source: palm/trunk/SOURCE/time_integration.f90 @ 3472

Last change on this file since 3472 was 3472, checked in by suehring, 5 years ago

module for virtual measurements added (in a preliminary state); new public routines to input NetCDF data directly from modules

  • Property svn:keywords set to Id
File size: 63.5 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22! new module for virtual measurements introduced
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3472 2018-10-30 20:43:50Z suehring $
27! Add indoor model (kanani, srissman, tlang)
28!
29! 3467 2018-10-30 19:05:21Z suehring
30! Implementation of a new aerosol module salsa.
31!
32! 3448 2018-10-29 18:14:31Z kanani
33! Add biometeorology
34!
35! 3421 2018-10-24 18:39:32Z gronemeier
36! Surface data output
37!
38! 3418 2018-10-24 16:07:39Z kanani
39! call to material_heat_model now with check if spinup runs (rvtils)
40!
41! 3378 2018-10-19 12:34:59Z kanani
42! merge from radiation branch (r3362) into trunk
43! (moh.hefny):
44! Bugfix in the if statement to call radiation_interaction
45!
46! 3347 2018-10-15 14:21:08Z suehring
47! - offline nesting separated from large-scale forcing module
48! - changes for synthetic turbulence generator
49!
50! 3343 2018-10-15 10:38:52Z suehring
51! - Formatting, clean-up, comments (kanani)
52! - Added CALL to chem_emissions_setup (Russo)
53! - Code added for decycling chemistry (basit)
54!
55! 3294 2018-10-01 02:37:10Z raasch
56! changes concerning modularization of ocean option
57!
58! 3274 2018-09-24 15:42:55Z knoop
59! Modularization of all bulk cloud physics code components
60!
61! 3241 2018-09-12 15:02:00Z raasch
62! unused variables removed
63!
64! 3198 2018-08-15 09:23:10Z sward
65! Added multi_agent_system_end; defined start time for MAS relative to
66! time_since_reference_point
67!
68! 3183 2018-07-27 14:25:55Z suehring
69! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
70! Rename subroutines and variables in COSMO nesting mode
71!
72! 3182 2018-07-27 13:36:03Z suehring
73! Added multi agent system
74!
75! 3042 2018-05-25 10:44:37Z schwenkel
76! Changed the name specific humidity to mixing ratio
77!
78! 3040 2018-05-25 10:22:08Z schwenkel
79! Fixed bug in IF statement
80! Ensure that the time when calling the radiation to be the time step of the
81! pre-calculated time when first calculate the positions of the sun
82!
83! 3004 2018-04-27 12:33:25Z Giersch
84! First call of flow_statistics has been removed. It is already called in
85! run_control itself
86!
87! 2984 2018-04-18 11:51:30Z hellstea
88! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
89! as seemingly unnecessary.
90!
91! 2941 2018-04-03 11:54:58Z kanani
92! Deduct spinup_time from RUN_CONTROL output of main 3d run
93! (use time_since_reference_point instead of simulated_time)
94!
95! 2938 2018-03-27 15:52:42Z suehring
96! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
97!
98! 2936 2018-03-27 14:49:27Z suehring
99! Little formatting adjustment.
100!
101! 2817 2018-02-19 16:32:21Z knoop
102! Preliminary gust module interface implemented
103!
104! 2801 2018-02-14 16:01:55Z thiele
105! Changed lpm from subroutine to module.
106! Introduce particle transfer in nested models.
107!
108! 2776 2018-01-31 10:44:42Z Giersch
109! Variable use_synthetic_turbulence_generator has been abbreviated
110!
111! 2773 2018-01-30 14:12:54Z suehring
112! - Nesting for chemical species
113!
114! 2766 2018-01-22 17:17:47Z kanani
115! Removed preprocessor directive __chem
116!
117! 2718 2018-01-02 08:49:38Z maronga
118! Corrected "Former revisions" section
119!
120! 2696 2017-12-14 17:12:51Z kanani
121! - Change in file header (GPL part)
122! - Implementation of uv exposure model (FK)
123! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
124! - renamed diffusivities to tcm_diffusivities (TG)
125! - implement prognostic equation for diss (TG)
126! - Moved/commented CALL to chem_emissions (FK)
127! - Added CALL to chem_emissions (FK)
128! - Implementation of chemistry module (FK)
129! - Calls for setting boundary conditions in USM and LSM (MS)
130! - Large-scale forcing with larger-scale models implemented (MS)
131! - Rename usm_radiation into radiation_interactions; merge with branch
132!   radiation (MS)
133! - added call for usm_green_heat_model for green building surfaces (RvT)
134! - added call for usm_temperature_near_surface for use in indoor model (RvT)
135!
136! 2617 2017-11-16 12:47:24Z suehring
137! Bugfix, assure that the reference state does not become zero.
138!
139! 2563 2017-10-19 15:36:10Z Giersch
140! Variable wind_turbine moved to module control_parameters
141!
142! 2365 2017-08-21 14:59:59Z kanani
143! Vertical grid nesting implemented (SadiqHuq)
144!
145! 2320 2017-07-21 12:47:43Z suehring
146! Set bottom boundary conditions after nesting interpolation and anterpolation
147!
148! 2299 2017-06-29 10:14:38Z maronga
149! Call of soil model adjusted
150!
151! 2292 2017-06-20 09:51:42Z schwenkel
152! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
153! includes two more prognostic equations for cloud drop concentration (nc) 
154! and cloud water content (qc).
155!
156! 2271 2017-06-09 12:34:55Z sward
157! Start timestep message changed
158!
159! 2259 2017-06-08 09:09:11Z gronemeier
160! Implemented synthetic turbulence generator
161!
162! 2233 2017-05-30 18:08:54Z suehring
163!
164! 2232 2017-05-30 17:47:52Z suehring
165! Adjustments to new topography and surface concept
166! Modify passed parameters for disturb_field
167!
168! 2178 2017-03-17 11:07:39Z hellstea
169! Setting perturbations at all times near inflow boundary is removed
170! in case of nested boundaries
171!
172! 2174 2017-03-13 08:18:57Z maronga
173! Added support for nesting with cloud microphysics
174!
175! 2118 2017-01-17 16:38:49Z raasch
176! OpenACC directives and related code removed
177!
178! 2050 2016-11-08 15:00:55Z gronemeier
179! Implement turbulent outflow condition
180!
181! 2031 2016-10-21 15:11:58Z knoop
182! renamed variable rho to rho_ocean
183!
184! 2011 2016-09-19 17:29:57Z kanani
185! Flag urban_surface is now defined in module control_parameters,
186! removed commented CALLs of global_min_max.
187!
188! 2007 2016-08-24 15:47:17Z kanani
189! Added CALLs for new urban surface model
190!
