Ignore:
Timestamp:
Jul 17, 2012 3:43:01 PM (12 years ago)
Author:
maronga
Message:

added/updated several tutorial files

File:
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/basic_equations.tex

    r915 r945  
    44
    55\usepackage[utf8]{inputenc}
    6 \usepackage[T1]{fontenc}
     6\usepackage{ngerman}
    77\usepackage{pgf}
    88\usetheme{Dresden}
     
    7878      \item \onslide<5->Continuity equation
    7979      \begin{equation*}
    80          \frac{\partial p}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k}
     80         \frac{\partial \rho}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k}
    8181      \end{equation*}
    8282   \end{itemize}
     
    8686\begin{frame}
    8787   \frametitle{Boussinesq Approximation}
    88    \small
     88   \footnotesize
    8989   \begin{itemize}
    9090      \item \onslide<2->Splitting thermodynamic variables into a basic state $\psi_0$ and a variation $\psi^{*}$
    91       \begin{equation*}
    92          p(x,y,z,t) = p_0(x,y,z,t) + p^{*}(x,y,z,t)\hspace{22mm}
    93       \end{equation*}
    94       \begin{equation*}
    95          \rho(x,y,z,t) = \rho_0(x,y,z,t) + \rho^{*}(x,y,z,t) ;
    96          \hspace{5mm} \psi^{*} << \psi_0
    97       \end{equation*}
     91      \begin{align*}
     92         T(x,y,z,t) &= T_0(x,y,z) &+& T^{*}(x,y,z,t)&&\\
     93         p(x,y,z,t) &= p_0(x,y,z) &+& p^{*}(x,y,z,t)&&\\
     94         \rho(x,y,z,t) &= \rho_0(z) &+& \rho^{*}(x,y,z,t);& &
     95         &\psi^{*} << \psi_0&
     96      \end{align*}
    9897      \item \onslide<3->Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq)
    9998      \begin{equation*}
     
    104103      \item \onslide<4->Equation of state
    105104      \begin{equation*}
    106          p_0 = \rho_0 R T_0 \rightarrow \ln{p_0} = \ln{\rho_0} + \ln{R} + \ln{T_0} \rightarrow \frac{\partial p_0}{p_0} = \frac{\partial \rho_0}{\rho_0} + \frac{\partial T_0}{T_0}
    107       \end{equation*}
    108       \begin{equation*}
    109          \frac{\Delta p_0}{p_0} \approx \frac{\Delta \rho_0}{\rho_0} +
    110          \frac{\Delta T_0}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx
     105         p = \rho R T \rightarrow \ln{p} = \ln{\rho} + \ln{R} + \ln{T} \rightarrow \frac{d p}{p} = \frac{d \rho}{\rho} + \frac{d T}{T}
     106      \end{equation*}
     107      \begin{equation*}
     108         \frac{\Delta p}{p_0} \approx \frac{\Delta \rho}{\rho_0} +
     109         \frac{\Delta T}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx
    111110         \frac{\rho^{*}}{\rho_0} + \frac{T^{*}}{T_0} \hspace{10mm}
    112111         \frac{\rho^{*}}{\rho_0} \approx - \frac{T^{*}}{T_0} \hspace{10mm}
     
    339338      \textbf{Literature:}\\
    340339      \textbf{Sagaut, P., 2001:} Large eddy simulation for incompressible flows: An introduction. Springer Verlag, Berlin/Heidelberg/New York, 319 pp.\\
    341       \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404.
     340      \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404.\\
    342341   \end{scriptsize}
    343342\end{frame}
     
    361360      \onslide<5->
    362361      \begin{flalign*}
    363          &\frac{\partial \overline{\theta}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}&
     362         &\frac{\partial \overline{q}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_{w}&
    364363      \end{flalign*}
    365364      \item<6->
     
    396395         \end{tiny}
    397396         $\tau_{ki} = \overline{u_k u_i} - \overline{u_k}\,\overline{u_i}$\\
    398          $H_{k} = \overline{u_k \theta_k} - \overline{u_k}\,\overline{\theta_i}$\\
    399          $W_{k} = \overline{u_k q_k} - \overline{u_k}\,\overline{q_k}$
     397         $H_{k} = \overline{u_k \theta} - \overline{u_k}\,\overline{\theta}$\\
     398         $W_{k} = \overline{u_k q} - \overline{u_k}\,\overline{q}$
    400399         };
    401400      \end{tikzpicture}
Note: See TracChangeset for help on using the changeset viewer.