Ignore:
Timestamp:
Jul 17, 2012 3:43:01 PM (12 years ago)
Author:
maronga
Message:

added/updated several tutorial files

Location:
palm/trunk/TUTORIAL/SOURCE
Files:
38 added
5 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/basic_equations.tex

    r915 r945  
    44
    55\usepackage[utf8]{inputenc}
    6 \usepackage[T1]{fontenc}
     6\usepackage{ngerman}
    77\usepackage{pgf}
    88\usetheme{Dresden}
     
    7878      \item \onslide<5->Continuity equation
    7979      \begin{equation*}
    80          \frac{\partial p}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k}
     80         \frac{\partial \rho}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k}
    8181      \end{equation*}
    8282   \end{itemize}
     
    8686\begin{frame}
    8787   \frametitle{Boussinesq Approximation}
    88    \small
     88   \footnotesize
    8989   \begin{itemize}
    9090      \item \onslide<2->Splitting thermodynamic variables into a basic state $\psi_0$ and a variation $\psi^{*}$
    91       \begin{equation*}
    92          p(x,y,z,t) = p_0(x,y,z,t) + p^{*}(x,y,z,t)\hspace{22mm}
    93       \end{equation*}
    94       \begin{equation*}
    95          \rho(x,y,z,t) = \rho_0(x,y,z,t) + \rho^{*}(x,y,z,t) ;
    96          \hspace{5mm} \psi^{*} << \psi_0
    97       \end{equation*}
     91      \begin{align*}
     92         T(x,y,z,t) &= T_0(x,y,z) &+& T^{*}(x,y,z,t)&&\\
     93         p(x,y,z,t) &= p_0(x,y,z) &+& p^{*}(x,y,z,t)&&\\
     94         \rho(x,y,z,t) &= \rho_0(z) &+& \rho^{*}(x,y,z,t);& &
     95         &\psi^{*} << \psi_0&
     96      \end{align*}
    9897      \item \onslide<3->Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq)
    9998      \begin{equation*}
     
    104103      \item \onslide<4->Equation of state
    105104      \begin{equation*}
    106          p_0 = \rho_0 R T_0 \rightarrow \ln{p_0} = \ln{\rho_0} + \ln{R} + \ln{T_0} \rightarrow \frac{\partial p_0}{p_0} = \frac{\partial \rho_0}{\rho_0} + \frac{\partial T_0}{T_0}
    107       \end{equation*}
    108       \begin{equation*}
    109          \frac{\Delta p_0}{p_0} \approx \frac{\Delta \rho_0}{\rho_0} +
    110          \frac{\Delta T_0}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx
     105         p = \rho R T \rightarrow \ln{p} = \ln{\rho} + \ln{R} + \ln{T} \rightarrow \frac{d p}{p} = \frac{d \rho}{\rho} + \frac{d T}{T}
     106      \end{equation*}
     107      \begin{equation*}
     108         \frac{\Delta p}{p_0} \approx \frac{\Delta \rho}{\rho_0} +
     109         \frac{\Delta T}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx
    111110         \frac{\rho^{*}}{\rho_0} + \frac{T^{*}}{T_0} \hspace{10mm}
    112111         \frac{\rho^{*}}{\rho_0} \approx - \frac{T^{*}}{T_0} \hspace{10mm}
     
    339338      \textbf{Literature:}\\
    340339      \textbf{Sagaut, P., 2001:} Large eddy simulation for incompressible flows: An introduction. Springer Verlag, Berlin/Heidelberg/New York, 319 pp.\\
    341       \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404.
     340      \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404.\\
    342341   \end{scriptsize}
    343342\end{frame}
     
    361360      \onslide<5->
    362361      \begin{flalign*}
    363          &\frac{\partial \overline{\theta}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}&
     362         &\frac{\partial \overline{q}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_{w}&
    364363      \end{flalign*}
    365364      \item<6->
     
    396395         \end{tiny}
    397396         $\tau_{ki} = \overline{u_k u_i} - \overline{u_k}\,\overline{u_i}$\\
    398          $H_{k} = \overline{u_k \theta_k} - \overline{u_k}\,\overline{\theta_i}$\\
    399          $W_{k} = \overline{u_k q_k} - \overline{u_k}\,\overline{q_k}$
     397         $H_{k} = \overline{u_k \theta} - \overline{u_k}\,\overline{\theta}$\\
     398         $W_{k} = \overline{u_k q} - \overline{u_k}\,\overline{q}$
    400399         };
    401400      \end{tikzpicture}
  • palm/trunk/TUTORIAL/SOURCE/fundamentals_of_les.tex

    r915 r945  
    1414\usepackage{xmpmulti}
    1515\usepackage{tikz}
     16\usepackage{pdfcomment}
    1617\usetikzlibrary{shapes,arrows,positioning}
    1718\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
  • palm/trunk/TUTORIAL/SOURCE/non_cyclic_boundary_conditions.tex

    r915 r945  
    7171   \end{itemize}   
    7272\end{frame}
     73
     74\section{Motivation}
     75\subsection{Motivation}
    7376
    7477%Folie 3
     