191! 2000 2016-08-20 18:09:15Z knoop
192! Forced header and separation lines into 80 columns
193!
194! 1976 2016-07-27 13:28:04Z maronga
195! Simplified calls to radiation model
196!
197! 1960 2016-07-12 16:34:24Z suehring
198! Separate humidity and passive scalar
199!
200! 1957 2016-07-07 10:43:48Z suehring
201! flight module added
202!
203! 1919 2016-05-27 14:51:23Z raasch
204! Initial version of purely vertical nesting introduced.
205!
206! 1918 2016-05-27 14:35:57Z raasch
207! determination of time step moved to the end of the time step loop,
208! the first time step is now always calculated before the time step loop (i.e.
209! also in case of restart runs)
210!
211! 1914 2016-05-26 14:44:07Z witha
212! Added call for wind turbine model
213!
214! 1878 2016-04-19 12:30:36Z hellstea
215! Synchronization for nested runs rewritten
216!
217! 1853 2016-04-11 09:00:35Z maronga
218! Adjusted for use with radiation_scheme = constant
219!
220! 1849 2016-04-08 11:33:18Z hoffmann
221! Adapted for modularization of microphysics
222!
223! 1833 2016-04-07 14:23:03Z raasch
224! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
225!
226! 1831 2016-04-07 13:15:51Z hoffmann
227! turbulence renamed collision_turbulence
228!
229! 1822 2016-04-07 07:49:42Z hoffmann
230! icloud_scheme replaced by microphysics_*
231!
232! 1808 2016-04-05 19:44:00Z raasch
233! output message in case unscheduled radiation calls removed
234!
235! 1797 2016-03-21 16:50:28Z raasch
236! introduction of different datatransfer modes
237!
238! 1791 2016-03-11 10:41:25Z raasch
239! call of pmci_update_new removed
240!
241! 1786 2016-03-08 05:49:27Z raasch
242! +module spectrum
243!
244! 1783 2016-03-06 18:36:17Z raasch
245! switch back of netcdf data format for mask output moved to the mask output
246! routine
247!
248! 1781 2016-03-03 15:12:23Z raasch
249! some pmc calls removed at the beginning (before timeloop),
250! pmc initialization moved to the main program
251!
252! 1764 2016-02-28 12:45:19Z raasch
253! PMC_ACTIVE flags removed,
254! bugfix: nest synchronization after first call of timestep
255!
256! 1762 2016-02-25 12:31:13Z hellstea
257! Introduction of nested domain feature
258!
259! 1736 2015-12-04 08:56:33Z raasch
260! no perturbations added to total domain if energy limit has been set zero
261!
262! 1691 2015-10-26 16:17:44Z maronga
263! Added option for spin-ups without land surface and radiation models. Moved calls
264! for radiation and lan surface schemes.
265!
266! 1682 2015-10-07 23:56:08Z knoop
267! Code annotations made doxygen readable
268!
269! 1671 2015-09-25 03:29:37Z raasch
270! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
271! for particles
272!
273! 1585 2015-04-30 07:05:52Z maronga
274! Moved call of radiation scheme. Added support for RRTM
275!
276! 1551 2015-03-03 14:18:16Z maronga
277! Added interface for different radiation schemes.
278!
279! 1496 2014-12-02 17:25:50Z maronga
280! Added calls for the land surface model and radiation scheme
281!
282! 1402 2014-05-09 14:25:13Z raasch
283! location messages modified
284!
285! 1384 2014-05-02 14:31:06Z raasch
286! location messages added
287!
288! 1380 2014-04-28 12:40:45Z heinze
289! CALL of nudge_ref added
290! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
291!
292! 1365 2014-04-22 15:03:56Z boeske
293! Reset sums_ls_l to zero at each timestep
294! +sums_ls_l
295! Calculation of reference state (previously in subroutine calc_mean_profile)
296
297! 1342 2014-03-26 17:04:47Z kanani
298! REAL constants defined as wp-kind
299!
300! 1320 2014-03-20 08:40:49Z raasch
301! ONLY-attribute added to USE-statements,
302! kind-parameters added to all INTEGER and REAL declaration statements,
303! kinds are defined in new module kinds,
304! old module precision_kind is removed,
305! revision history before 2012 removed,
306! comment fields (!:) to be used for variable explanations added to
307! all variable declaration statements
308! 1318 2014-03-17 13:35:16Z raasch
309! module interfaces removed
310!
311! 1308 2014-03-13 14:58:42Z fricke
312! +netcdf_data_format_save
313! For masked data, parallel netcdf output is not tested so far, hence
314! netcdf_data_format is switched back to non-paralell output.
315!
316! 1276 2014-01-15 13:40:41Z heinze
317! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
318!
319! 1257 2013-11-08 15:18:40Z raasch
320! acc-update-host directive for timestep removed
321!
322! 1241 2013-10-30 11:36:58Z heinze
323! Generalize calc_mean_profile for wider use
324! Determine shf and qsws in dependence on data from LSF_DATA
325! Determine ug and vg in dependence on data from LSF_DATA
326! 1221 2013-09-10 08:59:13Z raasch
327! host update of arrays before timestep is called
328!
329! 1179 2013-06-14 05:57:58Z raasch
330! mean profiles for reference state are only calculated if required,
331! small bugfix for background communication
332!
333! 1171 2013-05-30 11:27:45Z raasch
334! split of prognostic_equations deactivated (comment lines), for the time being
335!
336! 1128 2013-04-12 06:19:32Z raasch
337! asynchronous transfer of ghost point data realized for acc-optimized version:
338! prognostic_equations are first called two times for those points required for
339! the left-right and north-south exchange, respectively, and then for the
340! remaining points,
341! those parts requiring global communication moved from prognostic_equations to
342! here
343!
344! 1115 2013-03-26 18:16:16Z hoffmann
345! calculation of qr and nr is restricted to precipitation
346!
347! 1113 2013-03-10 02:48:14Z raasch
348! GPU-porting of boundary conditions,
349! openACC directives updated
350! formal parameter removed from routine boundary_conds
351!
352! 1111 2013-03-08 23:54:10Z raasch
353! +internal timestep counter for cpu statistics added,
354! openACC directives updated
355!
356! 1092 2013-02-02 11:24:22Z raasch
357! unused variables removed
358!
359! 1065 2012-11-22 17:42:36Z hoffmann
360! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
361!
362! 1053 2012-11-13 17:11:03Z hoffmann
363! exchange of ghost points for nr, qr added
364!
365! 1036 2012-10-22 13:43:42Z raasch
366! code put under GPL (PALM 3.9)
367!
368! 1019 2012-09-28 06:46:45Z raasch
369! non-optimized version of prognostic_equations removed
370!
371! 1015 2012-09-27 09:23:24Z raasch
372! +call of prognostic_equations_acc
373!
