Changeset 945 for palm/trunk/TUTORIAL
- Timestamp:
- Jul 17, 2012 3:43:01 PM (13 years ago)
- Location:
- palm/trunk/TUTORIAL/SOURCE
- Files:
-
- 38 added
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
palm/trunk/TUTORIAL/SOURCE/basic_equations.tex
r915 r945 4 4 5 5 \usepackage[utf8]{inputenc} 6 \usepackage [T1]{fontenc}6 \usepackage{ngerman} 7 7 \usepackage{pgf} 8 8 \usetheme{Dresden} … … 78 78 \item \onslide<5->Continuity equation 79 79 \begin{equation*} 80 \frac{\partial p}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k}80 \frac{\partial \rho}{\partial t} = - \frac{\partial \rho u_k}{\partial x_k} 81 81 \end{equation*} 82 82 \end{itemize} … … 86 86 \begin{frame} 87 87 \frametitle{Boussinesq Approximation} 88 \ small88 \footnotesize 89 89 \begin{itemize} 90 90 \item \onslide<2->Splitting thermodynamic variables into a basic state $\psi_0$ and a variation $\psi^{*}$ 91 \begin{equation*} 92 p(x,y,z,t) = p_0(x,y,z,t) + p^{*}(x,y,z,t)\hspace{22mm} 93 \end{equation*} 94 \begin{equation*} 95 \rho(x,y,z,t) = \rho_0(x,y,z,t) + \rho^{*}(x,y,z,t) ; 96 \hspace{5mm} \psi^{*} << \psi_0 97 \end{equation*} 91 \begin{align*} 92 T(x,y,z,t) &= T_0(x,y,z) &+& T^{*}(x,y,z,t)&&\\ 93 p(x,y,z,t) &= p_0(x,y,z) &+& p^{*}(x,y,z,t)&&\\ 94 \rho(x,y,z,t) &= \rho_0(z) &+& \rho^{*}(x,y,z,t);& & 95 &\psi^{*} << \psi_0& 96 \end{align*} 98 97 \item \onslide<3->Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq) 99 98 \begin{equation*} … … 104 103 \item \onslide<4->Equation of state 105 104 \begin{equation*} 106 p _0 = \rho_0 R T_0 \rightarrow \ln{p_0} = \ln{\rho_0} + \ln{R} + \ln{T_0} \rightarrow \frac{\partial p_0}{p_0} = \frac{\partial \rho_0}{\rho_0} + \frac{\partial T_0}{T_0}107 \end{equation*} 108 \begin{equation*} 109 \frac{\Delta p _0}{p_0} \approx \frac{\Delta \rho_0}{\rho_0} +110 \frac{\Delta T _0}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx105 p = \rho R T \rightarrow \ln{p} = \ln{\rho} + \ln{R} + \ln{T} \rightarrow \frac{d p}{p} = \frac{d \rho}{\rho} + \frac{d T}{T} 106 \end{equation*} 107 \begin{equation*} 108 \frac{\Delta p}{p_0} \approx \frac{\Delta \rho}{\rho_0} + 109 \frac{\Delta T}{T_0} \rightarrow \frac{p^{*}}{p_0} \approx 111 110 \frac{\rho^{*}}{\rho_0} + \frac{T^{*}}{T_0} \hspace{10mm} 112 111 \frac{\rho^{*}}{\rho_0} \approx - \frac{T^{*}}{T_0} \hspace{10mm} … … 339 338 \textbf{Literature:}\\ 340 339 \textbf{Sagaut, P., 2001:} Large eddy simulation for incompressible flows: An introduction. Springer Verlag, Berlin/Heidelberg/New York, 319 pp.\\ 341 \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404. 340 \textbf{Schumann, U., 1975:} Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., \textbf{18}, 376-404.\\ 342 341 \end{scriptsize} 343 342 \end{frame} … … 361 360 \onslide<5-> 362 361 \begin{flalign*} 363 &\frac{\partial \overline{ \theta}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}&362 &\frac{\partial \overline{q}}{\partial t} = - \frac{\partial \overline{u_k}\,\overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_{w}& 364 363 \end{flalign*} 365 364 \item<6-> … … 396 395 \end{tiny} 397 396 $\tau_{ki} = \overline{u_k u_i} - \overline{u_k}\,\overline{u_i}$\\ 398 $H_{k} = \overline{u_k \theta _k} - \overline{u_k}\,\overline{\theta_i}$\\399 $W_{k} = \overline{u_k q _k} - \overline{u_k}\,\overline{q_k}$397 $H_{k} = \overline{u_k \theta} - \overline{u_k}\,\overline{\theta}$\\ 398 $W_{k} = \overline{u_k q} - \overline{u_k}\,\overline{q}$ 400 399 }; 401 400 \end{tikzpicture} -
palm/trunk/TUTORIAL/SOURCE/fundamentals_of_les.tex
r915 r945 14 14 \usepackage{xmpmulti} 15 15 \usepackage{tikz} 16 \usepackage{pdfcomment} 16 17 \usetikzlibrary{shapes,arrows,positioning} 17 18 \def\Tiny{\fontsize{4pt}{4pt}\selectfont} -
palm/trunk/TUTORIAL/SOURCE/non_cyclic_boundary_conditions.tex