    114117\end{frame}
    115118
     119\section{How to Create a Turbulent Inflow}
     120\subsection{How to Create a Turbulent Inflow}
     121
    116122% Folie 5
    117123\begin{frame}
     
    136142\begin{frame}
    137143   \frametitle{How to Create a Turbulent Inflow (II)}
    138    \small
     144   \footnotesize
    139145   Initial  turbulence is created by a precursor run with cyclic boundary conditions and much smaller domain size than used for the main run.
    140    \tikzstyle{line} = [draw, yellow, thick, dashed, -latex']   
     146   \tikzstyle{line} = [draw, blue, thick, dashed, -latex']   
    141147   \begin{tikzpicture}     
    142148      \uncover<1>{\node(picture) {\includegraphics[width=0.4\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_1.png}};}
     
    148154         \begin{itemize}
    149155         \item<4->{When the precursor run is finished, data of the last timestep are stored on disc.}
    150          \item<5->{These data are then read by the main run and repeatedly mapped to the main run domain, unless it is completely filled.}
     156         \item<5->{These data are then read by the main run and repeatedly mapped to the main run domain, until it is completely filled.}
    151157         \end{itemize}}};
    152158     \uncover<6>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_4.png}};}
     
    200206\end{frame}
    201207
     208\section{Implementation in PALM}
     209\subsection{Implementation in PALM}
     210
    202211% Folie 8
    203212\begin{frame}
     
    205214   \textbf{Status of availability:}
    206215   \begin{itemize}
    207       \item<2->{Non-cyclic boundary conditions along \textbf{one} of the horizontal directions (x \textbf{or} y).}
     216      \item<2->{Non-cyclic boundary conditions along \textbf{one} of the horizontal directions (\textit{x} \textbf{or} \textit{y}).}
    208217      \begin{itemize}
    209          \item<3->{Dirichlet conditions at inflow (stationary vertical profiles, u(z), v(z), pt(z), q(z), w=0).}
     218         \item<3->{Dirichlet conditions at inflow (stationary vertical profiles, \textit{u}(\textit{z}), \textit{v}(\textit{z}),
     219                   \textit{pt}(\textit{z}), \textit{q}(\textit{z}), \textit{w}=0).}
    210220         \item<4->{Radiation conditions at outflow. Tendencies at the boundary are replaced by e.g.}
    211221      \end{itemize}     
     
    234244\end{frame}
    235245
     246\section{Current Applications}
     247\subsection{Current Applications}
     248
     249
    236250% Folie 10
    237251\begin{frame}
     
    260274   \end{center}
    261275\end{frame}
     276
     277\section{How to set up}
     278\subsection{How to set up}
    262279
    263280% Folie 12
     
    351368\end{frame}
    352369
     370\section{Final remarks}
     371\subsection{Final remarks}
     372
    353373% Folie 16
    354374\begin{frame}
  • palm/trunk/TUTORIAL/SOURCE/program_control.tex

    r915 r945  
    4848% jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet)
    4949\begin{document}
    50 
     50% Folie 1
    5151\begin{frame}
    5252\titlepage
    5353\end{frame}
    5454
    55 % Folie 1
     55% Folie 2
    5656\begin{frame}
    5757   \frametitle{Steering of PALM and Interpreting the Output}
     
    6262\end{frame}
    6363
    64 % Folie 2
    65 
     64% Folie 3
    6665\begin{frame}
    6766   \frametitle{PALM Input/Output Overview (I)}
     
