source: palm/trunk/SOURCE/time_integration.f90 @ 3469

Last change on this file since 3469 was 3469, checked in by kanani, 5 years ago

Implement indoor climate and energy demand model

  • Property svn:keywords set to Id
File size: 63.1 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3469 2018-10-30 20:05:07Z kanani $
27! Add indoor model (kanani, srissman, tlang)
28!
29! 3467 2018-10-30 19:05:21Z suehring
30! Implementation of a new aerosol module salsa.
31!
32! 3448 2018-10-29 18:14:31Z kanani
33! Add biometeorology
34!
35! 3421 2018-10-24 18:39:32Z gronemeier
36! Surface data output
37!
38! 3418 2018-10-24 16:07:39Z kanani
39! call to material_heat_model now with check if spinup runs (rvtils)
40!
41! 3378 2018-10-19 12:34:59Z kanani
42! merge from radiation branch (r3362) into trunk
43! (moh.hefny):
44! Bugfix in the if statement to call radiation_interaction
45!
46! 3347 2018-10-15 14:21:08Z suehring
47! - offline nesting separated from large-scale forcing module
48! - changes for synthetic turbulence generator
49!
50! 3343 2018-10-15 10:38:52Z suehring
51! - Formatting, clean-up, comments (kanani)
52! - Added CALL to chem_emissions_setup (Russo)
53! - Code added for decycling chemistry (basit)
54!
55! 3294 2018-10-01 02:37:10Z raasch
56! changes concerning modularization of ocean option
57!
58! 3274 2018-09-24 15:42:55Z knoop
59! Modularization of all bulk cloud physics code components
60!
61! 3241 2018-09-12 15:02:00Z raasch
62! unused variables removed
63!
64! 3198 2018-08-15 09:23:10Z sward
65! Added multi_agent_system_end; defined start time for MAS relative to
66! time_since_reference_point
67!
68! 3183 2018-07-27 14:25:55Z suehring
69! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
70! Rename subroutines and variables in COSMO nesting mode
71!
72! 3182 2018-07-27 13:36:03Z suehring
73! Added multi agent system
74!
75! 3042 2018-05-25 10:44:37Z schwenkel
76! Changed the name specific humidity to mixing ratio
77!
78! 3040 2018-05-25 10:22:08Z schwenkel
79! Fixed bug in IF statement
80! Ensure that the time when calling the radiation to be the time step of the
81! pre-calculated time when first calculate the positions of the sun
82!
83! 3004 2018-04-27 12:33:25Z Giersch
84! First call of flow_statistics has been removed. It is already called in
85! run_control itself
86!
87! 2984 2018-04-18 11:51:30Z hellstea
88! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
89! as seemingly unnecessary.
90!
91! 2941 2018-04-03 11:54:58Z kanani
92! Deduct spinup_time from RUN_CONTROL output of main 3d run
93! (use time_since_reference_point instead of simulated_time)
94!
95! 2938 2018-03-27 15:52:42Z suehring
96! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
97!
98! 2936 2018-03-27 14:49:27Z suehring
99! Little formatting adjustment.
100!
101! 2817 2018-02-19 16:32:21Z knoop
102! Preliminary gust module interface implemented
103!
104! 2801 2018-02-14 16:01:55Z thiele
105! Changed lpm from subroutine to module.
106! Introduce particle transfer in nested models.
107!
108! 2776 2018-01-31 10:44:42Z Giersch
109! Variable use_synthetic_turbulence_generator has been abbreviated
110!
111! 2773 2018-01-30 14:12:54Z suehring
112! - Nesting for chemical species
113!
114! 2766 2018-01-22 17:17:47Z kanani
115! Removed preprocessor directive __chem
116!
117! 2718 2018-01-02 08:49:38Z maronga
118! Corrected "Former revisions" section
119!
120! 2696 2017-12-14 17:12:51Z kanani
121! - Change in file header (GPL part)
122! - Implementation of uv exposure model (FK)
123! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
124! - renamed diffusivities to tcm_diffusivities (TG)
125! - implement prognostic equation for diss (TG)
126! - Moved/commented CALL to chem_emissions (FK)
127! - Added CALL to chem_emissions (FK)
128! - Implementation of chemistry module (FK)
129! - Calls for setting boundary conditions in USM and LSM (MS)
130! - Large-scale forcing with larger-scale models implemented (MS)
131! - Rename usm_radiation into radiation_interactions; merge with branch
132!   radiation (MS)
133! - added call for usm_green_heat_model for green building surfaces (RvT)
134! - added call for usm_temperature_near_surface for use in indoor model (RvT)
135!
136! 2617 2017-11-16 12:47:24Z suehring
137! Bugfix, assure that the reference state does not become zero.
138!
139! 2563 2017-10-19 15:36:10Z Giersch
140! Variable wind_turbine moved to module control_parameters
141!
142! 2365 2017-08-21 14:59:59Z kanani
143! Vertical grid nesting implemented (SadiqHuq)
144!
145! 2320 2017-07-21 12:47:43Z suehring
146! Set bottom boundary conditions after nesting interpolation and anterpolation
147!
148! 2299 2017-06-29 10:14:38Z maronga
149! Call of soil model adjusted
150!
151! 2292 2017-06-20 09:51:42Z schwenkel
152! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
153! includes two more prognostic equations for cloud drop concentration (nc) 
154! and cloud water content (qc).
155!
156! 2271 2017-06-09 12:34:55Z sward
157! Start timestep message changed
158!
159! 2259 2017-06-08 09:09:11Z gronemeier
160! Implemented synthetic turbulence generator
161!
162! 2233 2017-05-30 18:08:54Z suehring
163!
164! 2232 2017-05-30 17:47:52Z suehring
165! Adjustments to new topography and surface concept
166! Modify passed parameters for disturb_field
167!
168! 2178 2017-03-17 11:07:39Z hellstea
169! Setting perturbations at all times near inflow boundary is removed
170! in case of nested boundaries
171!
172! 2174 2017-03-13 08:18:57Z maronga
173! Added support for nesting with cloud microphysics
174!
175! 2118 2017-01-17 16:38:49Z raasch
176! OpenACC directives and related code removed
177!
178! 2050 2016-11-08 15:00:55Z gronemeier
179! Implement turbulent outflow condition
180!
181! 2031 2016-10-21 15:11:58Z knoop
182! renamed variable rho to rho_ocean
183!
184! 2011 2016-09-19 17:29:57Z kanani
185! Flag urban_surface is now defined in module control_parameters,
186! removed commented CALLs of global_min_max.
187!
188! 2007 2016-08-24 15:47:17Z kanani
189! Added CALLs for new urban surface model
190!
191! 2000 2016-08-20 18:09:15Z knoop
192! Forced header and separation lines into 80 columns
193!
