==
     141
     142== References ==
     143* [=#rogers1989] '''Rogers RR, Yau MK.''' 1989. A short course in cloud physics. Pergamon Press. New York.
     144
     145* [=#lamb1978] '''Lamp RG.''' 1978. A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer. Atmos. Environ. 12: 1297–1304.
     146
     147* [=#thomson1987] '''Thomson DJ.''' 1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180: 529–556.
     148
     149* [=#weil2004] '''Weil JC, Sullivan PP, Moeng C-H.''' 2004. The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci. 61: 2877–2887.
     150
     151* [=#rodean1996] '''Rodean HC.''' 1996. Stochastic Lagrangian models of turbulent diffusion. Meteor. Mon. 26: 1–84. [http://dx.doi.org/10.1175/0065-9401-26.48.1 doi].
     152