    8584    \uncover<5->{\node[red] (restartdata2) [below=4.5cm of restartdata1] {restart data};}
    8685
    87     \uncover<3->{\node[yellow1] (runcontrol) [below=1.0cm of palm]{run control output\\ (parameter settings + \\ timestep informations)};}
    88     \uncover<3->{\node[yellow2] (headerfile) [left=0.5cm of runcontrol]{header file};}
     86    \uncover<4->{
     87    \node[orange1] (timeseries) [below left=4.4cm of palm] {time series};
     88    \node[orange2] (2dsectionstime) [right=0.5cm of timeseries] {2D sections \\ time averaged};
     89    \node[orange2] (3ddatatime) [right=0.39cm of 2dsectionstime] {3D data \\ time averaged};
     90
     91    \path<4->[line] (palm) -- (timeseries);
     92    \path<4->[line] (palm) -- (2dsectionstime);
     93    \path<4->[line] (palm) -- (3ddatatime);
     94   
     95    \node[orange1] (1dmean) [above=0.2cm of timeseries] {1D mean \\ profiles};
     96    \node[orange1] (2dsections) [right=0.5cm of 1dmean] {2D sections};
     97    \node[orange1] (3ddata) [right=0.5cm of 2dsections] {3D data};}
     98
     99    \path<4->[line] (palm) -- (1dmean);
     100    \path<4->[line] (palm) -- (2dsections);
     101    \path<4->[line] (palm) -- (3ddata);
     102
     103    \uncover<3->{\node[yellow2] (headerfile) [above=0.5cm of 2dsections]{header file};}
     104    \uncover<3->{\node[yellow1] (runcontrol) [right=0.5cm of headerfile]{run control output\\ (parameter settings + \\ timestep informations)};}
    89105    \uncover<3->{\node[yellow2] (cpumeasure) [left=0.5cm of headerfile]{cpu\\ measurements};}
    90106
    91     \uncover<4->{\node[orange1] (1dmean) [below=0.5cm of cpumeasure] {1D mean \\ profiles};
    92     \node[orange1] (2dsections) [right=0.5cm of 1dmean] {2D sections};
    93     \node[orange1] (3ddata) [right=0.5cm of 2dsections] {3D data};
    94 
    95     \node[orange1] (timeseries) [below=0.2cm of 1dmean] {time series};
    96     \node[orange2] (2dsectionstime) [right=0.5cm of timeseries] {2D sections \\ time averaged};
    97     \node[orange2] (3ddatatime) [right=0.39cm of 2dsectionstime] {3D data \\ time averaged};}
    98 
    99     \node (program) [right=3.1cm of palm] {program};
    100     \uncover<2->{\node (steeringdata) [right=0.6cm of restartdata1] {steering data};}
    101     \uncover<3->{\node (run) [right=2.5cm of runcontrol] {run informations};}
    102     \uncover<4->{\node (analysis) [right=3.6cm of 3ddata] {analysis data};}
     107    \node (program) [right=2.8cm of palm] {program};
     108    \uncover<2->{\node (steeringdata) [right=0.45cm of restartdata1] {steering data};}
     109    \uncover<3->{\node (run) [right=2.7cm of runcontrol] {run informations};}
     110    \uncover<4->{\node (analysis) [right=3.8cm of 3ddata] {analysis data};}
    103111
    104112    \uncover<7->{
     
    114122    \path<3->[line] (palm) -- (headerfile);
    115123    \path<3->[line] (palm) -- (runcontrol);
    116     \path<4->[line] (palm) -- (1dmean);
    117     \path<4->[line] (palm) -- (2dsections);
    118     \path<4->[line] (palm) -- (3ddata);
    119     \path<4->[line] (palm) -- (timeseries);
    120     \path<4->[line] (palm) -- (2dsectionstime);
    121     \path<4->[line] (palm) -- (3ddatatime);
    122124    \path<5->[line] (palm) -- (restartdata2);
    123125    \path<6->[line] (restartdata1) -- (palm);
     
    126128\end{frame}
    127129
    128 % Folie 3
    129 \begin{frame}
    130    \frametitle{PALM Input/Output Overview (I)}
     130% Folie 4
     131\begin{frame}
     132   \frametitle{PALM Input/Output Overview (II)}
    131133   \tikzstyle{start} = [ellipse, draw, fill=green!20, font=\small]   
    132134   \tikzstyle{yellow1} = [rectangle, draw, fill=yellow!20, text width=0.2\textwidth, font=\Tiny]
     
    161163    \node[orange2] (3ddatatime) [right=0.39cm of 2dsectionstime] {3D data \\ time averaged};
    162164
    163     \node (program) [right=3.1cm of palm] {program};
    164     \node (steeringdata) [right=0.6cm of restartdata1] {steering data};
     165    \node (program) [right=2.8cm of palm] {program};
     166    \node (steeringdata) [right=0.8cm of restartdata1] {steering data};
    165167    \node (run) [right=2.5cm of runcontrol] {run informations};
    166168    \node (analysis) [right=3.6cm of 3ddata] {analysis data};
     
    174176
    175177    %--------- neue Ordner
     178    \uncover<2->{
    176179    \node[yellow4] (currentversion) [above=0.6cm of parameterfile] {current\_version/};
    177180    \node[yellow4] (jobs) [right=0.3cm of currentversion] {JOBS/};
     