194! 1976 2016-07-27 13:28:04Z maronga
195! Simplified calls to radiation model
196!
197! 1960 2016-07-12 16:34:24Z suehring
198! Separate humidity and passive scalar
199!
200! 1957 2016-07-07 10:43:48Z suehring
201! flight module added
202!
203! 1919 2016-05-27 14:51:23Z raasch
204! Initial version of purely vertical nesting introduced.
205!
206! 1918 2016-05-27 14:35:57Z raasch
207! determination of time step moved to the end of the time step loop,
208! the first time step is now always calculated before the time step loop (i.e.
209! also in case of restart runs)
210!
211! 1914 2016-05-26 14:44:07Z witha
212! Added call for wind turbine model
213!
214! 1878 2016-04-19 12:30:36Z hellstea
215! Synchronization for nested runs rewritten
216!
217! 1853 2016-04-11 09:00:35Z maronga
218! Adjusted for use with radiation_scheme = constant
219!
220! 1849 2016-04-08 11:33:18Z hoffmann
221! Adapted for modularization of microphysics
222!
223! 1833 2016-04-07 14:23:03Z raasch
224! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
225!
226! 1831 2016-04-07 13:15:51Z hoffmann
227! turbulence renamed collision_turbulence
228!
229! 1822 2016-04-07 07:49:42Z hoffmann
230! icloud_scheme replaced by microphysics_*
231!
232! 1808 2016-04-05 19:44:00Z raasch
233! output message in case unscheduled radiation calls removed
234!
235! 1797 2016-03-21 16:50:28Z raasch
236! introduction of different datatransfer modes
237!
238! 1791 2016-03-11 10:41:25Z raasch
239! call of pmci_update_new removed
240!
241! 1786 2016-03-08 05:49:27Z raasch
242! +module spectrum
243!
244! 1783 2016-03-06 18:36:17Z raasch
245! switch back of netcdf data format for mask output moved to the mask output
246! routine
247!
248! 1781 2016-03-03 15:12:23Z raasch
249! some pmc calls removed at the beginning (before timeloop),
250! pmc initialization moved to the main program
251!
252! 1764 2016-02-28 12:45:19Z raasch
253! PMC_ACTIVE flags removed,
254! bugfix: nest synchronization after first call of timestep
255!
256! 1762 2016-02-25 12:31:13Z hellstea
257! Introduction of nested domain feature
258!
259! 1736 2015-12-04 08:56:33Z raasch
260! no perturbations added to total domain if energy limit has been set zero
261!
262! 1691 2015-10-26 16:17:44Z maronga
263! Added option for spin-ups without land surface and radiation models. Moved calls
264! for radiation and lan surface schemes.
265!
266! 1682 2015-10-07 23:56:08Z knoop
267! Code annotations made doxygen readable
268!
269! 1671 2015-09-25 03:29:37Z raasch
270! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
271! for particles
272!
273! 1585 2015-04-30 07:05:52Z maronga
274! Moved call of radiation scheme. Added support for RRTM
275!
276! 1551 2015-03-03 14:18:16Z maronga
277! Added interface for different radiation schemes.
278!
279! 1496 2014-12-02 17:25:50Z maronga
280! Added calls for the land surface model and radiation scheme
281!
282! 1402 2014-05-09 14:25:13Z raasch
283! location messages modified
284!
285! 1384 2014-05-02 14:31:06Z raasch
286! location messages added
287!
288! 1380 2014-04-28 12:40:45Z heinze
289! CALL of nudge_ref added
290! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
291!
292! 1365 2014-04-22 15:03:56Z boeske
293! Reset sums_ls_l to zero at each timestep
294! +sums_ls_l
295! Calculation of reference state (previously in subroutine calc_mean_profile)
296
297! 1342 2014-03-26 17:04:47Z kanani
298! REAL constants defined as wp-kind
299!
300! 1320 2014-03-20 08:40:49Z raasch
301! ONLY-attribute added to USE-statements,
302! kind-parameters added to all INTEGER and REAL declaration statements,
303! kinds are defined in new module kinds,
304! old module precision_kind is removed,
305! revision history before 2012 removed,
306! comment fields (!:) to be used for variable explanations added to
307! all variable declaration statements
308! 1318 2014-03-17 13:35:16Z raasch
309! module interfaces removed
310!
311! 1308 2014-03-13 14:58:42Z fricke
312! +netcdf_data_format_save
313! For masked data, parallel netcdf output is not tested so far, hence
314! netcdf_data_format is switched back to non-paralell output.
315!
316! 1276 2014-01-15 13:40:41Z heinze
317! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
318!
319! 1257 2013-11-08 15:18:40Z raasch
320! acc-update-host directive for timestep removed
321!
322! 1241 2013-10-30 11:36:58Z heinze
323! Generalize calc_mean_profile for wider use
324! Determine shf and qsws in dependence on data from LSF_DATA
325! Determine ug and vg in dependence on data from LSF_DATA
326! 1221 2013-09-10 08:59:13Z raasch
327! host update of arrays before timestep is called
328!
329! 1179 2013-06-14 05:57:58Z raasch
330! mean profiles for reference state are only calculated if required,
331! small bugfix for background communication
332!
333! 1171 2013-05-30 11:27:45Z raasch
334! split of prognostic_equations deactivated (comment lines), for the time being
335!
336! 1128 2013-04-12 06:19:32Z raasch
337! asynchronous transfer of ghost point data realized for acc-optimized version:
338! prognostic_equations are first called two times for those points required for
339! the left-right and north-south exchange, respectively, and then for the
340! remaining points,
341! those parts requiring global communication moved from prognostic_equations to
342! here
343!
344! 1115 2013-03-26 18:16:16Z hoffmann
345! calculation of qr and nr is restricted to precipitation
346!
347! 1113 2013-03-10 02:48:14Z raasch
348! GPU-porting of boundary conditions,
349! openACC directives updated
350! formal parameter removed from routine boundary_conds
351!
352! 1111 2013-03-08 23:54:10Z raasch
353! +internal timestep counter for cpu statistics added,
354! openACC directives updated
355!
356! 1092 2013-02-02 11:24:22Z raasch
357! unused variables removed
358!
359! 1065 2012-11-22 17:42:36Z hoffmann
360! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
361!
362! 1053 2012-11-13 17:11:03Z hoffmann
363! exchange of ghost points for nr, qr added
364!
365! 1036 2012-10-22 13:43:42Z raasch
366! code put under GPL (PALM 3.9)
367!
368! 1019 2012-09-28 06:46:45Z raasch
369! non-optimized version of prognostic_equations removed
370!
371! 1015 2012-09-27 09:23:24Z raasch
372! +call of prognostic_equations_acc
373!