374! 1001 2012-09-13 14:08:46Z raasch
375! all actions concerning leapfrog- and upstream-spline-scheme removed
376!
377! 849 2012-03-15 10:35:09Z raasch
378! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
379!
380! 825 2012-02-19 03:03:44Z raasch
381! wang_collision_kernel renamed wang_kernel
382!
383! Revision 1.1  1997/08/11 06:19:04  raasch
384! Initial revision
385!
386!
387! Description:
388! ------------
389!> Integration in time of the model equations, statistical analysis and graphic
390!> output
391!------------------------------------------------------------------------------!
392 SUBROUTINE time_integration
393 
394
395    USE advec_ws,                                                              &
396        ONLY:  ws_statistics
397
398    USE arrays_3d,                                                             &
399        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
400               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
401               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
402               v_p, w, w_p
403
404    USE biometeorology_mod,                                                    &
405        ONLY:  biom_calculate_static_grid, time_biom_results
406
407    USE bulk_cloud_model_mod,                                                  &
408        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
409              collision_turbulence, microphysics_morrison, microphysics_seifert
410
411    USE calc_mean_profile_mod,                                                 &
412        ONLY:  calc_mean_profile
413
414    USE chem_emissions_mod,                                                    &
415        ONLY:  chem_emissions_setup
416
417    USE chem_modules,                                                          &
418        ONLY:  bc_cs_t_val, call_chem_at_all_substeps, cs_name,                &
419               constant_csflux, do_emis, nspec, nspec_out
420
421    USE chemistry_model_mod,                                                   &
422        ONLY:  chem_boundary_conds, chem_species
423
424    USE control_parameters,                                                    &
425        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
426               average_count_3d, averaging_interval, averaging_interval_pr,    &
427               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
428               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
429               constant_flux_layer, constant_heatflux,                         &
430               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
431               coupling_start_time, current_timestep_number,                   &
432               disturbance_created, disturbance_energy_limit, dist_range,      &
433               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
434               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
435               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
436               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
437               first_call_lpm, first_call_mas, galilei_transformation,         &
438               humidity, indoor_model, intermediate_timestep_count,            &
439               intermediate_timestep_count_max,                                &
440               land_surface, large_scale_forcing,                              &
441               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
442               multi_agent_system_end, multi_agent_system_start,               &
443               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
444               ocean_mode, passive_scalar, pt_reference,                       &
445               pt_slope_offset, random_heatflux, rans_mode,                    &
446               rans_tke_e, run_coupled, simulated_time, simulated_time_chr,    &
447               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
448               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
449               skip_time_data_output_av, sloping_surface, stop_dt,             &
450               surface_data_output, terminate_coupled, terminate_run,          &
451               timestep_scheme,                                                &
452               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
453               time_do3d, time_domask, time_dopr, time_dopr_av,                &
454               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
455               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
456               time_run_control, time_since_reference_point,                   &
457               turbulent_inflow, turbulent_outflow, urban_surface,             &
458               use_initial_profile_as_reference,                               &
459               use_single_reference_value, uv_exposure, u_gtrans, v_gtrans,    &
460               virtual_flight, virtual_measurement, wind_turbine,              &
461               ws_scheme_mom, ws_scheme_sca
462
463    USE cpulog,                                                                &
464        ONLY:  cpu_log, log_point, log_point_s
465
466    USE date_and_time_mod,                                                     &
467        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
468
469    USE flight_mod,                                                            &
470        ONLY:  flight_measurement
471
472    USE gust_mod,                                                              &
473        ONLY:  gust_actions, gust_module_enabled
474
475    USE indices,                                                               &
476        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
477
478    USE indoor_model_mod,                                                      &
479        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
480
481    USE interaction_droplets_ptq_mod,                                          &
482        ONLY:  interaction_droplets_ptq
483
484    USE interfaces
485
486    USE kinds
487
488    USE land_surface_model_mod,                                                &
489        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
490               skip_time_do_lsm
491
492    USE lsf_nudging_mod,                                                       &
493        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
494
495    USE multi_agent_system_mod,                                                &
496        ONLY:  agents_active, multi_agent_system
497
498    USE nesting_offl_mod,                                                      &
499        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
500       
501    USE netcdf_data_input_mod,                                                 &
502        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
503               netcdf_data_input_offline_nesting
504
505    USE ocean_mod,                                                             &
506        ONLY:  prho_reference
507
508    USE particle_attributes,                                                   &
509        ONLY:  particle_advection, particle_advection_start,                   &
510               use_sgs_for_particles, wang_kernel
511
512    USE pegrid
513
514    USE pmc_interface,                                                         &
515        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
516               pmci_ensure_nest_mass_conservation, pmci_synchronize
517
518    USE progress_bar,                                                          &
519        ONLY:  finish_progress_bar, output_progress_bar
520
521    USE prognostic_equations_mod,                                              &
522        ONLY:  prognostic_equations_cache, prognostic_equations_vector
523
524    USE radiation_model_mod,                                                   &
525        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
526              radiation_interaction, radiation_interactions,                   &
527              skip_time_do_radiation, time_radiation
528
529    USE spectra_mod,                                                           &
530        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
531              skip_time_dosp
532
533    USE statistics,                                                            &
534        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
535
536    USE surface_layer_fluxes_mod,                                              &
537        ONLY:  surface_layer_fluxes
538
539    USE surface_mod,                                                           &
540        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
541
542    USE surface_output_mod,                                                    &
543        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
544               dt_dosurf_av, surface_output, surface_output_averaging,         &
545               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
546               time_dosurf_av
547
548    USE turbulence_closure_mod,                                                &
549        ONLY:  tcm_diffusivities, production_e_init
550
551    USE urban_surface_mod,                                                     &
552        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
553               usm_material_model,                                             &
554               usm_surface_energy_balance, usm_green_heat_model,               &
555               usm_temperature_near_surface
556
557    USE synthetic_turbulence_generator_mod,                                    &
558        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
559               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
560               use_syn_turb_gen
561         
562    USE salsa_mod,                                                             &
563        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa,      &
564              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
565              skip_time_do_salsa           
566
567    USE user_actions_mod,                                                      &
568        ONLY:  user_actions
569
570    USE uv_exposure_model_mod,                                                 &
571        ONLY:  uvem_calc_exposure
572
573    USE wind_turbine_model_mod,                                                &
574        ONLY:  wtm_forces
575
576    USE lpm_mod,                                                               &
577        ONLY:  lpm
578
579    USE vertical_nesting_mod,                                                  &
580        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
581               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
582               vnest_deallocate, vnest_init, vnest_init_fine,                  &
583               vnest_start_time
584               
585    USE virtual_measurement_mod,                                               &
586        ONLY:  vm_sampling, vm_time_start
587
588    IMPLICIT NONE
589
590    CHARACTER (LEN=9) ::  time_to_string   !<
591   
592    INTEGER(iwp)      ::  b !< index for aerosol size bins   
593    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
594    INTEGER(iwp)      ::  g !< index for gaseous compounds
595    INTEGER(iwp)      ::  lsp
596    INTEGER(iwp)      ::  lsp_usr   !<
597    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
598
599    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
600                            !< steering of run control output interval
601    REAL(wp) ::  time_since_reference_point_save  !< original value of
602                                                  !< time_since_reference_point
603
604!