    180183    \node[yellow4] (monitoring) [below=0.1cm of input] {MONITORING/};
    181184    \node[yellow4] (output) [below=0.1cm of monitoring] {OUTPUT/};
    182     \node[yellow4] (restart) [below=0.1cm of output] {RESTART\_DATA/};
    183 
    184     \node[yellow4] (input2) [below=0.1cm of parameterfile] {INPUT/};
    185     \node[yellow4] (monitoring2) [above=0.6cm of headerfile] {MONITORING/};
    186     \node[yellow4] (restart2) [below=0.1cm of restartdata1] {RESTART\_DATA/};
    187     \node[yellow4] (tmpdata) [below=0.1cm of restart2] {/tmp\_data\_catalog/};
    188     \node[yellow4] (output2) [below=0.5cm of restartdata2] {OUTPUT/};
    189 
    190     \path[line] (currentversion) -- (jobs);
    191     \path[line] (jobs) -- (runidentifier);
    192     \path[line] (runidentifier.east) -- (input.west);
    193     \path[line] (runidentifier.east) -- (monitoring.west);
    194     \path[line] (runidentifier.east) -- (output.west);
    195     \path[line] (runidentifier.east) -- (restart.west);
    196 
    197     \draw[decorate,decoration={brace,raise=6pt,amplitude=9pt},thick]
     185    \node[yellow4] (restart) [below=0.1cm of output] {RESTART\_DATA/};}
     186
     187    \uncover<3->{\node[yellow4] (input2) [below=0.1cm of parameterfile] {INPUT/};}
     188    \uncover<4->{\node[yellow4] (monitoring2) [above=0.6cm of headerfile] {MONITORING/};}
     189    \uncover<6->{\node[yellow4] (restart2) [below=0.1cm of restartdata1] {RESTART\_DATA/};}
     190    \uncover<7->{\node[yellow4] (tmpdata) [below=0.1cm of restart2] {/tmp\_data\_catalog/};}
     191    \uncover<5->{\node[yellow4] (output2) [below=0.5cm of restartdata2] {OUTPUT/};}
     192
     193    \path[line]<2-> (currentversion) -- (jobs);
     194    \path[line]<2-> (jobs) -- (runidentifier);
     195    \path[line]<2-> (runidentifier.east) -- (input.west);
     196    \path[line]<2-> (runidentifier.east) -- (monitoring.west);
     197    \path[line]<2-> (runidentifier.east) -- (output.west);
     198    \path[line]<2-> (runidentifier.east) -- (restart.west);
     199
     200    \draw<4->[decorate,decoration={brace,raise=6pt,amplitude=9pt},thick]
    198201       (-4.5,-0.95)--(-1,-0.95) ;
    199     \draw[decorate,decoration={brace,mirror,raise=5pt,amplitude=6pt},thick]
    200        (0.45,-3)--(0.45,-1.9) ;
    201 
    202 
    203 %     \path[line] (monitoring2.south) -- (cpumeasure.north);
    204 %     \path[line] (monitoring2.south) -- (headerfile.north);
    205 %     \path[line] (monitoring2.south) -- (runcontrol.north);
    206    
    207    \end{tikzpicture}
    208 \end{frame}
    209 
    210 %---------------------------------------------------
     202    \draw<5->[decorate,decoration={brace,mirror,raise=5pt,amplitude=6pt},thick]
     203       (0.45,-3)--(0.45,-1.9) ;   
     204   \end{tikzpicture}
     205\end{frame}
     206
     207% Folie 5
    211208\begin{frame}
    212209   \frametitle{The Parameter File}
    213    \tikzstyle{box} = [rectangle, draw, text width=\textwidth, font=\tiny]
     210   \tikzstyle{box} = [rectangle, draw, text width=0.9\textwidth, font=\tiny]
     211   \tikzstyle{line} = [draw, thick, -latex']
    214212   \footnotesize
    215213   \begin{itemize}
    216       \item{Physical and numerical features of a PALM run (e.g. initial and boundary conditions, numerical methods)
     214      \item<1->{Physical and numerical features of a PALM run (e.g. initial and boundary conditions, numerical methods)
    217215            are controlled by a so called \textbf{parameter file} which uses FORTRAN-NAMELIST syntax.}
    218       \item{General structure of a FORTRAN-NAMELIST file}
     216      \item<2->{General structure of a FORTRAN-NAMELIST file}
    219217   \end{itemize}   
    220    \begin{tikzpicture}[auto]     
     218   \begin{tikzpicture}[auto] 
     219   \uncover<3->{   
    221220      \node[box](firstbox){ \begin{tabbing}       
    222          \&abcd \quad \=no\_of\_eggs = 100, litres\_of\_milk = 50.0, \= \\
    223                  \>kilos\_of\_butter = 20.0, \> /  \end{tabbing}};       
    224    \end{tikzpicture}
    225    \begin{itemize}
    226       \item{This file can be read from a FORTRAN program in the following way:}
    227    \end{itemize}
    228    \begin{tikzpicture}[auto, node distance=0]     
     221         \quad \&abcd \quad \=no\_of\_eggs = 100, litres\_of\_milk = 50.0, \= \\
     222                 \>kilos\_of\_butter = 20.0, \> /  \end{tabbing}}; 
     223   \node[font=\tiny] (leading_blank) at (-5,0.8) {\textbf{leading blank}};