374! 1001 2012-09-13 14:08:46Z raasch
375! all actions concerning leapfrog- and upstream-spline-scheme removed
376!
377! 849 2012-03-15 10:35:09Z raasch
378! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
379!
380! 825 2012-02-19 03:03:44Z raasch
381! wang_collision_kernel renamed wang_kernel
382!
383! Revision 1.1  1997/08/11 06:19:04  raasch
384! Initial revision
385!
386!
387! Description:
388! ------------
389!> Integration in time of the model equations, statistical analysis and graphic
390!> output
391!------------------------------------------------------------------------------!
392 SUBROUTINE time_integration
393 
394
395    USE advec_ws,                                                              &
396        ONLY:  ws_statistics
397
398    USE arrays_3d,                                                             &
399        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
400               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
401               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
402               v_p, w, w_p
403
404    USE biometeorology_mod,                                                    &
405        ONLY:  biom_calculate_static_grid, time_biom_results
406
407    USE bulk_cloud_model_mod,                                                  &
408        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
409              collision_turbulence, microphysics_morrison, microphysics_seifert
410
411    USE calc_mean_profile_mod,                                                 &
412        ONLY:  calc_mean_profile
413
414    USE chem_emissions_mod,                                                    &
415        ONLY:  chem_emissions_setup
416
417    USE chem_modules,                                                          &
418        ONLY:  bc_cs_t_val, call_chem_at_all_substeps, cs_name,                &
419               constant_csflux, do_emis, nspec, nspec_out
420
421    USE chemistry_model_mod,                                                   &
422        ONLY:  chem_boundary_conds, chem_species
423
424    USE control_parameters,                                                    &
425        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
426               average_count_3d, averaging_interval, averaging_interval_pr,    &
427               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
428               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
429               constant_flux_layer, constant_heatflux,                         &
430               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
431               coupling_start_time, current_timestep_number,                   &
432               disturbance_created, disturbance_energy_limit, dist_range,      &
433               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
434               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
435               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
436               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
437               first_call_lpm, first_call_mas, galilei_transformation,         &
438               humidity, indoor_model, intermediate_timestep_count,            &
439               intermediate_timestep_count_max,                                &
440               land_surface, large_scale_forcing,                              &
441               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
442               multi_agent_system_end, multi_agent_system_start,               &
443               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
444               ocean_mode, passive_scalar, pt_reference,                       &
445               pt_slope_offset, random_heatflux, rans_mode,                    &
446               rans_tke_e, run_coupled, simulated_time, simulated_time_chr,    &
447               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
448               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
449               skip_time_data_output_av, sloping_surface, stop_dt,             &
450               surface_data_output, terminate_coupled, terminate_run,          &
451               timestep_scheme,                                                &
452               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
453               time_do3d, time_domask, time_dopr, time_dopr_av,                &
454               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
455               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
456               time_run_control, time_since_reference_point,                   &
457               turbulent_inflow, turbulent_outflow, urban_surface,             &
458               use_initial_profile_as_reference,                               &
459               use_single_reference_value, uv_exposure, u_gtrans, v_gtrans,    &
460               virtual_flight, wind_turbine, ws_scheme_mom, ws_scheme_sca
461
462    USE cpulog,                                                                &
463        ONLY:  cpu_log, log_point, log_point_s
464
465    USE date_and_time_mod,                                                     &
466        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
467
468    USE flight_mod,                                                            &
469        ONLY:  flight_measurement
470
471    USE gust_mod,                                                              &
472        ONLY:  gust_actions, gust_module_enabled
473
474    USE indices,                                                               &
475        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
476
477    USE indoor_model_mod,                                                      &
478        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
479
480    USE interaction_droplets_ptq_mod,                                          &
481        ONLY:  interaction_droplets_ptq
482
483    USE interfaces
484
485    USE kinds
486
487    USE land_surface_model_mod,                                                &
488        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
489               skip_time_do_lsm
490
491    USE lsf_nudging_mod,                                                       &
492        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
493
494    USE multi_agent_system_mod,                                                &
495        ONLY:  agents_active, multi_agent_system
496
497    USE nesting_offl_mod,                                                      &
498        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
499       
500    USE netcdf_data_input_mod,                                                 &
501        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
502               netcdf_data_input_offline_nesting
503
504    USE ocean_mod,                                                             &
505        ONLY:  prho_reference
506
507    USE particle_attributes,                                                   &
508        ONLY:  particle_advection, particle_advection_start,                   &
509               use_sgs_for_particles, wang_kernel
510
511    USE pegrid
512
513    USE pmc_interface,                                                         &
514        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
515               pmci_ensure_nest_mass_conservation, pmci_synchronize
516
517    USE progress_bar,                                                          &
518        ONLY:  finish_progress_bar, output_progress_bar
519
520    USE prognostic_equations_mod,                                              &
521        ONLY:  prognostic_equations_cache, prognostic_equations_vector
522
523    USE radiation_model_mod,                                                   &
524        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
525              radiation_interaction, radiation_interactions,                   &
526              skip_time_do_radiation, time_radiation
527
528    USE spectra_mod,                                                           &
529        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
530              skip_time_dosp
531
532    USE statistics,                                                            &
533        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
534
535    USE surface_layer_fluxes_mod,                                              &
536        ONLY:  surface_layer_fluxes
537
538    USE surface_mod,                                                           &
539        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
540
541    USE surface_output_mod,                                                    &
542        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
543               dt_dosurf_av, surface_output, surface_output_averaging,         &
544               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
545               time_dosurf_av
546
547    USE turbulence_closure_mod,                                                &
548        ONLY:  tcm_diffusivities, production_e_init
549
550    USE urban_surface_mod,                                                     &
551        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
552               usm_material_model,                                             &
553               usm_surface_energy_balance, usm_green_heat_model,               &
554               usm_temperature_near_surface
555
556    USE synthetic_turbulence_generator_mod,                                    &
557        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
558               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
559               use_syn_turb_gen
560         
561    USE salsa_mod,                                                             &
562        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa,      &
563              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
564              skip_time_do_salsa           
565
566    USE user_actions_mod,                                                      &
567        ONLY:  user_actions
568
569    USE uv_exposure_model_mod,                                                 &
570        ONLY:  uvem_calc_exposure
571
572    USE wind_turbine_model_mod,                                                &
573        ONLY:  wtm_forces
574
575    USE lpm_mod,                                                               &
576        ONLY:  lpm
577
578    USE vertical_nesting_mod,                                                  &
579        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
580               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
581               vnest_deallocate, vnest_init, vnest_init_fine,                  &
582               vnest_start_time
583
584    IMPLICIT NONE
585
586    CHARACTER (LEN=9) ::  time_to_string   !<
587   
588    INTEGER(iwp)      ::  b !< index for aerosol size bins   
589    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
590    INTEGER(iwp)      ::  g !< index for gaseous compounds
591    INTEGER(iwp)      ::  lsp
592    INTEGER(iwp)      ::  lsp_usr   !<
593    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
594
595    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
596                            !< steering of run control output interval
597    REAL(wp) ::  time_since_reference_point_save  !< original value of
598                                                  !< time_since_reference_point
599
600!