605!-- At beginning determine the first time step
606    CALL timestep
607!
608!-- Synchronize the timestep in case of nested run.
609    IF ( nested_run )  THEN
610!
611!--    Synchronization by unifying the time step.
612!--    Global minimum of all time-steps is used for all.
613       CALL pmci_synchronize
614    ENDIF
615
616!
617!-- Determine and print out the run control quantities before the first time
618!-- step of this run. For the initial run, some statistics (e.g. divergence)
619!-- need to be determined first --> CALL flow_statistics at the beginning of
620!-- run_control
621    CALL run_control
622!
623!-- Data exchange between coupled models in case that a call has been omitted
624!-- at the end of the previous run of a job chain.
625    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
626!
627!--    In case of model termination initiated by the local model the coupler
628!--    must not be called because this would again cause an MPI hang.
629       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
630          CALL surface_coupler
631          time_coupling = time_coupling - dt_coupling
632       ENDDO
633       IF (time_coupling == 0.0_wp  .AND.                                      &
634           time_since_reference_point < dt_coupling )                          &
635       THEN
636          time_coupling = time_since_reference_point
637       ENDIF
638    ENDIF
639
640#if defined( __dvrp_graphics )
641!
642!-- Time measurement with dvrp software 
643    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
644#endif
645
646    CALL location_message( 'starting timestep-sequence', .TRUE. )
647!
648!-- Start of the time loop
649    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
650                .NOT. terminate_run )
651
652       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
653!
654!--    Vertical nesting: initialize fine grid
655       IF ( vnested ) THEN
656          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
657             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
658             CALL vnest_init_fine
659             vnest_init = .TRUE.
660             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
661          ENDIF
662       ENDIF
663!
664!--    Determine ug, vg and w_subs in dependence on data from external file
665!--    LSF_DATA
666       IF ( large_scale_forcing .AND. lsf_vert )  THEN
667           CALL ls_forcing_vert ( simulated_time )
668           sums_ls_l = 0.0_wp
669       ENDIF
670
671!
672!--    Set pt_init and q_init to the current profiles taken from
673!--    NUDGING_DATA
674       IF ( nudging )  THEN
675           CALL nudge_ref ( simulated_time )
676!
677!--        Store temperature gradient at the top boundary for possible Neumann
678!--        boundary condition
679           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
680           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
681           IF ( air_chemistry )  THEN
682              DO  lsp = 1, nspec
683                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
684                                - chem_species(lsp)%conc_pr_init(nzt) )       &
685                               / dzu(nzt+1)
686              ENDDO
687           ENDIF
688       ENDIF
689!
690!--    If forcing by larger-scale models is applied, check if new data
691!--    at domain boundaries need to be read.
692       IF ( nesting_offline )  THEN
693          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
694             CALL netcdf_data_input_offline_nesting
695       ENDIF
696
697!
698!--    Execute the gust module actions
699       IF ( gust_module_enabled )  THEN
700          CALL gust_actions( 'before_timestep' )
701       ENDIF
702
703!
704!--    Execute the user-defined actions
705       CALL user_actions( 'before_timestep' )
706
707!
708!--    Calculate forces by wind turbines
709       IF ( wind_turbine )  THEN
710
711          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
712
713          CALL wtm_forces
714
715          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
716
717       ENDIF   
718       
719!
720!--    Start of intermediate step loop
721       intermediate_timestep_count = 0
722       DO  WHILE ( intermediate_timestep_count < &
723                   intermediate_timestep_count_max )
724
725          intermediate_timestep_count = intermediate_timestep_count + 1
726
727!
728!--       Set the steering factors for the prognostic equations which depend
729!--       on the timestep scheme
730          CALL timestep_scheme_steering
731
732!
733!--       Calculate those variables needed in the tendency terms which need
734!--       global communication
735          IF ( .NOT. use_single_reference_value  .AND. &
736               .NOT. use_initial_profile_as_reference )  THEN
737!
738!--          Horizontally averaged profiles to be used as reference state in
739!--          buoyancy terms (WARNING: only the respective last call of
740!--          calc_mean_profile defines the reference state!)
741             IF ( .NOT. neutral )  THEN
742                CALL calc_mean_profile( pt, 4 )
743                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
744             ENDIF
745             IF ( ocean_mode )  THEN
746                CALL calc_mean_profile( rho_ocean, 64 )
747                ref_state(:)  = hom(:,1,64,0)
748             ENDIF
749             IF ( humidity )  THEN
750                CALL calc_mean_profile( vpt, 44 )
751                ref_state(:)  = hom(:,1,44,0)
752             ENDIF
753!
754!--          Assure that ref_state does not become zero at any level
755!--          ( might be the case if a vertical level is completely occupied
756!--            with topography ).
757             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
758                                ref_state == 0.0_wp )
759          ENDIF
760
761          IF ( .NOT. constant_diffusion )  CALL production_e_init
762          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
763               intermediate_timestep_count == 1 )  CALL ws_statistics
764!
765!--       In case of nudging calculate current nudging time scale and horizontal
766!--       means of u, v, pt and q
767          IF ( nudging )  THEN
768             CALL calc_tnudge( simulated_time )
769             CALL calc_mean_profile( u, 1 )
770             CALL calc_mean_profile( v, 2 )
771             CALL calc_mean_profile( pt, 4 )
772             CALL calc_mean_profile( q, 41 )
773          ENDIF
774
775!
776!--       Solve the prognostic equations. A fast cache optimized version with
777!--       only one single loop is used in case of Piascek-Williams advection
778!--       scheme. NEC vector machines use a different version, because
779!--       in the other versions a good vectorization is prohibited due to
780!--       inlining problems.
781          IF ( loop_optimization == 'cache' )  THEN
782             CALL prognostic_equations_cache
783          ELSEIF ( loop_optimization == 'vector' )  THEN
784             CALL prognostic_equations_vector
785          ENDIF
786
787!
788!--       Particle transport/physics with the Lagrangian particle model
789!--       (only once during intermediate steps, because it uses an Euler-step)
790!--       ### particle model should be moved before prognostic_equations, in order
791!--       to regard droplet interactions directly
792          IF ( particle_advection  .AND.                         &
793               simulated_time >= particle_advection_start  .AND. &
794               intermediate_timestep_count == 1 )  THEN
795             CALL lpm
796             first_call_lpm = .FALSE.