     224   \node[font=\tiny] (namelist) at (-2,0.8) {\textbf{NAMELIST group}};
     225   \node[font=\tiny] (terminating) at (3,0.8) {\textbf{terminating character}};
     226   \path[line] (-5,0.7) -- (-4.8,0); 
     227   \path[line] (-2,0.7) -- (-4,0);
     228   \path[line] (3,0.7) -- (0.2,-0.3);}
     229   \end{tikzpicture}
     230   \begin{itemize}
     231      \item<4->{This file can be read from a FORTRAN program in the following way:}
     232   \end{itemize}
     233   \begin{tikzpicture}[auto, node distance=0]
     234   \uncover<4->{     
    229235      \node[box](secondbox){ \begin{tabbing}
    230236         INTEGER :: \=no\_of\_eggs = 30 \\
    231237         REAL :: \> litres\_of\_milk = 0.0, kilos\_of\_butter, kilos\_of\_cream = 33.0 \\
     238         \\
    232239         NAMELIST /abcd/ \quad no\_of\_eggs, litres\_of\_milk, kilos\_of\_butter, kilos\_of\_cream \\
    233          \par\bigskip
     240         \\
    234241         OPEN ( 1, FILE='Filename' ) \\
    235          READ ( 1, abcd ) \end{tabbing}};       
     242         \\
     243         READ ( 1, abcd ) \end{tabbing}};}       
    236244   \end{tikzpicture}
    237245   \normalsize
    238246\end{frame}
    239247
    240 
    241 %-----------------------------------------------------
     248% Folie 6
     249\begin{frame}
     250   \frametitle{An Example of PALM - NAMELIST Input}
     251   \tikzstyle{box} = [rectangle, draw, text width=\textwidth, font=\tiny]
     252   \begin{tikzpicture}[auto, node distance=0]     
     253      \node[box](box){ \begin{tabbing}
     254         \&inipar \=nx = 39, ny = 39, nz = 40, \\
     255                  \>dx = 50.0, dy = 50.0, dz = 50.0, \\
     256                  \\
     257                  \>initializing\_actions = 'set\_constant\_profiles', \\ 
     258                  \>ug\_surface = 0.0, vg\_surface = 0.0, \\
     259                  \\
     260                  \>pt\_vertical\_gradient  \qquad = 0.0, 1.0, \\
     261                  \>pt\_vertical\_gradient\_level = 0.0, 800.0, \\
     262                  \\
     263                  \>surface\_heatflux = 0.1, bc\_pt\_b ='neumann', / \\
     264                  \\
     265                  \\
     266         \&d3par  \>end\_time = 3600.0, \\
     267                  \\
     268                  \>dt\_dopr = 900.0, averaging\_interval\_pr = 600.0, \\
     269                  \>data\_output\_pr = 'pt', 'u', 'v', / \\ \end{tabbing}};       
     270   \end{tikzpicture}
     271   \footnotesize
     272   \begin{itemize}
     273      \item<2->{There are two NAMELIST groups ({\tt \&inipar} and {\tt \&d3par}).}
     274      \item<3->{Assignments to parameters in {\tt\&inipar} are ignored within restart runs \\
     275            (exception: {\tt initializing\_actions} = {\tt'read\_restart\_data'} is obligatory for restart runs).}
     276      \item<4->{Values of {\tt \&d3par} parameters can be changed for restart runs.}
     277   \end{itemize}
     278\end{frame}
     279
     280% Folie 7
    242281\begin{frame}
    243282   \frametitle{The Run Control File}
    244283   \scriptsize
    245284   \begin{itemize}
    246       \item{For initial runs, the parameter settings and many additional informations about the run (header informations) are printed at the beginning of this file.}
     285      \item<1->{For initial runs, the parameter settings and many additional informations about the run (header informations) are printed at the beginning of this file.}
    247286      \item<2->{The parameter settings are followed by values of specific model variables for certain timesteps (one line for each timestep, the output intervall can be
    248287            controlled by run parameter {\tt dt\_run\_control}).}
    249288   \end{itemize}
    250    \onslide<3->{
    251    \textbf{Contents of this timestep output should be carefully checked after each run, because it allows a first control, if the model had run correctly, or if any
    252            errors have occurred!}}
     289   \onslide<3->{\textbf{Contents of this timestep output should be carefully checked after each run, because it allows a first control, if the model had run correctly, or if any
     290      errors have occurred!}}
     291   \par\bigskip
    253292   \includegraphics[width=1.6\textwidth]{program_control_figures/run_control_file.png}
    254293   \normalsize
    255294\end{frame}
    256295
    257 %-----------------------------------------------------
     296% Folie 8
    258297\begin{frame}
    259298   \frametitle{The Header File}
     