601!-- At beginning determine the first time step
602    CALL timestep
603!
604!-- Synchronize the timestep in case of nested run.
605    IF ( nested_run )  THEN
606!
607!--    Synchronization by unifying the time step.
608!--    Global minimum of all time-steps is used for all.
609       CALL pmci_synchronize
610    ENDIF
611
612!
613!-- Determine and print out the run control quantities before the first time
614!-- step of this run. For the initial run, some statistics (e.g. divergence)
615!-- need to be determined first --> CALL flow_statistics at the beginning of
616!-- run_control
617    CALL run_control
618!
619!-- Data exchange between coupled models in case that a call has been omitted
620!-- at the end of the previous run of a job chain.
621    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
622!
623!--    In case of model termination initiated by the local model the coupler
624!--    must not be called because this would again cause an MPI hang.
625       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
626          CALL surface_coupler
627          time_coupling = time_coupling - dt_coupling
628       ENDDO
629       IF (time_coupling == 0.0_wp  .AND.                                      &
630           time_since_reference_point < dt_coupling )                          &
631       THEN
632          time_coupling = time_since_reference_point
633       ENDIF
634    ENDIF
635
636#if defined( __dvrp_graphics )
637!
638!-- Time measurement with dvrp software 
639    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
640#endif
641
642    CALL location_message( 'starting timestep-sequence', .TRUE. )
643!
644!-- Start of the time loop
645    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
646                .NOT. terminate_run )
647
648       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
649!
650!--    Vertical nesting: initialize fine grid
651       IF ( vnested ) THEN
652          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
653             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
654             CALL vnest_init_fine
655             vnest_init = .TRUE.
656             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
657          ENDIF
658       ENDIF
659!
660!--    Determine ug, vg and w_subs in dependence on data from external file
661!--    LSF_DATA
662       IF ( large_scale_forcing .AND. lsf_vert )  THEN
663           CALL ls_forcing_vert ( simulated_time )
664           sums_ls_l = 0.0_wp
665       ENDIF
666
667!
668!--    Set pt_init and q_init to the current profiles taken from
669!--    NUDGING_DATA
670       IF ( nudging )  THEN
671           CALL nudge_ref ( simulated_time )
672!
673!--        Store temperature gradient at the top boundary for possible Neumann
674!--        boundary condition
675           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
676           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
677           IF ( air_chemistry )  THEN
678              DO  lsp = 1, nspec
679                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
680                                - chem_species(lsp)%conc_pr_init(nzt) )       &
681                               / dzu(nzt+1)
682              ENDDO
683           ENDIF
684       ENDIF
685!
686!--    If forcing by larger-scale models is applied, check if new data
687!--    at domain boundaries need to be read.
688       IF ( nesting_offline )  THEN
689          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
690             CALL netcdf_data_input_offline_nesting
691       ENDIF
692
693!
694!--    Execute the gust module actions
695       IF ( gust_module_enabled )  THEN
696          CALL gust_actions( 'before_timestep' )
697       ENDIF
698
699!
700!--    Execute the user-defined actions
701       CALL user_actions( 'before_timestep' )
702
703!
704!--    Calculate forces by wind turbines
705       IF ( wind_turbine )  THEN
706
707          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
708
709          CALL wtm_forces
710
711          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
712
713       ENDIF   
714       
715!
716!--    Start of intermediate step loop
717       intermediate_timestep_count = 0
718       DO  WHILE ( intermediate_timestep_count < &
719                   intermediate_timestep_count_max )
720
721          intermediate_timestep_count = intermediate_timestep_count + 1
722
723!
724!--       Set the steering factors for the prognostic equations which depend
725!--       on the timestep scheme
726          CALL timestep_scheme_steering
727
728!
729!--       Calculate those variables needed in the tendency terms which need
730!--       global communication
731          IF ( .NOT. use_single_reference_value  .AND. &
732               .NOT. use_initial_profile_as_reference )  THEN
733!
734!--          Horizontally averaged profiles to be used as reference state in
735!--          buoyancy terms (WARNING: only the respective last call of
736!--          calc_mean_profile defines the reference state!)
737             IF ( .NOT. neutral )  THEN
738                CALL calc_mean_profile( pt, 4 )
739                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
740             ENDIF
741             IF ( ocean_mode )  THEN
742                CALL calc_mean_profile( rho_ocean, 64 )
743                ref_state(:)  = hom(:,1,64,0)
744             ENDIF
745             IF ( humidity )  THEN
746                CALL calc_mean_profile( vpt, 44 )
747                ref_state(:)  = hom(:,1,44,0)
748             ENDIF
749!
750!--          Assure that ref_state does not become zero at any level
751!--          ( might be the case if a vertical level is completely occupied
752!--            with topography ).
753             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
754                                ref_state == 0.0_wp )
755          ENDIF
756
757          IF ( .NOT. constant_diffusion )  CALL production_e_init
758          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
759               intermediate_timestep_count == 1 )  CALL ws_statistics
760!
761!--       In case of nudging calculate current nudging time scale and horizontal
762!--       means of u, v, pt and q
763          IF ( nudging )  THEN
764             CALL calc_tnudge( simulated_time )
765             CALL calc_mean_profile( u, 1 )
766             CALL calc_mean_profile( v, 2 )
767             CALL calc_mean_profile( pt, 4 )
768             CALL calc_mean_profile( q, 41 )
769          ENDIF
770
771!
772!--       Solve the prognostic equations. A fast cache optimized version with
773!--       only one single loop is used in case of Piascek-Williams advection
774!--       scheme. NEC vector machines use a different version, because
775!--       in the other versions a good vectorization is prohibited due to
776!--       inlining problems.
777          IF ( loop_optimization == 'cache' )  THEN
778             CALL prognostic_equations_cache
779          ELSEIF ( loop_optimization == 'vector' )  THEN
780             CALL prognostic_equations_vector
781          ENDIF
782
783!
784!--       Particle transport/physics with the Lagrangian particle model
785!--       (only once during intermediate steps, because it uses an Euler-step)
786!--       ### particle model should be moved before prognostic_equations, in order
787!--       to regard droplet interactions directly
788          IF ( particle_advection  .AND.                         &
789               simulated_time >= particle_advection_start  .AND. &
790               intermediate_timestep_count == 1 )  THEN
791             CALL lpm
792             first_call_lpm = .FALSE.