797          ENDIF
798
799!
800!--       Interaction of droplets with temperature and mixing ratio.
801!--       Droplet condensation and evaporation is calculated within
802!--       advec_particles.
803          IF ( cloud_droplets  .AND.  &
804               intermediate_timestep_count == intermediate_timestep_count_max )&
805          THEN
806             CALL interaction_droplets_ptq
807          ENDIF
808
809!
810!--       Movement of agents in multi agent system
811          IF ( agents_active  .AND.                                            &
812               time_since_reference_point >= multi_agent_system_start  .AND.   &
813               time_since_reference_point <= multi_agent_system_end    .AND.   &
814               intermediate_timestep_count == 1 )  THEN
815             CALL multi_agent_system
816             first_call_mas = .FALSE.
817          ENDIF
818
819!
820!--       Exchange of ghost points (lateral boundary conditions)
821          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
822
823          CALL exchange_horiz( u_p, nbgp )
824          CALL exchange_horiz( v_p, nbgp )
825          CALL exchange_horiz( w_p, nbgp )
826          CALL exchange_horiz( pt_p, nbgp )
827          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
828          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
829               .OR.  use_sgs_for_particles )  THEN
830             IF ( rans_tke_e )  THEN
831                CALL exchange_horiz( diss_p, nbgp )
832             ELSE
833                CALL exchange_horiz( diss, nbgp )
834             ENDIF
835          ENDIF
836          IF ( ocean_mode )  THEN
837             CALL exchange_horiz( sa_p, nbgp )
838             CALL exchange_horiz( rho_ocean, nbgp )
839             CALL exchange_horiz( prho, nbgp )
840          ENDIF
841          IF ( humidity )  THEN
842             CALL exchange_horiz( q_p, nbgp )
843             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
844                CALL exchange_horiz( qc_p, nbgp )
845                CALL exchange_horiz( nc_p, nbgp )
846             ENDIF
847             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
848                CALL exchange_horiz( qr_p, nbgp )
849                CALL exchange_horiz( nr_p, nbgp )
850             ENDIF
851          ENDIF
852          IF ( cloud_droplets )  THEN
853             CALL exchange_horiz( ql, nbgp )
854             CALL exchange_horiz( ql_c, nbgp )
855             CALL exchange_horiz( ql_v, nbgp )
856             CALL exchange_horiz( ql_vp, nbgp )
857          ENDIF
858          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
859          IF ( air_chemistry )  THEN
860             DO  lsp = 1, nspec
861                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
862!
863!--             kanani: Push chem_boundary_conds after CALL boundary_conds
864                lsp_usr = 1
865                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
866                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
867                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
868                                                chem_species(lsp)%conc_pr_init )
869                   ENDIF
870                   lsp_usr = lsp_usr + 1
871                ENDDO
872             ENDDO
873          ENDIF
874
875          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
876          THEN
877             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
878             DO  b = 1, nbins
879                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
880                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
881                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
882                                           aerosol_number(b)%init )
883                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
884                DO  c = 1, ncc_tot
885                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
886                                        nbgp )
887                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
888                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
889                                              aerosol_mass((c-1)*nbins+b)%init )
890                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
891                ENDDO
892             ENDDO
893             IF ( .NOT. salsa_gases_from_chem )  THEN
894                DO  g = 1, ngast
895                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
896                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
897                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
898                                              salsa_gas(g)%init )
899                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
900             ENDDO
901             ENDIF
902             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
903          ENDIF         
904
905          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
906
907!
908!--       Boundary conditions for the prognostic quantities (except of the
909!--       velocities at the outflow in case of a non-cyclic lateral wall)
910          CALL boundary_conds
911!
912!--       Swap the time levels in preparation for the next time step.
913          CALL swap_timelevel
914
915!
916!--       Vertical nesting: Interpolate fine grid data to the coarse grid
917          IF ( vnest_init ) THEN
918             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
919             CALL vnest_anterpolate
920             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
921          ENDIF
922
923          IF ( nested_run )  THEN
924
925             CALL cpu_log( log_point(60), 'nesting', 'start' )
926!
927!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
928!--          and pmci_child_datatrans are called inside the wrapper
929!--          subroutine pmci_datatrans according to the control parameters
930!--          nesting_mode and nesting_datatransfer_mode.
931!--          TO_DO: why is nesting_mode given as a parameter here?
932             CALL pmci_datatrans( nesting_mode )
933
934             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
935                  nesting_mode == 'vertical' )  THEN
936!
937!--             Exchange_horiz is needed for all parent-domains after the
938!--             anterpolation
939                CALL exchange_horiz( u, nbgp )
940                CALL exchange_horiz( v, nbgp )
941                CALL exchange_horiz( w, nbgp )
942                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
943
944                IF ( humidity )  THEN
945
946                   CALL exchange_horiz( q, nbgp )
947
948                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
949                       CALL exchange_horiz( qc, nbgp )
950                       CALL exchange_horiz( nc, nbgp )
951                   ENDIF
952                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
953                       CALL exchange_horiz( qr, nbgp )
954                       CALL exchange_horiz( nr, nbgp )
955                   ENDIF
956
957                ENDIF
958
959                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
960               
961                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
962
963                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
964                                                      rans_tke_e )             &
965                   CALL exchange_horiz( diss, nbgp )
966
967                IF ( air_chemistry )  THEN
968                   DO  n = 1, nspec     
969                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
970                   ENDDO
971                ENDIF
972
973             ENDIF
974!
975!--          Set boundary conditions again after interpolation and anterpolation.
976             CALL pmci_boundary_conds
977!
978!--          Correct the w top-BC in nest domains to ensure mass conservation.
979!--          This action must never be done for the root domain. Vertical
980!--          Commented out April 18, 2018 as seemingly unnecessary.
981!--          Will later be completely removed.
982!--             IF ( child_domain )  THEN
983!--                CALL pmci_ensure_nest_mass_conservation
984!--             ENDIF
985
986
987             CALL cpu_log( log_point(60), 'nesting', 'stop' )
988
989          ENDIF
990
991!
992!--       Temperature offset must be imposed at cyclic boundaries in x-direction
993!--       when a sloping surface is used
994          IF ( sloping_surface )  THEN
995             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
996                                                    pt_slope_offset
997             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
998                                                    pt_slope_offset
999          ENDIF
1000
1001!
1002!--       Impose a turbulent inflow using the recycling method
1003          IF ( turbulent_inflow )  CALL  inflow_turbulence
1004
1005!
1006!--       Set values at outflow boundary using the special outflow condition
1007          IF ( turbulent_outflow )  CALL  outflow_turbulence
1008
1009!