r915 r945 71 71 \end{itemize} 72 72 \end{frame} 73 74 \section{Motivation} 75 \subsection{Motivation} 73 76 74 77 %Folie 3 … … 114 117 \end{frame} 115 118 119 \section{How to Create a Turbulent Inflow} 120 \subsection{How to Create a Turbulent Inflow} 121 116 122 % Folie 5 117 123 \begin{frame} … … 136 142 \begin{frame} 137 143 \frametitle{How to Create a Turbulent Inflow (II)} 138 \ small144 \footnotesize 139 145 Initial turbulence is created by a precursor run with cyclic boundary conditions and much smaller domain size than used for the main run. 140 \tikzstyle{line} = [draw, yellow, thick, dashed, -latex']146 \tikzstyle{line} = [draw, blue, thick, dashed, -latex'] 141 147 \begin{tikzpicture} 142 148 \uncover<1>{\node(picture) {\includegraphics[width=0.4\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_1.png}};} … … 148 154 \begin{itemize} 149 155 \item<4->{When the precursor run is finished, data of the last timestep are stored on disc.} 150 \item<5->{These data are then read by the main run and repeatedly mapped to the main run domain, un lessit is completely filled.}156 \item<5->{These data are then read by the main run and repeatedly mapped to the main run domain, until it is completely filled.} 151 157 \end{itemize}}}; 152 158 \uncover<6>{\node(picture2) [below=1.8cm of picture.east] {\includegraphics[width=0.9\textwidth]{non_cyclic_figures/create_turbulent_inflow_2/create_turbulent_inflow_4.png}};} … … 200 206 \end{frame} 201 207 208 \section{Implementation in PALM} 209 \subsection{Implementation in PALM} 210 202 211 % Folie 8 203 212 \begin{frame} … … 205 214 \textbf{Status of availability:} 206 215 \begin{itemize} 207 \item<2->{Non-cyclic boundary conditions along \textbf{one} of the horizontal directions ( x \textbf{or} y).}216 \item<2->{Non-cyclic boundary conditions along \textbf{one} of the horizontal directions (\textit{x} \textbf{or} \textit{y}).} 208 217 \begin{itemize} 209 \item<3->{Dirichlet conditions at inflow (stationary vertical profiles, u(z), v(z), pt(z), q(z), w=0).} 218 \item<3->{Dirichlet conditions at inflow (stationary vertical profiles, \textit{u}(\textit{z}), \textit{v}(\textit{z}), 219 \textit{pt}(\textit{z}), \textit{q}(\textit{z}), \textit{w}=0).} 210 220 \item<4->{Radiation conditions at outflow. Tendencies at the boundary are replaced by e.g.} 211 221 \end{itemize} … … 234 244 \end{frame} 235 245 246 \section{Current Applications} 247 \subsection{Current Applications} 248 249 236 250 % Folie 10 237 251 \begin{frame} … … 260 274 \end{center} 261 275 \end{frame} 276 277 \section{How to set up} 278 \subsection{How to set up} 262 279 263 280 % Folie 12 … … 351 368 \end{frame} 352 369 370 \section{Final remarks} 371 \subsection{Final remarks} 372 353 373 % Folie 16 354 374 \begin{frame} -
palm/trunk/TUTORIAL/SOURCE/program_control.tex
r915 r945 48 48 % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) 49 49 \begin{document} 50 50 % Folie 1 51 51 \begin{frame} 52 52 \titlepage 53 53 \end{frame} 54 54 55 % Folie 155 % Folie 2 56 56 \begin{frame} 57 57 \frametitle{Steering of PALM and Interpreting the Output} … … 62 62 \end{frame} 63 63 64 % Folie 2 65 64 % Folie 3 66 65 \begin{frame} 67 66 \frametitle{PALM Input/Output Overview (I)} … … 85 84 \uncover<5->{\node[red] (restartdata2) [below=4.5cm of restartdata1] {restart data};} 86 85 87 \uncover<3->{\node[yellow1] (runcontrol) [below=1.0cm of palm]{run control output\\ (parameter settings + \\ timestep informations)};} 88 \uncover<3->{\node[yellow2] (headerfile) [left=0.5cm of runcontrol]{header file};} 86 \uncover<4->{ 87 \node[orange1] (timeseries) [below left=4.4cm of palm] {time series}; 88 \node[orange2] (2dsectionstime) [right=0.5cm of timeseries] {2D sections \\ time averaged}; 89 \node[orange2] (3ddatatime) [right=0.39cm