Version 4 (modified by Giersch, 9 years ago) (diff) |
---|
This site is currently under construction!
Lagrangian cloud model (LCM)
The LCM is based on the formulation of the LPM (Sect. lagrangian particle model). For the LCM, however, the Lagrangian particles are representing droplets and aerosols. The droplet advection and sedimentation is given by the Eqs. for dup,i / dt and τp-1 in Sect. formulation of the LPM with ρp,0 = ρl,0. At present it is computationally not feasible to simulate a realistic amount of particles. A single Lagrangian particle thus represents an ensemble of identical particles (i.e., same radius, velocity, mass of solute aerosol) and is referred to as "super-droplet". The number of particles in this ensemble is referred to as the "weighting factor". For example, ql of a certain LES grid volume results from all Lagrangian particles located therein considering their individual weighting factor An:

with Np being the number of particles inside the grid volume of size ΔV, and rn being the radius of the particle. The concept of weighting factors and super-droplets in combination with LES has been also used similarly by Andrejczuk et al. (2208) and Shima et al. (2009) for warm clouds, as well as by Sölch and Kärcher (2010) for ice clouds.
Diffusional growth
Collision and coalescence
Recent applications
References
- Andrejczuk M, Reisner JM, Henson B, Dubey MK, Jeffery CA. 2008. The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?. J. Geophys. Res. 113: D19204. doi.
- Shima S-I, Kusano K, Kawano A, Sugiyama T, Kawahara S. 2009. The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Q. J. Roy. Meteor. Soc. 135: 1307–1320.
- Sölch I, Kärcher B. 2010. A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Q. J. Roy. Meteor. Soc. 136: 2074–2093.
Attachments (2)
-
07.png
(46.5 KB) -
added by Giersch 9 years ago.
Illustration of (a) the collision of a super-droplet with a super-droplet smaller in radius and (b) internal collisions of a single super-droplet
-
08.png
(62.9 KB) -
added by Giersch 9 years ago.
Distribution of droplets inside a shallow cumulus cloud simulated with PALM
Download all attachments as: .zip