793          ENDIF
794
795!
796!--       Interaction of droplets with temperature and mixing ratio.
797!--       Droplet condensation and evaporation is calculated within
798!--       advec_particles.
799          IF ( cloud_droplets  .AND.  &
800               intermediate_timestep_count == intermediate_timestep_count_max )&
801          THEN
802             CALL interaction_droplets_ptq
803          ENDIF
804
805!
806!--       Movement of agents in multi agent system
807          IF ( agents_active  .AND.                                            &
808               time_since_reference_point >= multi_agent_system_start  .AND.   &
809               time_since_reference_point <= multi_agent_system_end    .AND.   &
810               intermediate_timestep_count == 1 )  THEN
811             CALL multi_agent_system
812             first_call_mas = .FALSE.
813          ENDIF
814
815!
816!--       Exchange of ghost points (lateral boundary conditions)
817          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
818
819          CALL exchange_horiz( u_p, nbgp )
820          CALL exchange_horiz( v_p, nbgp )
821          CALL exchange_horiz( w_p, nbgp )
822          CALL exchange_horiz( pt_p, nbgp )
823          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
824          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
825               .OR.  use_sgs_for_particles )  THEN
826             IF ( rans_tke_e )  THEN
827                CALL exchange_horiz( diss_p, nbgp )
828             ELSE
829                CALL exchange_horiz( diss, nbgp )
830             ENDIF
831          ENDIF
832          IF ( ocean_mode )  THEN
833             CALL exchange_horiz( sa_p, nbgp )
834             CALL exchange_horiz( rho_ocean, nbgp )
835             CALL exchange_horiz( prho, nbgp )
836          ENDIF
837          IF ( humidity )  THEN
838             CALL exchange_horiz( q_p, nbgp )
839             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
840                CALL exchange_horiz( qc_p, nbgp )
841                CALL exchange_horiz( nc_p, nbgp )
842             ENDIF
843             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
844                CALL exchange_horiz( qr_p, nbgp )
845                CALL exchange_horiz( nr_p, nbgp )
846             ENDIF
847          ENDIF
848          IF ( cloud_droplets )  THEN
849             CALL exchange_horiz( ql, nbgp )
850             CALL exchange_horiz( ql_c, nbgp )
851             CALL exchange_horiz( ql_v, nbgp )
852             CALL exchange_horiz( ql_vp, nbgp )
853          ENDIF
854          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
855          IF ( air_chemistry )  THEN
856             DO  lsp = 1, nspec
857                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
858!
859!--             kanani: Push chem_boundary_conds after CALL boundary_conds
860                lsp_usr = 1
861                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
862                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
863                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
864                                                chem_species(lsp)%conc_pr_init )
865                   ENDIF
866                   lsp_usr = lsp_usr + 1
867                ENDDO
868             ENDDO
869          ENDIF
870
871          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
872          THEN
873             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
874             DO  b = 1, nbins
875                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
876                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
877                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
878                                           aerosol_number(b)%init )
879                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
880                DO  c = 1, ncc_tot
881                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
882                                        nbgp )
883                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
884                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
885                                              aerosol_mass((c-1)*nbins+b)%init )
886                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
887                ENDDO
888             ENDDO
889             IF ( .NOT. salsa_gases_from_chem )  THEN
890                DO  g = 1, ngast
891                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
892                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
893                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
894                                              salsa_gas(g)%init )
895                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
896             ENDDO
897             ENDIF
898             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
899          ENDIF         
900
901          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
902
903!
904!--       Boundary conditions for the prognostic quantities (except of the
905!--       velocities at the outflow in case of a non-cyclic lateral wall)
906          CALL boundary_conds
907!
908!--       Swap the time levels in preparation for the next time step.
909          CALL swap_timelevel
910
911!
912!--       Vertical nesting: Interpolate fine grid data to the coarse grid
913          IF ( vnest_init ) THEN
914             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
915             CALL vnest_anterpolate
916             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
917          ENDIF
918
919          IF ( nested_run )  THEN
920
921             CALL cpu_log( log_point(60), 'nesting', 'start' )
922!
923!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
924!--          and pmci_child_datatrans are called inside the wrapper
925!--          subroutine pmci_datatrans according to the control parameters
926!--          nesting_mode and nesting_datatransfer_mode.
927!--          TO_DO: why is nesting_mode given as a parameter here?
928             CALL pmci_datatrans( nesting_mode )
929
930             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
931                  nesting_mode == 'vertical' )  THEN
932!
933!--             Exchange_horiz is needed for all parent-domains after the
934!--             anterpolation
935                CALL exchange_horiz( u, nbgp )
936                CALL exchange_horiz( v, nbgp )
937                CALL exchange_horiz( w, nbgp )
938                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
939
940                IF ( humidity )  THEN
941
942                   CALL exchange_horiz( q, nbgp )
943
944                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
945                       CALL exchange_horiz( qc, nbgp )
946                       CALL exchange_horiz( nc, nbgp )
947                   ENDIF
948                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
949                       CALL exchange_horiz( qr, nbgp )
950                       CALL exchange_horiz( nr, nbgp )
951                   ENDIF
952
953                ENDIF
954
955                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
956               
957                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
958
959                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
960                                                      rans_tke_e )             &
961                   CALL exchange_horiz( diss, nbgp )
962
963                IF ( air_chemistry )  THEN
964                   DO  n = 1, nspec     
965                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
966                   ENDDO
967                ENDIF
968
969             ENDIF
970!
971!--          Set boundary conditions again after interpolation and anterpolation.
972             CALL pmci_boundary_conds
973!
974!--          Correct the w top-BC in nest domains to ensure mass conservation.
975!--          This action must never be done for the root domain. Vertical
976!--          Commented out April 18, 2018 as seemingly unnecessary.
977!--          Will later be completely removed.
978!--             IF ( child_domain )  THEN
979!--                CALL pmci_ensure_nest_mass_conservation
980!--             ENDIF
981
982
983             CALL cpu_log( log_point(60), 'nesting', 'stop' )
984
985          ENDIF
986
987!
988!--       Temperature offset must be imposed at cyclic boundaries in x-direction
989!--       when a sloping surface is used
990          IF ( sloping_surface )  THEN
991             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
992                                                    pt_slope_offset
993             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
994                                                    pt_slope_offset
995          ENDIF
996
997!
998!--       Impose a turbulent inflow using the recycling method
999          IF ( turbulent_inflow )  CALL  inflow_turbulence
1000
1001!
1002!--       Set values at outflow boundary using the special outflow condition
1003          IF ( turbulent_outflow )  CALL  outflow_turbulence
1004
1005!
