Ignore:
Timestamp:
Jul 15, 2013 10:55:47 AM (8 years ago)
Author:
kanani
Message:

added additional hint for palm installation at hlrn and removed some typos

File:
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/canopy_model.tex

    r1080 r1205  
    6666   \frametitle{Overview}
    6767   \begin{itemize}
    68       \item<1->{The canopy model embedded in PALM can be used to study the effect of a plant canopy on:}
     68      \item<1->{The canopy model embedded in PALM can be used to study the effect of a plant canopy on e.g.:}
    6969      \begin{itemize}
    7070         \item<2->{mean flow field,}
     
    7272         \item<4->{scalar exchange processes between canopy and atmosphere.}
    7373      \end{itemize}
    74       \item<5->{Within the canopy model, the plant canopy acts as a sink for momentum and as a source/sink for active (temperature) and passive (e.g. tracer) scalars.}
     74      \item<5->{Within the canopy model, the plant canopy acts as a sink for momentum and as a source/sink for active (e.g. temperature) and passive (e.g. tracer) scalars.}
    7575      \item<6->{The canopy model does not account for each plant element, but rather accounts for a volume averaged effect on the flow and scalar concentration, depending on:}
    7676      \begin{itemize}
    77          \item<7->{leaf area distribution,}
     77         \item<7->{leaf area density,}
    7878         \item<8->{drag coefficient.}
    7979      \end{itemize}
     
    9090      \item<1->{A plant canopy affects the flow by acting as a momentum sink due to form and viscous drag forces.}
    9191      \item<2->{The effectiveness of momentum absorption depends on the amount of leaf area per unit volume and the aerodynamic drag.}
    92       \item<3->{Due to the aerodynamic drag the flow is decelerated within the canopy, leading to an inflection point in the vertical profile of the horizontal velocity at the canopy top.
     92      \item<3->{Due to the aerodynamic drag, the flow is decelerated within the canopy, leading to an inflection point in the vertical profile of the horizontal velocity at the canopy top.
    9393         \begin{center}
    9494            \includegraphics[width=0.5\textwidth]{canopy_model_figures/abb1.png}
     
    106106   \begin{footnotesize}
    107107   \begin{itemize}
    108       \item<1->{The inflection point in the velocity profile introduces instabilities to the flow, leading to the formation of Kelvin-Helmholtz waves near the canopy top (\textcircled{{\tiny 1}})}
    109       \item<2->{Wave breaking induces further instabilities, whereby a longitudinal component is added to the developing turbulence structures (\textcircled{{\tiny 2}} \& \textcircled{{\tiny 3}})}
    110       \item<3->{Due to the persistent instabilities the turbulence structures develop a distinct three-dimensionality (\textcircled{{\tiny 4}})}
     108      \item<1->{The inflection point in the velocity profile introduces instabilities to the flow, leading to the formation of Kelvin-Helmholtz waves near the canopy top (\textcircled{{\tiny 1}}).}
     109      \item<2->{Wave breaking induces further instabilities, whereby a longitudinal component is added to the developing turbulence structures (\textcircled{{\tiny 2}} \& \textcircled{{\tiny 3}}).}
     110      \item<3->{Due to the persistent instabilities the turbulence structures develop a distinct three-dimensionality (\textcircled{{\tiny 4}}).}
    111111      \item<4->{The large turbulence structures developing due to the inflection point instability significantly contribute to the vertical mixing of in-canopy and above-canopy air.
    112112         \begin{center}
     
    172172      }
    173173      \item<2->{It is assumed that the foliage is warmed by the penetrating solar radiation and, in turn, warms the surrounding air.}
    174       \item<3->{The source strength $S_{\theta}$ is defined as the vertical derivative of the upward kinematic vertical heat flux given by (Shaw and Schumann, 1992):\\
     174      \item<3->{The source strength $S_{\theta}$ is defined as the vertical derivative of the upward kinematic vertical heat flux $Q_{\theta}$, given by (Shaw and Schumann, 1992):\\
    175175         \begin{align*}
    176176            Q_{\theta}(z) = Q_{\theta}(h) exp(-\alpha F) \text{ , } Q_{\theta}(h) \text{ : Heat flux at canopy top}
     
    216216      (http://palm.muk.uni-hannover.de)
    217217      }
    218       \item<3->{The following slides will describe how to set up a simulation with a simple horizontally homogeneous canopy block covering the entire model domain surface. In this case, {\small \texttt{plant\_canopy = 'block'}} must be set in \&inipar {\small \texttt{NAMELIST}}.}
     218      \item<3->{The following slides will describe how to set up a simulation with a simple horizontally homogeneous canopy block covering the entire model domain surface. In this case, {\small \texttt{canopy\_mode = 'block'}} must be set in \&inipar {\small \texttt{NAMELIST}}.}
    219219   \end{itemize}
    220220\end{frame}
     
    616616   Do you want to simulate a more customized canopy, which e.g. covers only half the model surface?\\
    617617    \begin{itemize}
    618        \item<2->{Step I: Copy the file \texttt{user\_init\_plant\_canopy.f90} from {\small \texttt{trunk/SOURCE}} to the directory {\small \texttt{USER\_CODE (\$Home/palm/current\_version)}} of the specific job and make the desired changes for {\small \texttt{CASE ('user\_defined\_canopy\_1')}}.}
     618       \item<2->{Step I: Copy the file \texttt{user\_init\_plant\_canopy.f90} from {\small \texttt{trunk/SOURCE}} to the directory {\small \texttt{\$Home/palm/current\_version/USER\_CODE/<enter job name>}} and make the desired changes for {\small \texttt{CASE ('user\_defined\_canopy\_1')}}.}
    619619       \item<3->{Step II: In your parameter file set: {\scriptsize \texttt{canopy\_mode = 'user\_defined\_canopy\_1'}}}
    620620    \end{itemize}
    621621   \end{footnotesize}
    622622   \vspace{7pt}
    623    
     623
    624624   \tikzstyle{background} = [rectangle, fill=gray!10, text width=1\textwidth, text centered, rounded corners, minimum height=10em]
    625625   \tikzstyle{Key1} = [rectangle, draw, fill=gray!70, text width=0.05, minimum size=0.05, font=\tiny]
Note: See TracChangeset for help on using the changeset viewer.