of 2dsectionstime] {3D data \\ time averaged}; 90 91 \path<4->[line] (palm) -- (timeseries); 92 \path<4->[line] (palm) -- (2dsectionstime); 93 \path<4->[line] (palm) -- (3ddatatime); 94 95 \node[orange1] (1dmean) [above=0.2cm of timeseries] {1D mean \\ profiles}; 96 \node[orange1] (2dsections) [right=0.5cm of 1dmean] {2D sections}; 97 \node[orange1] (3ddata) [right=0.5cm of 2dsections] {3D data};} 98 99 \path<4->[line] (palm) -- (1dmean); 100 \path<4->[line] (palm) -- (2dsections); 101 \path<4->[line] (palm) -- (3ddata); 102 103 \uncover<3->{\node[yellow2] (headerfile) [above=0.5cm of 2dsections]{header file};} 104 \uncover<3->{\node[yellow1] (runcontrol) [right=0.5cm of headerfile]{run control output\\ (parameter settings + \\ timestep informations)};} 89 105 \uncover<3->{\node[yellow2] (cpumeasure) [left=0.5cm of headerfile]{cpu\\ measurements};} 90 106 91 \uncover<4->{\node[orange1] (1dmean) [below=0.5cm of cpumeasure] {1D mean \\ profiles}; 92 \node[orange1] (2dsections) [right=0.5cm of 1dmean] {2D sections}; 93 \node[orange1] (3ddata) [right=0.5cm of 2dsections] {3D data}; 94 95 \node[orange1] (timeseries) [below=0.2cm of 1dmean] {time series}; 96 \node[orange2] (2dsectionstime) [right=0.5cm of timeseries] {2D sections \\ time averaged}; 97 \node[orange2] (3ddatatime) [right=0.39cm of 2dsectionstime] {3D data \\ time averaged};} 98 99 \node (program) [right=3.1cm of palm] {program}; 100 \uncover<2->{\node (steeringdata) [right=0.6cm of restartdata1] {steering data};} 101 \uncover<3->{\node (run) [right=2.5cm of runcontrol] {run informations};} 102 \uncover<4->{\node (analysis) [right=3.6cm of 3ddata] {analysis data};} 107 \node (program) [right=2.8cm of palm] {program}; 108 \uncover<2->{\node (steeringdata) [right=0.45cm of restartdata1] {steering data};} 109 \uncover<3->{\node (run) [right=2.7cm of runcontrol] {run informations};} 110 \uncover<4->{\node (analysis) [right=3.8cm of 3ddata] {analysis data};} 103 111 104 112 \uncover<7->{ … … 114 122 \path<3->[line] (palm) -- (headerfile); 115 123 \path<3->[line] (palm) -- (runcontrol); 116 \path<4->[line] (palm) -- (1dmean);117 \path<4->[line] (palm) -- (2dsections);118 \path<4->[line] (palm) -- (3ddata);119 \path<4->[line] (palm) -- (timeseries);120 \path<4->[line] (palm) -- (2dsectionstime);121 \path<4->[line] (palm) -- (3ddatatime);122 124 \path<5->[line] (palm) -- (restartdata2); 123 125 \path<6->[line] (restartdata1) -- (palm); … … 126 128 \end{frame} 127 129 128 % Folie 3129 \begin{frame} 130 \frametitle{PALM Input/Output Overview (I )}130 % Folie 4 131 \begin{frame} 132 \frametitle{PALM Input/Output Overview (II)} 131 133 \tikzstyle{start} = [ellipse, draw, fill=green!20, font=\small] 132 134 \tikzstyle{yellow1} = [rectangle, draw, fill=yellow!20, text width=0.2\textwidth, font=\Tiny] … … 161 163 \node[orange2] (3ddatatime) [right=0.39cm of 2dsectionstime] {3D data \\ time averaged}; 162 164 163 \node (program) [right= 3.1cm of palm] {program};164 \node (steeringdata) [right=0. 6cm of restartdata1] {steering data};165 \node (program) [right=2.8cm of palm] {program}; 166 \node (steeringdata) [right=0.8cm of restartdata1] {steering data}; 165 167 \node (run) [right=2.5cm of runcontrol] {run informations}; 166 168 \node (analysis) [right=3.6cm of 3ddata] {analysis data}; … … 174 176 175 177 %--------- neue Ordner 178 \uncover<2->{ 176 179 \node[yellow4] (currentversion) [above=0.6cm of parameterfile] {current\_version/}; 177 180 \node[yellow4] (jobs) [right=0.3cm of currentversion] {JOBS/}; … … 180 183 \node[yellow4] (monitoring) [below=0.1cm of input] {MONITORING/}; 181 184 \node[yellow4] (output) [below=0.1cm of monitoring] {OUTPUT/}; 182 \node[yellow4] (restart) [below=0.1cm of output] {RESTART\_DATA/}; 183 184 \ node[yellow4] (input2) [below=0.1cm