Ignore:
Timestamp:
Jul 17, 2012 3:43:01 PM (12 years ago)
Author:
maronga
Message:

added/updated several tutorial files

File:
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/sgs_models.tex

    r915 r945  
    1919\usepackage{amssymb}
    2020\usepackage{multicol}
    21 \usepackage{float}
     21\usepackage{pdfcomment}
    2222
    2323\institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover}
     
    4343\author{Siegfried Raasch}
    4444
    45 % Notes:
    46 % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet.
    47 % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet)
    4845\begin{document}
    4946
     
    167164
    168165
    169 \section{Deardoff Modification}
    170 \subsection{Deardoff Modification}
    171 
    172 % Folie 7
    173 \begin{frame}
    174    \frametitle{Deardorff (1980) Modification (Used in PALM) (I)}
    175    \footnotesize
    176    \onslide<1->{
    177       $ \nu_T = Cql = C_M \Lambda \sqrt{\bar{e}} $ \quad \textbf{with} \quad $ \bar{e} = \frac{\overline{u_i' u_i'}}{2} $ \quad \textbf{SGS-turbulent kinetic energy}}
    178    \normalsize
    179    \begin{itemize}
    180       \item<2->{The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.}
    181    \end{itemize}
    182    \onslide<3->{
    183       $ C_M = const. = 0.1 $
    184       \par\bigskip
    185       \scriptsize
    186       $ \Lambda = \begin{cases} min\left( 0.7 \cdot z, \Delta \right), & \textbf{unstable or neutral stratification} \\
    187                           min\left( 0.7 \cdot z, \Delta, 0.76 \sqrt{\bar{e}} \left[ \frac{g}{\Theta_0} \frac{\partial \bar{\Theta}}{\partial z} \right]^{-1/2} \right), & \textbf{stable                             stratification}
    188                   \end{cases} $     
    189       \normalsize
    190       \par\bigskip
    191       $ \Delta = \left( \Delta x \Delta y \Delta z \right)^{1/3} $ }
    192 \end{frame}
    193 
    194 % Folie 8
    195 \begin{frame}
    196    \frametitle{Deardorff (1980) Modification (Used in PALM) (II)}
    197    \begin{itemize}
    198       \item{SGS-TKE from prognostic equation}
    199    \end{itemize}
    200    $ \frac{\partial \bar{e}}{\partial t} = -\bar{u_k} \frac{\partial \bar{e}}{\partial x_k} - \tau_{ki} \frac{\partial \bar{u_i}}{\partial x_k} + \frac{g}{\Theta_0} \overline{u_3'             \Theta'} - \frac{\partial}{\partial x_k} \left\{ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right\} - \epsilon $                                         
    201    \par\bigskip                                       
    202    $ \frac{\partial}{\partial x_k} \left[ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right] = - \frac{\partial}{\partial x_k} \nu_e \frac{\partial \bar{e}}{\partial x_k} $
    203    \par\bigskip
    204    $ \nu_e = 2 \nu_T $
    205    \par\bigskip
    206    $ \epsilon = C_{\epsilon} \frac{\bar{e}^{3/2}}{\Lambda} \qquad \qquad C_{\epsilon} = 0.19 + 0.74\frac{\Lambda}{\Delta} $
    207 \end{frame}
    208 
    209 % Folie 9
    210 \begin{frame}
    211    \frametitle{Deardorff (1980) Modification (Used in PALM) (III)}
    212    \begin{itemize}
    213       \item{There are still problems with this parameterization:}
    214       \begin{itemize}
    215          \item[-]<2->{The model overestimates the velocity shear near the wall.}
    216          \item[-]<3->{$\textrm{C}_\mathrm{M}$ is still a constant but actually varies for different types of flows.}
    217          \item[-]<4->{Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.}
    218       \end{itemize}
    219       \item<5->{Several other SGS models have been developed:}
    220       \begin{itemize}
    221          \item[-]<5->{Two part eddy viscosity model (Sullivan, et al.)}
    222          \item[-]<6->{Scale similarity model (Bardina et al.)}
    223          \item[-]<7->{Backscatter model (Mason)}
    224       \end{itemize}
    225       \item<8->{However, for fine grid resolutions ($\textrm{E}_\mathrm{SGS} << \ \textrm{E}$) LES results become almost independent
    226                from the different models (Beare et al., 2006, BLM).}
    227    \end{itemize}
    228 \end{frame}
    229 
    230 
    231 \section{Summary / Important Points for Beginners}
    232 \subsection{Summary / Important Points for Beginners}
    233 
    234 % Folie 10
    235 \begin{frame}
    236    \frametitle{Summary / Important Points for Beginners (I)}
    237    \begin{columns}[c]
    238    \column[T]{0.4\textwidth}
    239       \includegraphics<2-7>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_2.png}   
    240       \includegraphics<8>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_8.png}
    241       \includegraphics<9>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_9.png}
    242       \includegraphics<10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_10.png}
    243       \onslide<8-10>{\begin{flushright} \begin{tiny} after Schatzmann and Leitl (2001) \end{tiny} \end{flushright}}             