1010!--       Impose a random perturbation on the horizontal velocity field
1011          IF ( create_disturbances  .AND.                                      &
1012               ( call_psolver_at_all_substeps  .AND.                           &
1013               intermediate_timestep_count == intermediate_timestep_count_max )&
1014          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1015               intermediate_timestep_count == 1 ) )                            &
1016          THEN
1017             time_disturb = time_disturb + dt_3d
1018             IF ( time_disturb >= dt_disturb )  THEN
1019                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1020                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1021                   CALL disturb_field( 'u', tend, u )
1022                   CALL disturb_field( 'v', tend, v )
1023                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1024                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1025                THEN
1026!
1027!--                Runs with a non-cyclic lateral wall need perturbations
1028!--                near the inflow throughout the whole simulation
1029                   dist_range = 1
1030                   CALL disturb_field( 'u', tend, u )
1031                   CALL disturb_field( 'v', tend, v )
1032                   dist_range = 0
1033                ENDIF
1034                time_disturb = time_disturb - dt_disturb
1035             ENDIF
1036          ENDIF
1037
1038!
1039!--       Map forcing data derived from larger scale model onto domain
1040!--       boundaries.
1041          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1042                                       intermediate_timestep_count_max  )      &
1043             CALL nesting_offl_bc
1044!
1045!--       Impose a turbulent inflow using synthetic generated turbulence,
1046!--       only once per time step.
1047          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1048             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1049             CALL stg_main
1050          ENDIF
1051!
1052!--       Ensure mass conservation. This need to be done after imposing
1053!--       synthetic turbulence and top boundary condition for pressure is set to
1054!--       Neumann conditions.
1055!--       Is this also required in case of Dirichlet?
1056          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1057!
1058!--       Reduce the velocity divergence via the equation for perturbation
1059!--       pressure.
1060          IF ( intermediate_timestep_count == 1  .OR. &
1061                call_psolver_at_all_substeps )  THEN
1062
1063             IF (  vnest_init ) THEN
1064!
1065!--             Compute pressure in the CG, interpolate top boundary conditions
1066!--             to the FG and then compute pressure in the FG
1067                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1068
1069                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1070                CALL vnest_boundary_conds
1071                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1072 
1073                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1074
1075!--             Anterpolate TKE, satisfy Germano Identity
1076                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1077                CALL vnest_anterpolate_e
1078                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1079
1080             ELSE
1081
1082                CALL pres
1083
1084             ENDIF
1085
1086          ENDIF
1087
1088!
1089!--       If required, compute liquid water content
1090          IF ( bulk_cloud_model )  THEN
1091             CALL calc_liquid_water_content
1092          ENDIF
1093!
1094!--       If required, compute virtual potential temperature
1095          IF ( humidity )  THEN
1096             CALL compute_vpt 
1097          ENDIF 
1098
1099!
1100!--       Compute the diffusion quantities
1101          IF ( .NOT. constant_diffusion )  THEN
1102
1103!
1104!--          Determine surface fluxes shf and qsws and surface values
1105!--          pt_surface and q_surface in dependence on data from external
1106!--          file LSF_DATA respectively
1107             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1108                 intermediate_timestep_count == intermediate_timestep_count_max )&
1109             THEN
1110                CALL ls_forcing_surf( simulated_time )
1111             ENDIF
1112
1113!
1114!--          First the vertical (and horizontal) fluxes in the surface
1115!--          (constant flux) layer are computed
1116             IF ( constant_flux_layer )  THEN
1117                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1118                CALL surface_layer_fluxes
1119                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1120             ENDIF
1121!
1122!--          If required, solve the energy balance for the surface and run soil
1123!--          model. Call for horizontal as well as vertical surfaces
1124             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1125
1126                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1127!
1128!--             Call for horizontal upward-facing surfaces
1129                CALL lsm_energy_balance( .TRUE., -1 )
1130                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1131!
1132!--             Call for northward-facing surfaces
1133                CALL lsm_energy_balance( .FALSE., 0 )
1134                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1135!
1136!--             Call for southward-facing surfaces
1137                CALL lsm_energy_balance( .FALSE., 1 )
1138                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1139!
1140!--             Call for eastward-facing surfaces
1141                CALL lsm_energy_balance( .FALSE., 2 )
1142                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1143!
1144!--             Call for westward-facing surfaces
1145                CALL lsm_energy_balance( .FALSE., 3 )
1146                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1147!
1148!--             At the end, set boundary conditons for potential temperature
1149!--             and humidity after running the land-surface model. This
1150!--             might be important for the nesting, where arrays are transfered.
1151                CALL lsm_boundary_condition
1152
1153                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1154             ENDIF
1155!
1156!--          If required, solve the energy balance for urban surfaces and run
1157!--          the material heat model
1158             IF (urban_surface) THEN
1159                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1160               
1161                CALL usm_surface_energy_balance( .FALSE. )
1162                IF ( usm_material_model )  THEN
1163                   CALL usm_green_heat_model
1164                   CALL usm_material_heat_model ( .FALSE. )
1165                ENDIF
1166
1167                CALL usm_temperature_near_surface
1168!
1169!--             At the end, set boundary conditons for potential temperature
1170!--             and humidity after running the urban-surface model. This
1171!--             might be important for the nesting, where arrays are transfered.
1172                CALL usm_boundary_condition
1173
1174                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1175             ENDIF
1176!
1177!--          Compute the diffusion coefficients
1178             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1179             IF ( .NOT. humidity ) THEN
1180                IF ( ocean_mode )  THEN
1181                   CALL tcm_diffusivities( prho, prho_reference )
1182                ELSE
1183                   CALL tcm_diffusivities( pt, pt_reference )
1184                ENDIF
1185             ELSE
1186                CALL tcm_diffusivities( vpt, pt_reference )
1187             ENDIF
1188             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1189!
1190!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1191             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1192
1193          ENDIF
1194
1195!
1196!--       If required, calculate radiative fluxes and heating rates
1197          IF ( radiation .AND. intermediate_timestep_count                     &
1198               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1199               skip_time_do_radiation )  THEN
1200
1201               time_radiation = time_radiation + dt_3d
1202
1203             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1204             THEN
1205
1206                CALL cpu_log( log_point(50), 'radiation', 'start' )
1207
1208                IF ( .NOT. force_radiation_call )  THEN
1209                   time_radiation = time_radiation - dt_radiation
1210                ENDIF
1211
1212!
1213!--             Adjust the current time to the time step of the radiation model.
1214!--             Needed since radiation is pre-calculated and stored only on apparent
1215!--             solar positions
1216                time_since_reference_point_save = time_since_reference_point
1217                time_since_reference_point =                                   &
1218                                    REAL( FLOOR( time_since_reference_point /  &
1219                                                 dt_radiation), wp )           &
1220                                             * dt_radiation
1221
1222                CALL radiation_control
1223
1224                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1225
1226                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1227                     radiation_interactions )  THEN
1228                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1229                   CALL radiation_interaction
1230                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1231                ENDIF
1232   
1233!