of parameterfile] {INPUT/};185 \ node[yellow4] (monitoring2) [above=0.6cm of headerfile] {MONITORING/};186 \ node[yellow4] (restart2) [below=0.1cm of restartdata1] {RESTART\_DATA/};187 \ node[yellow4] (tmpdata) [below=0.1cm of restart2] {/tmp\_data\_catalog/};188 \ node[yellow4] (output2) [below=0.5cm of restartdata2] {OUTPUT/};189 190 \path[line] (currentversion) -- (jobs);191 \path[line] (jobs) -- (runidentifier);192 \path[line] (runidentifier.east) -- (input.west);193 \path[line] (runidentifier.east) -- (monitoring.west);194 \path[line] (runidentifier.east) -- (output.west);195 \path[line] (runidentifier.east) -- (restart.west);196 197 \draw [decorate,decoration={brace,raise=6pt,amplitude=9pt},thick]185 \node[yellow4] (restart) [below=0.1cm of output] {RESTART\_DATA/};} 186 187 \uncover<3->{\node[yellow4] (input2) [below=0.1cm of parameterfile] {INPUT/};} 188 \uncover<4->{\node[yellow4] (monitoring2) [above=0.6cm of headerfile] {MONITORING/};} 189 \uncover<6->{\node[yellow4] (restart2) [below=0.1cm of restartdata1] {RESTART\_DATA/};} 190 \uncover<7->{\node[yellow4] (tmpdata) [below=0.1cm of restart2] {/tmp\_data\_catalog/};} 191 \uncover<5->{\node[yellow4] (output2) [below=0.5cm of restartdata2] {OUTPUT/};} 192 193 \path[line]<2-> (currentversion) -- (jobs); 194 \path[line]<2-> (jobs) -- (runidentifier); 195 \path[line]<2-> (runidentifier.east) -- (input.west); 196 \path[line]<2-> (runidentifier.east) -- (monitoring.west); 197 \path[line]<2-> (runidentifier.east) -- (output.west); 198 \path[line]<2-> (runidentifier.east) -- (restart.west); 199 200 \draw<4->[decorate,decoration={brace,raise=6pt,amplitude=9pt},thick] 198 201 (-4.5,-0.95)--(-1,-0.95) ; 199 \draw[decorate,decoration={brace,mirror,raise=5pt,amplitude=6pt},thick] 200 (0.45,-3)--(0.45,-1.9) ; 201 202 203 % \path[line] (monitoring2.south) -- (cpumeasure.north); 204 % \path[line] (monitoring2.south) -- (headerfile.north); 205 % \path[line] (monitoring2.south) -- (runcontrol.north); 206 207 \end{tikzpicture} 208 \end{frame} 209 210 %--------------------------------------------------- 202 \draw<5->[decorate,decoration={brace,mirror,raise=5pt,amplitude=6pt},thick] 203 (0.45,-3)--(0.45,-1.9) ; 204 \end{tikzpicture} 205 \end{frame} 206 207 % Folie 5 211 208 \begin{frame} 212 209 \frametitle{The Parameter File} 213 \tikzstyle{box} = [rectangle, draw, text width=\textwidth, font=\tiny] 210 \tikzstyle{box} = [rectangle, draw, text width=0.9\textwidth, font=\tiny] 211 \tikzstyle{line} = [draw, thick, -latex'] 214 212 \footnotesize 215 213 \begin{itemize} 216 \item {Physical and numerical features of a PALM run (e.g. initial and boundary conditions, numerical methods)214 \item<1->{Physical and numerical features of a PALM run (e.g. initial and boundary conditions, numerical methods) 217 215 are controlled by a so called \textbf{parameter file} which uses FORTRAN-NAMELIST syntax.} 218 \item {General structure of a FORTRAN-NAMELIST file}216 \item<2->{General structure of a FORTRAN-NAMELIST file} 219 217 \end{itemize} 220 \begin{tikzpicture}[auto] 218 \begin{tikzpicture}[auto] 219 \uncover<3->{ 221 220 \node[box](firstbox){ \begin{tabbing} 222 \&abcd \quad \=no\_of\_eggs = 100, litres\_of\_milk = 50.0, \= \\ 223 \>kilos\_of\_butter = 20.0, \> / \end{tabbing}}; 224 \end{tikzpicture} 225 \begin{itemize} 226 \item{This file can be read from a FORTRAN program in the following way:} 227 \end{itemize} 228 \begin{tikzpicture}[auto, node distance=0] 221 \quad \&abcd \quad \=no\_of\_eggs = 100, litres\_of\_milk = 50.0, \= \\ 222 \>kilos\_of\_butter = 20.0, \> / \end{tabbing}}; 223 \node[font=\tiny] (leading_blank) at (-5,0.8) {\textbf{leading blank}}; 224 \node[font=\tiny] (namelist) at (-2,0.8) {\textbf{NAMELIST group}}; 225 \node[font=\tiny] (terminating) at (3,0.8) {\textbf{terminating character}}; 226 \path[line] (-5,0.7) -- (-4.8,0); 227 \path[line] (-2,0.7) -- (-4,0); 228 \path[line] (3,0.7) -- (0.2,-0.3);} 229 \end{tikzpicture} 230 \begin{itemize} 231 \item<4->{This file can be read from a FORTRAN program in the following way:} 232 \end{itemize} 233 \begin{tikzpicture}[auto, node distance=0] 234 \uncover<4->{ 229 235 \node[box](secondbox){ \begin{tabbing} 230 236 INTEGER :: \=no\_of\_eggs = 30 \\ 231 237 REAL :: \> litres\_of\_milk = 0.0, kilos\_of\_butter, kilos\_of\_cream = 33.0 \\ 238 \\ 232 239 NAMELIST /abcd/ \quad no\_of\_eggs, litres\_of\_milk, kilos\_of\_butter, kilos\_of\_cream \\ 233 \ par\bigskip240 \\ 234 241 OPEN ( 1, FILE='Filename' ) \\ 235 READ ( 1, abcd ) \end{tabbing}}; 242 \\ 243 READ ( 1, abcd ) \end{tabbing}};} 236 244 \end{tikzpicture} 237 245 \normalsize 238 246 \end{frame} 239 247 240 241 %----------------------------------------------------- 248 % Folie 6 249 \begin{frame} 250 \frametitle{An Example of PALM - NAMELIST Input} 251 \tikzstyle{box} = [rectangle, draw, text width=\textwidth, font=\tiny] 252 \begin{tikzpicture}[auto, node distance=0] 253 \node[box](box){ \begin{tabbing} 254 \&inipar \=nx = 39, ny = 39, nz = 40, \\ 255 \>dx = 50.0, dy = 50.0, dz = 50.0, \\ 256 \\ 257 \>initializing\_actions = 'set\_constant\_profiles', \\ 258 \>ug\_surface = 0.0, vg\_surface = 0.0, \\ 259 \\ 260 \>pt\_vertical\_gradient \qquad = 0.0, 1.0, \\ 261 \>pt\_vertical\_gradient\_level = 0.0, 800.0, \\ 262 \\ 263 \>surface\_heatflux = 0.1, bc\_pt\_b ='neumann', / \\ 264 \\ 265 \\ 266 \&d3par \>end\_time = 3600.0, \\ 267 \\ 268 \>dt\_dopr = 900.0, averaging\_interval\_pr = 600.0, \\ 269 \>data\_output\_pr = 'pt', 'u', 'v', / \\ \end{tabbing}}; 270 \end{tikzpicture} 271 \footnotesize 272 \begin{itemize} 273 \item<2->{There are two NAMELIST groups ({\tt \&inipar} and {\tt \&d3par}).} 274 \item<3->{Assignments to parameters in {\tt\&inipar} are ignored within restart runs \\ 275 (exception: {\tt initializing\_actions} = {\tt'read\_restart\_data'} is obligatory for restart runs).} 276 \item<4->{Values of {\tt \&d3par} parameters can be changed for restart runs.} 277 \end{itemize} 278 \end{frame} 279 280 % Folie 7 242 281 \begin{frame} 243 282 \frametitle{The Run Control File} 244 283 \scriptsize 245 284 \begin{itemize} 246 \item {For initial runs, the parameter settings and many additional informations about the run (header informations) are printed at the beginning of this file.}285 \item<1->{For initial runs, the parameter settings and many additional informations about the run (header informations) are printed at the beginning of this file.} 247 286 \item<2->{The parameter settings are followed by values of specific model variables for certain timesteps (one line for each timestep, the output intervall can be 248 287 controlled by run parameter {\tt dt\_run\_control}).} 249 288 \end{itemize} 250 \onslide<3->{ 251 \textbf{Contents of this timestep output should be carefully checked after each run, because it allows a first control, if the model had run correctly, or if any252 errors have occurred!}}289 \onslide<3->{\textbf{Contents of this timestep output should be carefully checked after each run, because it allows a first control, if the model had run correctly, or if any 290 errors have occurred!