    271310\end{frame}
    272311
    273 %-------------------------------
     312% Folie 9
    274313\begin{frame}
    275314   \frametitle{CPU Measurements File}
     
    286325      \normalsize
    287326   \column{0.58\textwidth}
    288       \includegraphics[width=\textwidth]{program_control_figures/cpu_measurements_file.png}
     327      \includegraphics[width=1.1\textwidth]{program_control_figures/cpu_measurements_file.png}
    289328   \end{columns}
    290329\end{frame}
    291330
    292 %-----------------------------------------------------
     331% Folie 10
    293332\begin{frame}
    294333   \frametitle{Other Files}
     334   \small
    295335   \begin{itemize}
    296336      \item<1->{Data output files (1D profiles and timeseries, 2D cross sections, 3D volume data) are by default in \textbf{netCDF} format which is suitable to be processed by
    297             public domain graphics software like \textbf{ncview}, \textbf{ferret}, \textbf{ncl} (used by PALM group),\\
    298             \textbf{IDL}, etc. \\
     337            public domain graphics software like \textbf{ncview}, \textbf{ferret}, \textbf{ncl} (used by PALM group), \textbf{IDL}, etc. \\
     338            \par\bigskip
    299339            For a first look, {\tt ncview} is a convenient tool.}
    300340      \item<2->{{\tt ncdump} can be used to display the netCDF file contents in ASCII format ({\tt ncdump -c} displays only header informations).}
     
    303343\end{frame}
    304344
    305 %----------------------------------------------------
     345% Folie 11
    306346\begin{frame}
    307347   \frametitle{Steering by Unix Environment Variables}
    308    \footnotesize
     348   \scriptsize
    309349   Most features of PALM are controlled by the parameter file but a few are exclusively controlled by unix environment variables. The most important one is  {\tt write\_binary}. \\
     350   \par\bigskip
    310351   Setting \\
    311    \begin{centering} {\tt write\_binary = true} \end{centering} \\
    312    within the shell causes PALM to write binary data for restart runs at the end of a run.
    313    
    314    Setting of these environment variables is automatically done by  mrun. It generates a local file (named {\tt ENVPAR}) in FORTRAN-NAMELIST-format, which is then read by PALM. This file
    315    includes the following variables: \\
    316  
     352   \par\medskip
     353   {\centering \texttt{ write\_binary = true} \\
     354   \par\medskip
     355   within the shell causes PALM to write binary data for restart runs at the end of a run.}
     356   \par\bigskip
     357   \uncover<2->{Setting of these environment variables is automatically done by  {\tt mrun}. It generates a local file (named {\tt ENVPAR}) in FORTRAN-NAMELIST-format, which is then
     358   read by PALM. This file includes the following variables:} \\
     359   \par\bigskip
    317360   \tiny
    318    \begin{tabular}{|p{3cm}|p{5cm}|p{2cm}|} \hline
     361   \uncover<3->{
     362   \begin{tabular}{|p{3cm}|p{4cm}|p{3cm}|} \hline
    319363      \textbf{Variable}                 & \textbf{Meaning} & \textbf{Value set by {\tt mrun}-option} \\
    320364      \hline
     
    323367      {\tt run\_identifier}             & identification string for the run    & {\tt -d}    \\
    324368      {\tt tasks\_per\_node}            & number of MPI tasks to be started on each node     & {\tt -T}     \\
    325       {\tt write\_binary}               & switch for writing binary data to be used for restart runs     & {\tt -r} (+setting in configuration file {\tt .mrun.config)}       \\
     369      {\tt write\_binary}               & switch for writing binary data to be used for restart runs     & {\tt -r} (+setting in configuration file {\tt .mrun.config)}  \\
    326370      \hline
    327    \end{tabular}
     371   \end{tabular}}
    328372   \normalsize
    329373\end{frame}
    330374
    331 %-----------------------------------------
     375% Folie 12
    332376\begin{frame}
    333377   \frametitle{PALM / netCDF Documentation}
  • palm/trunk/TUTORIAL/SOURCE/sgs_models.tex

    r915 r945  
    1919\usepackage{amssymb}
    2020\usepackage{multicol}
    21 \usepackage{float}
     21\usepackage{pdfcomment}
    2222
    2323\institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover}
     
