Changeset 1205
- Timestamp:
- Jul 15, 2013 10:55:47 AM (12 years ago)
- Location:
- palm/trunk/TUTORIAL/SOURCE
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
palm/trunk/TUTORIAL/SOURCE/canopy_model.tex
r1080 r1205 66 66 \frametitle{Overview} 67 67 \begin{itemize} 68 \item<1->{The canopy model embedded in PALM can be used to study the effect of a plant canopy on :}68 \item<1->{The canopy model embedded in PALM can be used to study the effect of a plant canopy on e.g.:} 69 69 \begin{itemize} 70 70 \item<2->{mean flow field,} … … 72 72 \item<4->{scalar exchange processes between canopy and atmosphere.} 73 73 \end{itemize} 74 \item<5->{Within the canopy model, the plant canopy acts as a sink for momentum and as a source/sink for active ( temperature) and passive (e.g. tracer) scalars.}74 \item<5->{Within the canopy model, the plant canopy acts as a sink for momentum and as a source/sink for active (e.g. temperature) and passive (e.g. tracer) scalars.} 75 75 \item<6->{The canopy model does not account for each plant element, but rather accounts for a volume averaged effect on the flow and scalar concentration, depending on:} 76 76 \begin{itemize} 77 \item<7->{leaf area d istribution,}77 \item<7->{leaf area density,} 78 78 \item<8->{drag coefficient.} 79 79 \end{itemize} … … 90 90 \item<1->{A plant canopy affects the flow by acting as a momentum sink due to form and viscous drag forces.} 91 91 \item<2->{The effectiveness of momentum absorption depends on the amount of leaf area per unit volume and the aerodynamic drag.} 92 \item<3->{Due to the aerodynamic drag the flow is decelerated within the canopy, leading to an inflection point in the vertical profile of the horizontal velocity at the canopy top.92 \item<3->{Due to the aerodynamic drag, the flow is decelerated within the canopy, leading to an inflection point in the vertical profile of the horizontal velocity at the canopy top. 93 93 \begin{center} 94 94 \includegraphics[width=0.5\textwidth]{canopy_model_figures/abb1.png} … … 106 106 \begin{footnotesize} 107 107 \begin{itemize} 108 \item<1->{The inflection point in the velocity profile introduces instabilities to the flow, leading to the formation of Kelvin-Helmholtz waves near the canopy top (\textcircled{{\tiny 1}}) }109 \item<2->{Wave breaking induces further instabilities, whereby a longitudinal component is added to the developing turbulence structures (\textcircled{{\tiny 2}} \& \textcircled{{\tiny 3}}) }110 \item<3->{Due to the persistent instabilities the turbulence structures develop a distinct three-dimensionality (\textcircled{{\tiny 4}}) }108 \item<1->{The inflection point in the velocity profile introduces instabilities to the flow, leading to the formation of Kelvin-Helmholtz waves near the canopy top (\textcircled{{\tiny 1}}).} 109 \item<2->{Wave breaking induces further instabilities, whereby a longitudinal component is added to the developing turbulence structures (\textcircled{{\tiny 2}} \& \textcircled{{\tiny 3}}).} 110 \item<3->{Due to the persistent instabilities the turbulence structures develop a distinct three-dimensionality (\textcircled{{\tiny 4}}).} 111 111 \item<4->{The large turbulence structures developing due to the inflection point instability significantly contribute to the vertical mixing of in-canopy and above-canopy air. 112 112 \begin{center} … … 172 172 } 173 173 \item<2->{It is assumed that the foliage is warmed by the penetrating solar radiation and, in turn, warms the surrounding air.} 174 \item<3->{The source strength $S_{\theta}$ is defined as the vertical derivative of the upward kinematic vertical heat flux given by (Shaw and Schumann, 1992):\\174 \item<3->{The source strength $S_{\theta}$ is defined as the vertical derivative of the upward kinematic vertical heat flux $Q_{\theta}$, given by (Shaw and Schumann, 1992):\\ 175 175 \begin{align*} 176 176 Q_{\theta}(z) = Q_{\theta}(h) exp(-\alpha F) \text{ , } Q_{\theta}(h) \text{ : Heat flux at canopy top} … … 216 216 (http://palm.muk.uni-hannover.de) 217 217 } 218 \item<3->{The following slides will describe how to set up a simulation with a simple horizontally homogeneous canopy block covering the entire model domain surface. In this case, {\small \texttt{ plant\_canopy= 'block'}} must be set in \&inipar {\small \texttt{NAMELIST}}.}218 \item<3->{The following slides will describe how to set up a simulation with a simple horizontally homogeneous canopy block covering the entire model domain surface. In this case, {\small \texttt{canopy\_mode = 'block'}} must be set in \&inipar {\small \texttt{NAMELIST}}.