}} 291 \par\bigskip 253 292 \includegraphics[width=1.6\textwidth]{program_control_figures/run_control_file.png} 254 293 \normalsize 255 294 \end{frame} 256 295 257 % -----------------------------------------------------296 % Folie 8 258 297 \begin{frame} 259 298 \frametitle{The Header File} … … 271 310 \end{frame} 272 311 273 % -------------------------------312 % Folie 9 274 313 \begin{frame} 275 314 \frametitle{CPU Measurements File} … … 286 325 \normalsize 287 326 \column{0.58\textwidth} 288 \includegraphics[width= \textwidth]{program_control_figures/cpu_measurements_file.png}327 \includegraphics[width=1.1\textwidth]{program_control_figures/cpu_measurements_file.png} 289 328 \end{columns} 290 329 \end{frame} 291 330 292 % -----------------------------------------------------331 % Folie 10 293 332 \begin{frame} 294 333 \frametitle{Other Files} 334 \small 295 335 \begin{itemize} 296 336 \item<1->{Data output files (1D profiles and timeseries, 2D cross sections, 3D volume data) are by default in \textbf{netCDF} format which is suitable to be processed by 297 public domain graphics software like \textbf{ncview}, \textbf{ferret}, \textbf{ncl} (used by PALM group), \\298 \ textbf{IDL}, etc. \\337 public domain graphics software like \textbf{ncview}, \textbf{ferret}, \textbf{ncl} (used by PALM group), \textbf{IDL}, etc. \\ 338 \par\bigskip 299 339 For a first look, {\tt ncview} is a convenient tool.} 300 340 \item<2->{{\tt ncdump} can be used to display the netCDF file contents in ASCII format ({\tt ncdump -c} displays only header informations).} … … 303 343 \end{frame} 304 344 305 % ----------------------------------------------------345 % Folie 11 306 346 \begin{frame} 307 347 \frametitle{Steering by Unix Environment Variables} 308 \ footnotesize348 \scriptsize 309 349 Most features of PALM are controlled by the parameter file but a few are exclusively controlled by unix environment variables. The most important one is {\tt write\_binary}. \\ 350 \par\bigskip 310 351 Setting \\ 311 \begin{centering} {\tt write\_binary = true} \end{centering} \\ 312 within the shell causes PALM to write binary data for restart runs at the end of a run. 313 314 Setting of these environment variables is automatically done by mrun. It generates a local file (named {\tt ENVPAR}) in FORTRAN-NAMELIST-format, which is then read by PALM. This file 315 includes the following variables: \\ 316 352 \par\medskip 353 {\centering \texttt{ write\_binary = true} \\ 354 \par\medskip 355 within the shell causes PALM to write binary data for restart runs at the end of a run.} 356 \par\bigskip 357 \uncover<2->{Setting of these environment variables is automatically done by {\tt mrun}. It generates a local file (named {\tt ENVPAR}) in FORTRAN-NAMELIST-format, which is then 358 read by PALM. This file includes the following variables:} \\ 359 \par\bigskip 317 360 \tiny 318 \begin{tabular}{|p{3cm}|p{5cm}|p{2cm}|} \hline 361 \uncover<3->{ 362 \begin{tabular}{|p{3cm}|p{4cm}|p{3cm}|} \hline 319 363 \textbf{Variable} & \textbf{Meaning} & \textbf{Value set by {\tt mrun}-option} \\ 320 364 \hline … … 323 367 {\tt run\_identifier} & identification string for the run & {\tt -d} \\ 324 368 {\tt tasks\_per\_node} & number of MPI tasks to be started on each node & {\tt -T} \\ 325 {\tt write\_binary} & switch for writing binary data to be used for restart runs & {\tt -r} (+setting in configuration file {\tt .mrun.config)} 369 {\tt write\_binary} & switch for writing binary data to be used for restart runs & {\tt -r} (+setting in configuration file {\tt .mrun.config)} \\ 326 370 \hline 327 \end{tabular} 371 \end{tabular}} 328 372 \normalsize 329 373 \end{frame} 330 374 331 % -----------------------------------------375 % Folie 12 332 376 \begin{frame} 333 377 \frametitle{PALM / netCDF Documentation} -
palm/trunk/TUTORIAL/SOURCE/sgs_models.tex