    4343\author{Siegfried Raasch}
    4444
    45 % Notes:
    46 % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet.
    47 % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet)
    4845\begin{document}
    4946
     
    167164
    168165
    169 \section{Deardoff Modification}
    170 \subsection{Deardoff Modification}
    171 
    172 % Folie 7
    173 \begin{frame}
    174    \frametitle{Deardorff (1980) Modification (Used in PALM) (I)}
    175    \footnotesize
    176    \onslide<1->{
    177       $ \nu_T = Cql = C_M \Lambda \sqrt{\bar{e}} $ \quad \textbf{with} \quad $ \bar{e} = \frac{\overline{u_i' u_i'}}{2} $ \quad \textbf{SGS-turbulent kinetic energy}}
    178    \normalsize
    179    \begin{itemize}
    180       \item<2->{The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.}
    181    \end{itemize}
    182    \onslide<3->{
    183       $ C_M = const. = 0.1 $
    184       \par\bigskip
    185       \scriptsize
    186       $ \Lambda = \begin{cases} min\left( 0.7 \cdot z, \Delta \right), & \textbf{unstable or neutral stratification} \\
    187                           min\left( 0.7 \cdot z, \Delta, 0.76 \sqrt{\bar{e}} \left[ \frac{g}{\Theta_0} \frac{\partial \bar{\Theta}}{\partial z} \right]^{-1/2} \right), & \textbf{stable                             stratification}
    188                   \end{cases} $     
    189       \normalsize
    190       \par\bigskip
    191       $ \Delta = \left( \Delta x \Delta y \Delta z \right)^{1/3} $ }
    192 \end{frame}
    193 
    194 % Folie 8
    195 \begin{frame}
    196    \frametitle{Deardorff (1980) Modification (Used in PALM) (II)}
    197    \begin{itemize}
    198       \item{SGS-TKE from prognostic equation}
    199    \end{itemize}
    200    $ \frac{\partial \bar{e}}{\partial t} = -\bar{u_k} \frac{\partial \bar{e}}{\partial x_k} - \tau_{ki} \frac{\partial \bar{u_i}}{\partial x_k} + \frac{g}{\Theta_0} \overline{u_3'             \Theta'} - \frac{\partial}{\partial x_k} \left\{ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right\} - \epsilon $                                         
    201    \par\bigskip                                       
    202    $ \frac{\partial}{\partial x_k} \left[ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right] = - \frac{\partial}{\partial x_k} \nu_e \frac{\partial \bar{e}}{\partial x_k} $
    203    \par\bigskip
    204    $ \nu_e = 2 \nu_T $
    205    \par\bigskip
    206    $ \epsilon = C_{\epsilon} \frac{\bar{e}^{3/2}}{\Lambda} \qquad \qquad C_{\epsilon} = 0.19 + 0.74\frac{\Lambda}{\Delta} $
    207 \end{frame}
    208 
    209 % Folie 9
    210 \begin{frame}
    211    \frametitle{Deardorff (1980) Modification (Used in PALM) (III)}
    212    \begin{itemize}
    213       \item{There are still problems with this parameterization:}
    214       \begin{itemize}
    215          \item[-]<2->{The model overestimates the velocity shear near the wall.}
    216          \item[-]<3->{$\textrm{C}_\mathrm{M}$ is still a constant but actually varies for different types of flows.}
    217          \item[-]<4->{Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.}
    218       \end{itemize}
    219       \item<5->{Several other SGS models have been developed:}
    220       \begin{itemize}
    221          \item[-]<5->{Two part eddy viscosity model (Sullivan, et al.)}
    222          \item[-]<6->{Scale similarity model (Bardina et al.)}
    223          \item[-]<7->{Backscatter model (Mason)}
    224       \end{itemize}
    225       \item<8->{However, for fine grid resolutions ($\textrm{E}_\mathrm{SGS} << \ \textrm{E}$) LES results become almost independent
    226                from the different models (Beare et al., 2006, BLM).}
    227    \end{itemize}
    228 \end{frame}
    229 
    230 
    231 \section{Summary / Important Points for Beginners}
    232 \subsection{Summary / Important Points for Beginners}
    233 
    234 % Folie 10
    235 \begin{frame}
    236    \frametitle{Summary / Important Points for Beginners (I)}
    237    \begin{columns}[c]
    238    \column[T]{0.4\textwidth}
    239       \includegraphics<2-7>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_2.png}   
    240       \includegraphics<8>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_8.png}
    241       \includegraphics<9>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_9.png}
    242       \includegraphics<10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_10.png}
    243       \onslide<8-10>{\begin{flushright} \begin{tiny} after Schatzmann and Leitl (2001) \end{tiny} \end{flushright}}             
    244    \column[T]{0.2\textwidth}
    245       \vspace{0.9cm}
    246       \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png}
    247       \par