1234!--             Return the current time to its original value
1235                time_since_reference_point = time_since_reference_point_save
1236
1237             ENDIF
1238          ENDIF
1239
1240       ENDDO   ! Intermediate step loop
1241!
1242!--    If required, consider chemical emissions
1243       IF ( air_chemistry  .AND.  do_emis )  THEN
1244!
1245!--       Update the time --> kanani: revise location of this CALL
1246          CALL calc_date_and_time
1247!
1248!--       Call emission routine only once an hour
1249          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1250             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1251             hour_call_emis = hour_of_year
1252          ENDIF
1253       ENDIF
1254!
1255!--    If required, do UV exposure calculations
1256       IF ( uv_exposure )  THEN
1257          CALL uvem_calc_exposure
1258       ENDIF
1259!
1260!--    If required, calculate indoor temperature, waste heat, heat flux
1261!--    through wall, etc.
1262!--    dt_indoor steers the frequency of the indoor model calculations
1263       IF (       indoor_model                                                    &
1264            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1265            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1266
1267          time_indoor = time_indoor + dt_3d
1268
1269          IF ( time_indoor >= dt_indoor )  THEN
1270
1271             time_indoor = time_indoor - dt_indoor
1272
1273             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1274             CALL im_main_heatcool
1275             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1276
1277          ENDIF
1278       ENDIF
1279!
1280!--    Increase simulation time and output times
1281       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1282       current_timestep_number    = current_timestep_number + 1
1283       simulated_time             = simulated_time   + dt_3d
1284       time_since_reference_point = simulated_time - coupling_start_time
1285       simulated_time_chr         = time_to_string( time_since_reference_point )
1286
1287
1288
1289
1290       IF ( simulated_time >= skip_time_data_output_av )  THEN
1291          time_do_av         = time_do_av       + dt_3d
1292       ENDIF
1293       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1294          time_do2d_xy       = time_do2d_xy     + dt_3d
1295       ENDIF
1296       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1297          time_do2d_xz       = time_do2d_xz     + dt_3d
1298       ENDIF
1299       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1300          time_do2d_yz       = time_do2d_yz     + dt_3d
1301       ENDIF
1302       IF ( simulated_time >= skip_time_do3d    )  THEN
1303          time_do3d          = time_do3d        + dt_3d
1304       ENDIF
1305       DO  mid = 1, masks
1306          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1307             time_domask(mid)= time_domask(mid) + dt_3d
1308          ENDIF
1309       ENDDO
1310       time_dvrp          = time_dvrp        + dt_3d
1311       IF ( simulated_time >= skip_time_dosp )  THEN
1312          time_dosp       = time_dosp        + dt_3d
1313       ENDIF
1314       time_dots          = time_dots        + dt_3d
1315       IF ( .NOT. first_call_lpm )  THEN
1316          time_dopts      = time_dopts       + dt_3d
1317       ENDIF
1318       IF ( simulated_time >= skip_time_dopr )  THEN
1319          time_dopr       = time_dopr        + dt_3d
1320       ENDIF
1321       time_dopr_listing  = time_dopr_listing + dt_3d
1322       time_run_control   = time_run_control + dt_3d
1323!
1324!--    Increment time-counter for surface output
1325       IF ( surface_data_output )  THEN
1326          IF ( simulated_time >= skip_time_dosurf )  THEN
1327             time_dosurf    = time_dosurf + dt_3d
1328          ENDIF
1329          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1330             time_dosurf_av = time_dosurf_av + dt_3d
1331          ENDIF
1332       ENDIF
1333!
1334!--    In case of synthetic turbulence generation and parametrized turbulence
1335!--    information, update the time counter and if required, adjust the
1336!--    STG to new atmospheric conditions.
1337       IF ( use_syn_turb_gen  )  THEN
1338          IF ( parametrize_inflow_turbulence )  THEN
1339             time_stg_adjust = time_stg_adjust + dt_3d
1340             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1341          ENDIF
1342          time_stg_call = time_stg_call + dt_3d
1343       ENDIF
1344
1345!
1346!--    Data exchange between coupled models
1347       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1348                                          .AND. .NOT. vnested )  THEN
1349          time_coupling = time_coupling + dt_3d
1350
1351!
1352!--       In case of model termination initiated by the local model
1353!--       (terminate_coupled > 0), the coupler must be skipped because it would
1354!--       cause an MPI intercomminucation hang.
1355!--       If necessary, the coupler will be called at the beginning of the
1356!--       next restart run.
1357          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1358             CALL surface_coupler
1359             time_coupling = time_coupling - dt_coupling
1360          ENDDO
1361       ENDIF
1362
1363!
1364!--    Biometeorology calculation of stationary thermal indices
1365       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1366          CALL biom_calculate_static_grid ( .FALSE. )
1367          time_biom_results = time_since_reference_point
1368       ENDIF
1369
1370!
1371!--    Execute the gust module actions
1372       IF ( gust_module_enabled )  THEN
1373          CALL gust_actions( 'after_integration' )
1374       ENDIF
1375
1376!
1377!--    Execute user-defined actions
1378       CALL user_actions( 'after_integration' )
1379
1380!
1381!--    If Galilei transformation is used, determine the distance that the
1382!--    model has moved so far
1383       IF ( galilei_transformation )  THEN
1384          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1385          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1386       ENDIF
1387
1388!
1389!--    Check, if restart is necessary (because cpu-time is expiring or
1390!--    because it is forced by user) and set stop flag
1391!--    This call is skipped if the remote model has already initiated a restart.
1392       IF ( .NOT. terminate_run )  CALL check_for_restart
1393
1394!
1395!--    Carry out statistical analysis and output at the requested output times.
1396!--    The MOD function is used for calculating the output time counters (like
1397!--    time_dopr) in order to regard a possible decrease of the output time
1398!--    interval in case of restart runs
1399
1400!
1401!--    Set a flag indicating that so far no statistics have been created
1402!--    for this time step
1403       flow_statistics_called = .FALSE.
1404
1405!
1406!--    If required, call flow_statistics for averaging in time
1407       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1408            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1409            simulated_time >= skip_time_dopr )  THEN
1410          time_dopr_av = time_dopr_av + dt_3d
1411          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1412             do_sum = .TRUE.
1413             time_dopr_av = MOD( time_dopr_av, &
1414                                    MAX( dt_averaging_input_pr, dt_3d ) )
1415          ENDIF
1416       ENDIF
1417       IF ( do_sum )  CALL flow_statistics
1418
1419!