r915 r945 19 19 \usepackage{amssymb} 20 20 \usepackage{multicol} 21 \usepackage{ float}21 \usepackage{pdfcomment} 22 22 23 23 \institute{Institut fÃŒr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} … … 43 43 \author{Siegfried Raasch} 44 44 45 % Notes:46 % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet.47 % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet)48 45 \begin{document} 49 46 … … 167 164 168 165 169 \section{Deardoff Modification}170 \subsection{Deardoff Modification}171 172 % Folie 7173 \begin{frame}174 \frametitle{Deardorff (1980) Modification (Used in PALM) (I)}175 \footnotesize176 \onslide<1->{177 $ \nu_T = Cql = C_M \Lambda \sqrt{\bar{e}} $ \quad \textbf{with} \quad $ \bar{e} = \frac{\overline{u_i' u_i'}}{2} $ \quad \textbf{SGS-turbulent kinetic energy}}178 \normalsize179 \begin{itemize}180 \item<2->{The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.}181 \end{itemize}182 \onslide<3->{183 $ C_M = const. = 0.1 $184 \par\bigskip185 \scriptsize186 $ \Lambda = \begin{cases} min\left( 0.7 \cdot z, \Delta \right), & \textbf{unstable or neutral stratification} \\187 min\left( 0.7 \cdot z, \Delta, 0.76 \sqrt{\bar{e}} \left[ \frac{g}{\Theta_0} \frac{\partial \bar{\Theta}}{\partial z} \right]^{-1/2} \right), & \textbf{stable stratification}188 \end{cases} $189 \normalsize190 \par\bigskip191 $ \Delta = \left( \Delta x \Delta y \Delta z \right)^{1/3} $ }192 \end{frame}193 194 % Folie 8195 \begin{frame}196 \frametitle{Deardorff (1980) Modification (Used in PALM) (II)}197 \begin{itemize}198 \item{SGS-TKE from prognostic equation}199 \end{itemize}200 $ \frac{\partial \bar{e}}{\partial t} = -\bar{u_k} \frac{\partial \bar{e}}{\partial x_k} - \tau_{ki} \frac{\partial \bar{u_i}}{\partial x_k} + \frac{g}{\Theta_0} \overline{u_3' \Theta'} - \frac{\partial}{\partial x_k} \left\{ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right\} - \epsilon $201 \par\bigskip202 $ \frac{\partial}{\partial x_k} \left[ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right] = - \frac{\partial}{\partial x_k} \nu_e \frac{\partial \bar{e}}{\partial x_k} $203 \par\bigskip204 $ \nu_e = 2 \nu_T $205 \par\bigskip206 $ \epsilon = C_{\epsilon} \frac{\bar{e}^{3/2}}{\Lambda} \qquad \qquad C_{\epsilon} = 0.19 + 0.74\frac{\Lambda}{\Delta} $207 \end{frame}208 209 % Folie 9210 \begin{frame}211 \frametitle{Deardorff (1980) Modification (Used in PALM) (III)}212 \begin{itemize}213 \item{There are still problems with this parameterization:}214 \begin{itemize}215 \item[-]<2->{The model overestimates the velocity shear near the wall.}216 \item[-]<3->{$\textrm{C}_\mathrm{M}$ is still a constant but actually varies for different types of flows.}217 \item[-]<4->{Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.}218 \end{itemize}219 \item<5->{Several other SGS models have been developed:}220 \begin{itemize}221 \item[-]<5->{Two part eddy viscosity model (Sullivan, et al.)}222 \item[-]<6->{Scale similarity model (Bardina et al.)}223 \item[-]<7->{Backscatter model (Mason)}224 \end{itemize}225 \item<8->{However, for fine grid resolutions ($\textrm{E}_\mathrm{SGS} << \ \textrm{E}$) LES results become almost independent226 from the different models (Beare et al., 2006, BLM).}227 \end{itemize}228 \end{frame}229 230 231 \section{Summary / Important Points for Beginners}232 \subsection{Summary / Important Points for Beginners}233 234 % Folie 10235 \begin{frame}236 \frametitle{Summary / Important Points for Beginners (I)}237 \begin{columns}[c]238 \column[T]{0.4\textwidth}239 \includegraphics<2-7>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_2.png}240 \includegraphics<8>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_8.png}241 \includegraphics<9>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_9.png}242 \includegraphics<10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_10.png}243 \onslide<8-10>{\begin{flushright} \begin{tiny} after Schatzmann and Leitl (2001) \end{tiny} \end{flushright}}244 \column[T]{0.2\textwidth}245 \vspace{0.9cm}246 \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png}247 \par248 \onslide<8->{\begin{small} fluctuations (\textbf{u},c) \end{small}}249 \par\bigskip250 \thicklines251 \onslide<9->{\mbox{\line(6,0){5} \, \line(1,0){5} \, \line(1,0){5} \quad \begin{small} {critical concentration level} \end{small}}}252 \vspace{1cm}253 254 \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png}255 \par256 \onslide<8->{\begin{small} smooth result \end{small}}257 \column[T]{0.4\textwidth}258 \includegraphics<1-2>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_1.png}259 \includegraphics<3>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_3.png}260 \includegraphics<4>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_4.png}261 \includegraphics<5-10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_5.png}262 \vspace{1.3cm}263 \includegraphics<6>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_6.png}264 \uncover<7->{\includegraphics[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_7.png}}265 \end{columns}266 \end{frame}267 268 % Folie 11269 \begin{frame}270 \frametitle{Summary / Important Points for Beginners (II)}271 For an LES it always has to be guaranteed that the main energy containing eddies of the respective272 turbulent flow can really be simulated by the numerical model:273 \begin{itemize}274 \item<2->{The grid spacing has to be fine enough.}275 \item<3->{$\textrm{E}_\mathrm{SGS} < (<<) \ \textrm{E} $}276 \item<4->{The inflow/outflow boundaries must not effect the flow turbulence \\277 (therefore cyclic boundary conditions are used in most cases).}278 \item<5->{In case of homogeneous initial and boundary conditions, the onset of turbulence279 has to be triggered by imposing random fluctuations.}280 \item<6->{Simulations have to be run for a long time to reach a stationary state and stable statistics.}281 \end{itemize}282 \end{frame}283 284 285 \section{Example Output}286 \subsection{Example Output}287 288 % Folie 12289 \begin{frame}290 \frametitle{Example Output (I)}291 \begin{itemize}292 \item{LES of a convective boundary layer}293 \end{itemize}294 \includegraphics<1>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_1.png}295 \includegraphics<2>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_2.png}296 \includegraphics<3>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_3.png}297 \includegraphics<4>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_4.png}298 \includegraphics<5>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_5.png}299 \includegraphics<6>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_6.png}300 \includegraphics<7>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_7.png}301 \end{frame}302 303 % Folie 13304 \begin{frame}305 \frametitle{Example Output (II)}306 \begin{itemize}307 \item{LES of a convective boundary layer}308 \end{itemize}309 \begin{center}310 \includegraphics[width=0.8\textwidth]{sgs_models_figures/Example_output_2.png}311 power spectrum of vertical velocity312 \end{center}313 \end{frame}314 315 % Folie 14316 \begin{frame}317 \frametitle{Some Symbols}318 \begin{columns}[c]319 \column{0.6\textwidth}320 \begin{tabbing}321 $u_i \quad (i = 1,2,3)$ \quad \= velocity components \\322 $u,v,w$ \\323 324 \\325 326 $x_i \quad (i = 1,2,3)$ \> spatial coordinates \\327 $x,y,z$ \\328 329 \\330 331 $\Theta$ \> potential temperature \\ \\332 333 $\Psi$ \> passive scalar \\ \\334 335 $T$ \> actual Temperatur \\ \\336 \end{tabbing}337 \column{0.4\textwidth}338 \begin{tabbing}339 $\Phi = gz$ \quad \= geopotential \\ \\340 341 $p$ \> pressure \\ \\342 343 $\rho$ \> density \\ \\344 345 $f_i$ \> Coriolis Parameter \\ \\346 347 $\epsilon_{ijk}$ \> alternating symbol \\ \\348 349 $\nu, \nu_\Psi$ \> molecular diffusivity \\ \\350 351 $Q, Q_\Psi$ \> sources or sinks \\ \\352 \end{tabbing}353 \end{columns}354 \end{frame}355 166 \end{document}
Note: See TracChangeset
for help on using the changeset viewer.