1006!--       Impose a random perturbation on the horizontal velocity field
1007          IF ( create_disturbances  .AND.                                      &
1008               ( call_psolver_at_all_substeps  .AND.                           &
1009               intermediate_timestep_count == intermediate_timestep_count_max )&
1010          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1011               intermediate_timestep_count == 1 ) )                            &
1012          THEN
1013             time_disturb = time_disturb + dt_3d
1014             IF ( time_disturb >= dt_disturb )  THEN
1015                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1016                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1017                   CALL disturb_field( 'u', tend, u )
1018                   CALL disturb_field( 'v', tend, v )
1019                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1020                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1021                THEN
1022!
1023!--                Runs with a non-cyclic lateral wall need perturbations
1024!--                near the inflow throughout the whole simulation
1025                   dist_range = 1
1026                   CALL disturb_field( 'u', tend, u )
1027                   CALL disturb_field( 'v', tend, v )
1028                   dist_range = 0
1029                ENDIF
1030                time_disturb = time_disturb - dt_disturb
1031             ENDIF
1032          ENDIF
1033
1034!
1035!--       Map forcing data derived from larger scale model onto domain
1036!--       boundaries.
1037          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1038                                       intermediate_timestep_count_max  )      &
1039             CALL nesting_offl_bc
1040!
1041!--       Impose a turbulent inflow using synthetic generated turbulence,
1042!--       only once per time step.
1043          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1044             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1045             CALL stg_main
1046          ENDIF
1047!
1048!--       Ensure mass conservation. This need to be done after imposing
1049!--       synthetic turbulence and top boundary condition for pressure is set to
1050!--       Neumann conditions.
1051!--       Is this also required in case of Dirichlet?
1052          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1053!
1054!--       Reduce the velocity divergence via the equation for perturbation
1055!--       pressure.
1056          IF ( intermediate_timestep_count == 1  .OR. &
1057                call_psolver_at_all_substeps )  THEN
1058
1059             IF (  vnest_init ) THEN
1060!
1061!--             Compute pressure in the CG, interpolate top boundary conditions
1062!--             to the FG and then compute pressure in the FG
1063                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1064
1065                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1066                CALL vnest_boundary_conds
1067                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1068 
1069                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1070
1071!--             Anterpolate TKE, satisfy Germano Identity
1072                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1073                CALL vnest_anterpolate_e
1074                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1075
1076             ELSE
1077
1078                CALL pres
1079
1080             ENDIF
1081
1082          ENDIF
1083
1084!
1085!--       If required, compute liquid water content
1086          IF ( bulk_cloud_model )  THEN
1087             CALL calc_liquid_water_content
1088          ENDIF
1089!
1090!--       If required, compute virtual potential temperature
1091          IF ( humidity )  THEN
1092             CALL compute_vpt 
1093          ENDIF 
1094
1095!
1096!--       Compute the diffusion quantities
1097          IF ( .NOT. constant_diffusion )  THEN
1098
1099!
1100!--          Determine surface fluxes shf and qsws and surface values
1101!--          pt_surface and q_surface in dependence on data from external
1102!--          file LSF_DATA respectively
1103             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1104                 intermediate_timestep_count == intermediate_timestep_count_max )&
1105             THEN
1106                CALL ls_forcing_surf( simulated_time )
1107             ENDIF
1108
1109!
1110!--          First the vertical (and horizontal) fluxes in the surface
1111!--          (constant flux) layer are computed
1112             IF ( constant_flux_layer )  THEN
1113                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1114                CALL surface_layer_fluxes
1115                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1116             ENDIF
1117!
1118!--          If required, solve the energy balance for the surface and run soil
1119!--          model. Call for horizontal as well as vertical surfaces
1120             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1121
1122                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1123!
1124!--             Call for horizontal upward-facing surfaces
1125                CALL lsm_energy_balance( .TRUE., -1 )
1126                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1127!
1128!--             Call for northward-facing surfaces
1129                CALL lsm_energy_balance( .FALSE., 0 )
1130                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1131!
1132!--             Call for southward-facing surfaces
1133                CALL lsm_energy_balance( .FALSE., 1 )
1134                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1135!
1136!--             Call for eastward-facing surfaces
1137                CALL lsm_energy_balance( .FALSE., 2 )
1138                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1139!
1140!--             Call for westward-facing surfaces
1141                CALL lsm_energy_balance( .FALSE., 3 )
1142                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1143!
1144!--             At the end, set boundary conditons for potential temperature
1145!--             and humidity after running the land-surface model. This
1146!--             might be important for the nesting, where arrays are transfered.
1147                CALL lsm_boundary_condition
1148
1149                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1150             ENDIF
1151!
1152!--          If required, solve the energy balance for urban surfaces and run
1153!--          the material heat model
1154             IF (urban_surface) THEN
1155                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1156               
1157                CALL usm_surface_energy_balance( .FALSE. )
1158                IF ( usm_material_model )  THEN
1159                   CALL usm_green_heat_model
1160                   CALL usm_material_heat_model ( .FALSE. )
1161                ENDIF
1162
1163                CALL usm_temperature_near_surface
1164!
1165!--             At the end, set boundary conditons for potential temperature
1166!--             and humidity after running the urban-surface model. This
1167!--             might be important for the nesting, where arrays are transfered.
1168                CALL usm_boundary_condition
1169
1170                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1171             ENDIF
1172!
1173!--          Compute the diffusion coefficients
1174             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1175             IF ( .NOT. humidity ) THEN
1176                IF ( ocean_mode )  THEN
1177                   CALL tcm_diffusivities( prho, prho_reference )
1178                ELSE
1179                   CALL tcm_diffusivities( pt, pt_reference )
1180                ENDIF
1181             ELSE
1182                CALL tcm_diffusivities( vpt, pt_reference )
1183             ENDIF
1184             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1185!
1186!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1187             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1188
1189          ENDIF
1190
1191!
1192!--       If required, calculate radiative fluxes and heating rates
1193          IF ( radiation .AND. intermediate_timestep_count                     &
1194               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1195               skip_time_do_radiation )  THEN
1196
1197               time_radiation = time_radiation + dt_3d
1198
1199             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1200             THEN
1201
1202                CALL cpu_log( log_point(50), 'radiation', 'start' )
1203
1204                IF ( .NOT. force_radiation_call )  THEN
1205                   time_radiation = time_radiation - dt_radiation
1206                ENDIF
1207
1208!
1209!--             Adjust the current time to the time step of the radiation model.
1210!--             Needed since radiation is pre-calculated and stored only on apparent
1211!--             solar positions
1212                time_since_reference_point_save = time_since_reference_point
1213                time_since_reference_point =                                   &
1214                                    REAL( FLOOR( time_since_reference_point /  &
1215                                                 dt_radiation), wp )           &
1216                                             * dt_radiation
1217
1218                CALL radiation_control
1219
1220                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1221
1222                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1223                     radiation_interactions )  THEN
1224                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1225                   CALL radiation_interaction
1226                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1227                ENDIF
1228   
1229!