    244    \column[T]{0.2\textwidth}
    245       \vspace{0.9cm}
    246       \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png}
    247       \par
    248       \onslide<8->{\begin{small} fluctuations (\textbf{u},c) \end{small}}
    249       \par\bigskip
    250       \thicklines
    251       \onslide<9->{\mbox{\line(6,0){5} \, \line(1,0){5} \, \line(1,0){5} \quad \begin{small} {critical concentration level} \end{small}}}
    252       \vspace{1cm}
    253      
    254       \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png}
    255       \par
    256       \onslide<8->{\begin{small} smooth result \end{small}}   
    257    \column[T]{0.4\textwidth}     
    258       \includegraphics<1-2>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_1.png}
    259       \includegraphics<3>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_3.png}
    260       \includegraphics<4>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_4.png}
    261       \includegraphics<5-10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_5.png}
    262       \vspace{1.3cm}
    263       \includegraphics<6>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_6.png}
    264       \uncover<7->{\includegraphics[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_7.png}}       
    265    \end{columns}
    266 \end{frame}
    267 
    268 % Folie 11
    269 \begin{frame}
    270    \frametitle{Summary / Important Points for Beginners (II)}
    271     For an LES it always has to be guaranteed that the main energy containing eddies of the respective
    272     turbulent flow can really be simulated by the numerical model:     
    273     \begin{itemize}
    274        \item<2->{The grid spacing has to be fine enough.}
    275        \item<3->{$\textrm{E}_\mathrm{SGS} < (<<) \ \textrm{E} $}
    276        \item<4->{The inflow/outflow boundaries must not effect the flow turbulence \\
    277                 (therefore cyclic boundary conditions are used in most cases).}
    278        \item<5->{In case of homogeneous initial and boundary conditions, the onset of turbulence
    279                   has to be triggered by imposing random fluctuations.}
    280        \item<6->{Simulations have to be run for a long time to reach a stationary state and stable statistics.}
    281     \end{itemize}     
    282 \end{frame}
    283 
    284 
    285 \section{Example Output}
    286 \subsection{Example Output}
    287 
    288 % Folie 12
    289 \begin{frame}
    290    \frametitle{Example Output (I)}
    291    \begin{itemize}
    292       \item{LES of a convective boundary layer}
    293    \end{itemize}
    294    \includegraphics<1>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_1.png}
    295    \includegraphics<2>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_2.png}
    296    \includegraphics<3>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_3.png}
    297    \includegraphics<4>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_4.png}
    298    \includegraphics<5>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_5.png}
    299    \includegraphics<6>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_6.png}
    300    \includegraphics<7>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_7.png}
    301 \end{frame}
    302 
    303 % Folie 13
    304 \begin{frame}
    305    \frametitle{Example Output (II)}
    306    \begin{itemize}
    307       \item{LES of a convective boundary layer}
    308    \end{itemize}
    309    \begin{center}
    310       \includegraphics[width=0.8\textwidth]{sgs_models_figures/Example_output_2.png}
    311       power spectrum of vertical velocity
    312    \end{center}
    313 \end{frame}
    314 
    315 % Folie 14
    316 \begin{frame}
    317    \frametitle{Some Symbols}
    318    \begin{columns}[c]
    319       \column{0.6\textwidth}
    320       \begin{tabbing}
    321       $u_i \quad (i = 1,2,3)$ \quad \= velocity components \\
    322       $u,v,w$ \\
    323 
    324       \\
    325      
    326       $x_i \quad (i = 1,2,3)$ \> spatial coordinates \\
    327       $x,y,z$ \\
    328 
    329       \\
    330 
    331       $\Theta$ \> potential temperature \\ \\
    332 
    333       $\Psi$ \> passive scalar \\ \\
    334 
    335       $T$ \> actual Temperatur \\ \\
    336       \end{tabbing}
    337    \column{0.4\textwidth}
    338       \begin{tabbing}
    339       $\Phi = gz$  \quad \= geopotential \\ \\
    340 
    341       $p$ \> pressure \\ \\
    342 
    343       $\rho$ \> density \\ \\
    344 
    345       $f_i$ \> Coriolis Parameter \\ \\
    346 
    347       $\epsilon_{ijk}$ \> alternating symbol \\ \\
    348 
    349       $\nu, \nu_\Psi$ \> molecular diffusivity \\ \\
    350 
    351       $Q, Q_\Psi$ \> sources or sinks \\ \\
    352       \end{tabbing}
    353    \end{columns}
    354 \end{frame}
    355166\end{document}
Note: See TracChangeset for help on using the changeset viewer.