} 219 219 \end{itemize} 220 220 \end{frame} … … 616 616 Do you want to simulate a more customized canopy, which e.g. covers only half the model surface?\\ 617 617 \begin{itemize} 618 \item<2->{Step I: Copy the file \texttt{user\_init\_plant\_canopy.f90} from {\small \texttt{trunk/SOURCE}} to the directory {\small \texttt{ USER\_CODE (\$Home/palm/current\_version)}} of the specific joband make the desired changes for {\small \texttt{CASE ('user\_defined\_canopy\_1')}}.}618 \item<2->{Step I: Copy the file \texttt{user\_init\_plant\_canopy.f90} from {\small \texttt{trunk/SOURCE}} to the directory {\small \texttt{\$Home/palm/current\_version/USER\_CODE/<enter job name>}} and make the desired changes for {\small \texttt{CASE ('user\_defined\_canopy\_1')}}.} 619 619 \item<3->{Step II: In your parameter file set: {\scriptsize \texttt{canopy\_mode = 'user\_defined\_canopy\_1'}}} 620 620 \end{itemize} 621 621 \end{footnotesize} 622 622 \vspace{7pt} 623 623 624 624 \tikzstyle{background} = [rectangle, fill=gray!10, text width=1\textwidth, text centered, rounded corners, minimum height=10em] 625 625 \tikzstyle{Key1} = [rectangle, draw, fill=gray!70, text width=0.05, minimum size=0.05, font=\tiny] -
palm/trunk/TUTORIAL/SOURCE/installation.tex
r1105 r1205 114 114 % Folie 6 115 115 \begin{frame} 116 \frametitle{PALM - Installation / General Requirements }116 \frametitle{PALM - Installation / General Requirements (I)} 117 117 118 118 \footnotesize … … 123 123 \item<4->[4.]{The Message Passing Interface (MPI), if the parallel version of PALM shall be used.} 124 124 \item<5->[5.]{On the \textcolor{green}{local} computer, the revision control system subversion (see subversion.tigris.org). This is already included in many Linux distributions (e.g. SuSe). Subversion requires port 3690 to be open for tcp/udp. If there are firewall restrictions concerning this port, the PALM code cannot be accessed. The user needs a permit to access the PALM repository. For getting a permit please contact the PALM group (raasch@muk.uni-hannover.de) and define a username and a password under which you like to access the repository. This username and password also gives you access to advanced features of the online documentation. (trac-server)} 125 \item<6->[6.]{All participants of this seminar are already permitted to access the repository. Use \dq seminar2012\dq as username and \dq palm2012\dq as password.} 125 \end{itemize} 126 \end{frame} 127 128 129 % Folie 6a 130 \begin{frame} 131 \frametitle{PALM - Installation / General Requirements (II)} 132 133 \footnotesize 134 \begin{itemize} 135 \item<1->[6.]{All participants of this seminar are already permitted to access the repository. Use \dq seminar2012\dq as username and \dq palm2012\dq as password.} 136 \item<2->[7.]{For the installation of the PALM code on the \textcolor{red}{remote} computer (at HLRN), a sufficient virtual memory has to be allocated on the \textcolor{red}{remote} computer. The value of 256 MByte that is set by \texttt{ulimit -S -v 256000} in the users profile under {\tt $\sim$/.profile} is not sufficient. Please remove this line in your user profile in order to disable the virtual memory limitation.} 126 137 \end{itemize} 127 138 \end{frame} … … 987 998 This has to be done in file {\tt $\sim$/.bashrc} or in file {\tt $\sim$/.profile}, depending on your default shell. You can get your default shell via command: \\ \par\medskip 988 999 \qquad{\tt echo \$SHELL}} 1000 \item<3->[3.]{Please also remove the line \texttt{ulimit -S -v 256000} in file {\tt $\sim$/.profile} to disable the virtual memory limitation of 256 MByte that is set for your seminar user account.} 989 1001 \end{itemize} 990 1002 \end{frame} … … 995 1007 \footnotesize 996 1008 \begin{itemize} 997 \item<1->[ 3.]{On the \textcolor{green}{local} host, edit your configuration file ({\tt .mrun.config}), and replace in the lcsgih-block \textless replace by your HLRN username\textgreater with your HLRN-username.}\\ \par\medskip998 \item<2->[ 4.]{Create directory {\tt job\_queue} on the \textcolor{green}{local} and the \textcolor{red}{remote} host:\\ \par\medskip1009 \item<1->[4.]{On the \textcolor{green}{local} host, edit your configuration file ({\tt .mrun.config}), and replace in the lcsgih-block \textless replace by your HLRN username\textgreater with your HLRN-username.}\\ \par\medskip 1010 \item<2->[5.]{Create directory {\tt job\_queue} on the \textcolor{green}{local} and the \textcolor{red}{remote} host:\\ \par\medskip 999 1011 \qquad{\tt mkdir $\sim$/job\_queue}} 1000 1012 \end{itemize}
Note: See TracChangeset
for help on using the changeset viewer.