1230!--             Return the current time to its original value
1231                time_since_reference_point = time_since_reference_point_save
1232
1233             ENDIF
1234          ENDIF
1235
1236       ENDDO   ! Intermediate step loop
1237!
1238!--    If required, consider chemical emissions
1239       IF ( air_chemistry  .AND.  do_emis )  THEN
1240!
1241!--       Update the time --> kanani: revise location of this CALL
1242          CALL calc_date_and_time
1243!
1244!--       Call emission routine only once an hour
1245          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1246             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1247             hour_call_emis = hour_of_year
1248          ENDIF
1249       ENDIF
1250!
1251!--    If required, do UV exposure calculations
1252       IF ( uv_exposure )  THEN
1253          CALL uvem_calc_exposure
1254       ENDIF
1255!
1256!--    If required, calculate indoor temperature, waste heat, heat flux
1257!--    through wall, etc.
1258!--    dt_indoor steers the frequency of the indoor model calculations
1259       IF (       indoor_model                                                    &
1260            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1261            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1262
1263          time_indoor = time_indoor + dt_3d
1264
1265          IF ( time_indoor >= dt_indoor )  THEN
1266
1267             time_indoor = time_indoor - dt_indoor
1268
1269             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1270             CALL im_main_heatcool
1271             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1272
1273          ENDIF
1274       ENDIF
1275!
1276!--    Increase simulation time and output times
1277       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1278       current_timestep_number    = current_timestep_number + 1
1279       simulated_time             = simulated_time   + dt_3d
1280       time_since_reference_point = simulated_time - coupling_start_time
1281       simulated_time_chr         = time_to_string( time_since_reference_point )
1282
1283
1284
1285
1286       IF ( simulated_time >= skip_time_data_output_av )  THEN
1287          time_do_av         = time_do_av       + dt_3d
1288       ENDIF
1289       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1290          time_do2d_xy       = time_do2d_xy     + dt_3d
1291       ENDIF
1292       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1293          time_do2d_xz       = time_do2d_xz     + dt_3d
1294       ENDIF
1295       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1296          time_do2d_yz       = time_do2d_yz     + dt_3d
1297       ENDIF
1298       IF ( simulated_time >= skip_time_do3d    )  THEN
1299          time_do3d          = time_do3d        + dt_3d
1300       ENDIF
1301       DO  mid = 1, masks
1302          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1303             time_domask(mid)= time_domask(mid) + dt_3d
1304          ENDIF
1305       ENDDO
1306       time_dvrp          = time_dvrp        + dt_3d
1307       IF ( simulated_time >= skip_time_dosp )  THEN
1308          time_dosp       = time_dosp        + dt_3d
1309       ENDIF
1310       time_dots          = time_dots        + dt_3d
1311       IF ( .NOT. first_call_lpm )  THEN
1312          time_dopts      = time_dopts       + dt_3d
1313       ENDIF
1314       IF ( simulated_time >= skip_time_dopr )  THEN
1315          time_dopr       = time_dopr        + dt_3d
1316       ENDIF
1317       time_dopr_listing  = time_dopr_listing + dt_3d
1318       time_run_control   = time_run_control + dt_3d
1319!
1320!--    Increment time-counter for surface output
1321       IF ( surface_data_output )  THEN
1322          IF ( simulated_time >= skip_time_dosurf )  THEN
1323             time_dosurf    = time_dosurf + dt_3d
1324          ENDIF
1325          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1326             time_dosurf_av = time_dosurf_av + dt_3d
1327          ENDIF
1328       ENDIF
1329!
1330!--    In case of synthetic turbulence generation and parametrized turbulence
1331!--    information, update the time counter and if required, adjust the
1332!--    STG to new atmospheric conditions.
1333       IF ( use_syn_turb_gen  )  THEN
1334          IF ( parametrize_inflow_turbulence )  THEN
1335             time_stg_adjust = time_stg_adjust + dt_3d
1336             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1337          ENDIF
1338          time_stg_call = time_stg_call + dt_3d
1339       ENDIF
1340
1341!
1342!--    Data exchange between coupled models
1343       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1344                                          .AND. .NOT. vnested )  THEN
1345          time_coupling = time_coupling + dt_3d
1346
1347!
1348!--       In case of model termination initiated by the local model
1349!--       (terminate_coupled > 0), the coupler must be skipped because it would
1350!--       cause an MPI intercomminucation hang.
1351!--       If necessary, the coupler will be called at the beginning of the
1352!--       next restart run.
1353          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1354             CALL surface_coupler
1355             time_coupling = time_coupling - dt_coupling
1356          ENDDO
1357       ENDIF
1358
1359!
1360!--    Biometeorology calculation of stationary thermal indices
1361       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1362          CALL biom_calculate_static_grid ( .FALSE. )
1363          time_biom_results = time_since_reference_point
1364       ENDIF
1365
1366!
1367!--    Execute the gust module actions
1368       IF ( gust_module_enabled )  THEN
1369          CALL gust_actions( 'after_integration' )
1370       ENDIF
1371
1372!
1373!--    Execute user-defined actions
1374       CALL user_actions( 'after_integration' )
1375
1376!
1377!--    If Galilei transformation is used, determine the distance that the
1378!--    model has moved so far
1379       IF ( galilei_transformation )  THEN
1380          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1381          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1382       ENDIF
1383
1384!
1385!--    Check, if restart is necessary (because cpu-time is expiring or
1386!--    because it is forced by user) and set stop flag
1387!--    This call is skipped if the remote model has already initiated a restart.
1388       IF ( .NOT. terminate_run )  CALL check_for_restart
1389
1390!
1391!--    Carry out statistical analysis and output at the requested output times.
1392!--    The MOD function is used for calculating the output time counters (like
1393!--    time_dopr) in order to regard a possible decrease of the output time
1394!--    interval in case of restart runs
1395
1396!
1397!--    Set a flag indicating that so far no statistics have been created
1398!--    for this time step
1399       flow_statistics_called = .FALSE.
1400
1401!
1402!--    If required, call flow_statistics for averaging in time
1403       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1404            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1405            simulated_time >= skip_time_dopr )  THEN
1406          time_dopr_av = time_dopr_av + dt_3d
1407          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1408             do_sum = .TRUE.
1409             time_dopr_av = MOD( time_dopr_av, &
1410                                    MAX( dt_averaging_input_pr, dt_3d ) )
1411          ENDIF
1412       ENDIF
1413       IF ( do_sum )  CALL flow_statistics
1414
1415!