1420!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1421       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1422            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1423            simulated_time >= skip_time_data_output_av )                    &
1424       THEN
1425          time_do_sla = time_do_sla + dt_3d
1426          IF ( time_do_sla >= dt_averaging_input )  THEN
1427             CALL sum_up_3d_data
1428             average_count_3d = average_count_3d + 1
1429             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1430          ENDIF
1431       ENDIF
1432!
1433!--    Average surface data
1434       IF ( surface_data_output )  THEN
1435          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1436               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1437          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1438             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1439                CALL surface_output_averaging
1440                average_count_surf = average_count_surf + 1
1441             ENDIF
1442          ENDIF
1443       ENDIF
1444
1445!
1446!--    Calculate spectra for time averaging
1447       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1448            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1449            simulated_time >= skip_time_dosp )  THEN
1450          time_dosp_av = time_dosp_av + dt_3d
1451          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1452             CALL calc_spectra
1453             time_dosp_av = MOD( time_dosp_av, &
1454                                 MAX( dt_averaging_input_pr, dt_3d ) )
1455          ENDIF
1456       ENDIF
1457
1458!
1459!--    Call flight module and output data
1460       IF ( virtual_flight )  THEN
1461          CALL flight_measurement
1462          CALL data_output_flight
1463       ENDIF
1464!
1465!--    Take virtual measurements
1466       IF ( virtual_measurement  .AND.                                         &
1467            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1468
1469!
1470!--    Profile output (ASCII) on file
1471       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1472          CALL print_1d
1473          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1474                                                           dt_3d ) )
1475       ENDIF
1476
1477!
1478!--    Graphic output for PROFIL
1479       IF ( time_dopr >= dt_dopr )  THEN
1480          IF ( dopr_n /= 0 )  CALL data_output_profiles
1481          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1482          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1483       ENDIF
1484
1485!
1486!--    Graphic output for time series
1487       IF ( time_dots >= dt_dots )  THEN
1488          CALL data_output_tseries
1489          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1490       ENDIF
1491
1492!
1493!--    Output of spectra (formatted for use with PROFIL), in case of no
1494!--    time averaging, spectra has to be calculated before
1495       IF ( time_dosp >= dt_dosp )  THEN
1496          IF ( average_count_sp == 0 )  CALL calc_spectra
1497          CALL data_output_spectra
1498          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1499       ENDIF
1500
1501!
1502!--    2d-data output (cross-sections)
1503       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1504          CALL data_output_2d( 'xy', 0 )
1505          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1506       ENDIF
1507       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1508          CALL data_output_2d( 'xz', 0 )
1509          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1510       ENDIF
1511       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1512          CALL data_output_2d( 'yz', 0 )
1513          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1514       ENDIF
1515
1516!
1517!--    3d-data output (volume data)
1518       IF ( time_do3d >= dt_do3d )  THEN
1519          CALL data_output_3d( 0 )
1520          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1521       ENDIF
1522
1523!
1524!--    Masked data output
1525       DO  mid = 1, masks
1526          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1527             CALL data_output_mask( 0 )
1528             time_domask(mid) = MOD( time_domask(mid),  &
1529                                     MAX( dt_domask(mid), dt_3d ) )
1530          ENDIF
1531       ENDDO
1532
1533!
1534!--    Output of time-averaged 2d/3d/masked data
1535       IF ( time_do_av >= dt_data_output_av )  THEN
1536          CALL average_3d_data
1537          CALL data_output_2d( 'xy', 1 )
1538          CALL data_output_2d( 'xz', 1 )
1539          CALL data_output_2d( 'yz', 1 )
1540          CALL data_output_3d( 1 )
1541          DO  mid = 1, masks
1542             CALL data_output_mask( 1 )
1543          ENDDO
1544          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1545       ENDIF
1546!
1547!--    Output of surface data, instantaneous and averaged data
1548       IF ( surface_data_output )  THEN
1549          IF ( time_dosurf >= dt_dosurf )  THEN
1550             CALL surface_output( 0 )
1551             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1552          ENDIF
1553          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1554             CALL surface_output( 1 )
1555             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1556          ENDIF
1557       ENDIF
1558
1559!
1560!--    Output of particle time series
1561       IF ( particle_advection )  THEN
1562          IF ( time_dopts >= dt_dopts  .OR. &
1563               ( simulated_time >= particle_advection_start  .AND. &
1564                 first_call_lpm ) )  THEN
1565             CALL data_output_ptseries
1566             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1567          ENDIF
1568       ENDIF
1569
1570!
1571!--    Output of dvrp-graphics (isosurface, particles, slicer)
1572#if defined( __dvrp_graphics )
1573       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1574#endif
1575       IF ( time_dvrp >= dt_dvrp )  THEN
1576          CALL data_output_dvrp
1577          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1578       ENDIF
1579#if defined( __dvrp_graphics )
1580       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1581#endif
1582
1583!
1584!--    If required, set the heat flux for the next time step at a random value
1585       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1586          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1587          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1588          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1589       ENDIF
1590
1591!
1592!--    Execute the gust module actions
1593       IF ( gust_module_enabled )  THEN
1594          CALL gust_actions( 'after_timestep' )
1595       ENDIF
1596
1597!
1598!--    Execute user-defined actions
1599       CALL user_actions( 'after_timestep' )
1600
1601!
1602!--    Determine size of next time step. Save timestep dt_3d because it is
1603!--    newly calculated in routine timestep, but required further below for
1604!--    steering the run control output interval
1605       dt_3d_old = dt_3d
1606       CALL timestep
1607
1608!
1609!--    Synchronize the timestep in case of nested run.
1610       IF ( nested_run )  THEN
1611!
1612!--       Synchronize by unifying the time step.
1613!--       Global minimum of all time-steps is used for all.
1614          CALL pmci_synchronize
1615       ENDIF
1616
1617!
1618!--    Computation and output of run control parameters.
1619!--    This is also done whenever perturbations have been imposed
1620       IF ( time_run_control >= dt_run_control  .OR.                     &
1621            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1622       THEN
1623          CALL run_control
1624          IF ( time_run_control >= dt_run_control )  THEN
1625             time_run_control = MOD( time_run_control, &
1626                                     MAX( dt_run_control, dt_3d_old ) )
1627          ENDIF
1628       ENDIF
1629
1630!
1631!--    Output elapsed simulated time in form of a progress bar on stdout
1632       IF ( myid == 0 )  CALL output_progress_bar
1633
1634       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1635
1636
1637    ENDDO   ! time loop
1638
1639!
1640!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1641    IF ( vnest_init )  CALL vnest_deallocate
1642
1643    IF ( myid == 0 )  CALL finish_progress_bar
1644
1645#if defined( __dvrp_graphics )
1646    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1647#endif
1648
1649    CALL location_message( 'finished time-stepping', .TRUE. )
1650
1651 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.