    248       \onslide<8->{\begin{small} fluctuations (\textbf{u},c) \end{small}}
    249       \par\bigskip
    250       \thicklines
    251       \onslide<9->{\mbox{\line(6,0){5} \, \line(1,0){5} \, \line(1,0){5} \quad \begin{small} {critical concentration level} \end{small}}}
    252       \vspace{1cm}
    253      
    254       \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png}
    255       \par
    256       \onslide<8->{\begin{small} smooth result \end{small}}   
    257    \column[T]{0.4\textwidth}     
    258       \includegraphics<1-2>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_1.png}
    259       \includegraphics<3>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_3.png}
    260       \includegraphics<4>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_4.png}
    261       \includegraphics<5-10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_5.png}
    262       \vspace{1.3cm}
    263       \includegraphics<6>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_6.png}
    264       \uncover<7->{\includegraphics[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_7.png}}       
    265    \end{columns}
    266 \end{frame}
    267 
    268 % Folie 11
    269 \begin{frame}
    270    \frametitle{Summary / Important Points for Beginners (II)}
    271     For an LES it always has to be guaranteed that the main energy containing eddies of the respective
    272     turbulent flow can really be simulated by the numerical model:     
    273     \begin{itemize}
    274        \item<2->{The grid spacing has to be fine enough.}
    275        \item<3->{$\textrm{E}_\mathrm{SGS} < (<<) \ \textrm{E} $}
    276        \item<4->{The inflow/outflow boundaries must not effect the flow turbulence \\
    277                 (therefore cyclic boundary conditions are used in most cases).}
    278        \item<5->{In case of homogeneous initial and boundary conditions, the onset of turbulence
    279                   has to be triggered by imposing random fluctuations.}
    280        \item<6->{Simulations have to be run for a long time to reach a stationary state and stable statistics.}
    281     \end{itemize}     
    282 \end{frame}
    283 
    284 
    285 \section{Example Output}
    286 \subsection{Example Output}
    287 
    288 % Folie 12
    289 \begin{frame}
    290    \frametitle{Example Output (I)}
    291    \begin{itemize}
    292       \item{LES of a convective boundary layer}
    293    \end{itemize}
    294    \includegraphics<1>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_1.png}
    295    \includegraphics<2>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_2.png}
    296    \includegraphics<3>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_3.png}
    297    \includegraphics<4>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_4.png}
    298    \includegraphics<5>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_5.png}
    299    \includegraphics<6>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_6.png}
    300    \includegraphics<7>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_7.png}
    301 \end{frame}
    302 
    303 % Folie 13
    304 \begin{frame}
    305    \frametitle{Example Output (II)}
    306    \begin{itemize}
    307       \item{LES of a convective boundary layer}
    308    \end{itemize}
    309    \begin{center}
    310       \includegraphics[width=0.8\textwidth]{sgs_models_figures/Example_output_2.png}
    311       power spectrum of vertical velocity
    312    \end{center}
    313 \end{frame}
    314 
    315 % Folie 14
    316 \begin{frame}
    317    \frametitle{Some Symbols}
    318    \begin{columns}[c]
    319       \column{0.6\textwidth}
    320       \begin{tabbing}
    321       $u_i \quad (i = 1,2,3)$ \quad \= velocity components \\
    322       $u,v,w$ \\
    323 
    324       \\
    325      
    326       $x_i \quad (i = 1,2,3)$ \> spatial coordinates \\
    327       $x,y,z$ \\
    328 
    329       \\
    330 
    331       $\Theta$ \> potential temperature \\ \\
    332 
    333       $\Psi$ \> passive scalar \\ \\
    334 
    335       $T$ \> actual Temperatur \\ \\
    336       \end{tabbing}
    337    \column{0.4\textwidth}
    338       \begin{tabbing}
    339       $\Phi = gz$  \quad \= geopotential \\ \\
    340 
    341       $p$ \> pressure \\ \\
    342 
    343       $\rho$ \> density \\ \\
    344 
    345       $f_i$ \> Coriolis Parameter \\ \\
    346 
    347       $\epsilon_{ijk}$ \> alternating symbol \\ \\
    348 
    349       $\nu, \nu_\Psi$ \> molecular diffusivity \\ \\
    350 
    351       $Q, Q_\Psi$ \> sources or sinks \\ \\
    352       \end{tabbing}
    353    \end{columns}
    354 \end{frame}
    355166\end{document}
Note: See TracChangeset for help on using the changeset viewer.