1416!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1417       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1418            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1419            simulated_time >= skip_time_data_output_av )                    &
1420       THEN
1421          time_do_sla = time_do_sla + dt_3d
1422          IF ( time_do_sla >= dt_averaging_input )  THEN
1423             CALL sum_up_3d_data
1424             average_count_3d = average_count_3d + 1
1425             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1426          ENDIF
1427       ENDIF
1428!
1429!--    Average surface data
1430       IF ( surface_data_output )  THEN
1431          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1432               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1433          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1434             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1435                CALL surface_output_averaging
1436                average_count_surf = average_count_surf + 1
1437             ENDIF
1438          ENDIF
1439       ENDIF
1440
1441!
1442!--    Calculate spectra for time averaging
1443       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1444            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1445            simulated_time >= skip_time_dosp )  THEN
1446          time_dosp_av = time_dosp_av + dt_3d
1447          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1448             CALL calc_spectra
1449             time_dosp_av = MOD( time_dosp_av, &
1450                                 MAX( dt_averaging_input_pr, dt_3d ) )
1451          ENDIF
1452       ENDIF
1453
1454!
1455!--    Call flight module and output data
1456       IF ( virtual_flight )  THEN
1457          CALL flight_measurement
1458          CALL data_output_flight
1459       ENDIF
1460
1461!
1462!--    Profile output (ASCII) on file
1463       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1464          CALL print_1d
1465          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1466                                                           dt_3d ) )
1467       ENDIF
1468
1469!
1470!--    Graphic output for PROFIL
1471       IF ( time_dopr >= dt_dopr )  THEN
1472          IF ( dopr_n /= 0 )  CALL data_output_profiles
1473          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1474          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1475       ENDIF
1476
1477!
1478!--    Graphic output for time series
1479       IF ( time_dots >= dt_dots )  THEN
1480          CALL data_output_tseries
1481          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1482       ENDIF
1483
1484!
1485!--    Output of spectra (formatted for use with PROFIL), in case of no
1486!--    time averaging, spectra has to be calculated before
1487       IF ( time_dosp >= dt_dosp )  THEN
1488          IF ( average_count_sp == 0 )  CALL calc_spectra
1489          CALL data_output_spectra
1490          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1491       ENDIF
1492
1493!
1494!--    2d-data output (cross-sections)
1495       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1496          CALL data_output_2d( 'xy', 0 )
1497          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1498       ENDIF
1499       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1500          CALL data_output_2d( 'xz', 0 )
1501          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1502       ENDIF
1503       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1504          CALL data_output_2d( 'yz', 0 )
1505          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1506       ENDIF
1507
1508!
1509!--    3d-data output (volume data)
1510       IF ( time_do3d >= dt_do3d )  THEN
1511          CALL data_output_3d( 0 )
1512          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1513       ENDIF
1514
1515!
1516!--    Masked data output
1517       DO  mid = 1, masks
1518          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1519             CALL data_output_mask( 0 )
1520             time_domask(mid) = MOD( time_domask(mid),  &
1521                                     MAX( dt_domask(mid), dt_3d ) )
1522          ENDIF
1523       ENDDO
1524
1525!
1526!--    Output of time-averaged 2d/3d/masked data
1527       IF ( time_do_av >= dt_data_output_av )  THEN
1528          CALL average_3d_data
1529          CALL data_output_2d( 'xy', 1 )
1530          CALL data_output_2d( 'xz', 1 )
1531          CALL data_output_2d( 'yz', 1 )
1532          CALL data_output_3d( 1 )
1533          DO  mid = 1, masks
1534             CALL data_output_mask( 1 )
1535          ENDDO
1536          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1537       ENDIF
1538!
1539!--    Output of surface data, instantaneous and averaged data
1540       IF ( surface_data_output )  THEN
1541          IF ( time_dosurf >= dt_dosurf )  THEN
1542             CALL surface_output( 0 )
1543             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1544          ENDIF
1545          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1546             CALL surface_output( 1 )
1547             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1548          ENDIF
1549       ENDIF
1550
1551!
1552!--    Output of particle time series
1553       IF ( particle_advection )  THEN
1554          IF ( time_dopts >= dt_dopts  .OR. &
1555               ( simulated_time >= particle_advection_start  .AND. &
1556                 first_call_lpm ) )  THEN
1557             CALL data_output_ptseries
1558             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1559          ENDIF
1560       ENDIF
1561
1562!
1563!--    Output of dvrp-graphics (isosurface, particles, slicer)
1564#if defined( __dvrp_graphics )
1565       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1566#endif
1567       IF ( time_dvrp >= dt_dvrp )  THEN
1568          CALL data_output_dvrp
1569          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1570       ENDIF
1571#if defined( __dvrp_graphics )
1572       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1573#endif
1574
1575!
1576!--    If required, set the heat flux for the next time step at a random value
1577       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1578          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1579          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1580          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1581       ENDIF
1582
1583!
1584!--    Execute the gust module actions
1585       IF ( gust_module_enabled )  THEN
1586          CALL gust_actions( 'after_timestep' )
1587       ENDIF
1588
1589!
1590!--    Execute user-defined actions
1591       CALL user_actions( 'after_timestep' )
1592
1593!
1594!--    Determine size of next time step. Save timestep dt_3d because it is
1595!--    newly calculated in routine timestep, but required further below for
1596!--    steering the run control output interval
1597       dt_3d_old = dt_3d
1598       CALL timestep
1599
1600!
1601!--    Synchronize the timestep in case of nested run.
1602       IF ( nested_run )  THEN
1603!
1604!--       Synchronize by unifying the time step.
1605!--       Global minimum of all time-steps is used for all.
1606          CALL pmci_synchronize
1607       ENDIF
1608
1609!
1610!--    Computation and output of run control parameters.
1611!--    This is also done whenever perturbations have been imposed
1612       IF ( time_run_control >= dt_run_control  .OR.                     &
1613            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1614       THEN
1615          CALL run_control
1616          IF ( time_run_control >= dt_run_control )  THEN
1617             time_run_control = MOD( time_run_control, &
1618                                     MAX( dt_run_control, dt_3d_old ) )
1619          ENDIF
1620       ENDIF
1621
1622!
1623!--    Output elapsed simulated time in form of a progress bar on stdout
1624       IF ( myid == 0 )  CALL output_progress_bar
1625
1626       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1627
1628
1629    ENDDO   ! time loop
1630
1631!
1632!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1633    IF ( vnest_init )  CALL vnest_deallocate
1634
1635    IF ( myid == 0 )  CALL finish_progress_bar
1636
1637#if defined( __dvrp_graphics )
1638    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1639#endif
1640
1641    CALL location_message( 'finished time-stepping', .TRUE. )
1642
1643 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.