source: palm/trunk/SOURCE/time_integration.f90 @ 3646

Last change on this file since 3646 was 3646, checked in by kanani, 6 years ago

Bugfix: replace simulated_time by time_since_reference_point where required

  • Property svn:keywords set to Id
File size: 69.3 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3646 2018-12-28 17:58:49Z kanani $
27! Bugfix: use time_since_reference_point instead of simulated_time where
28! required (relevant when using wall/soil spinup)
29!
30! 3634 2018-12-18 12:31:28Z knoop
31! OpenACC port for SPEC
32!
33! 3597 2018-12-04 08:40:18Z maronga
34! Removed call to calculation of near air (10 cm) potential temperature (now in
35! surface layer fluxes)
36!
37! 3589 2018-11-30 15:09:51Z suehring
38! Move the control parameter "salsa" from salsa_mod to control_parameters
39! (M. Kurppa)
40!
41! 3582 2018-11-29 19:16:36Z suehring
42! dom_dwd_user, Schrempf:
43! Changes due to merge of uv exposure model into biometeorology_mod.
44!
45! 3525 2018-11-14 16:06:14Z kanani
46! Changes related to clean-up of biometeorology (dom_dwd_user)
47!
48! 3524 2018-11-14 13:36:44Z raasch
49! unused variables removed
50!
51! 3484 2018-11-02 14:41:25Z hellstea
52! pmci_ensure_nest_mass_conservation is premanently removed
53!
54! 3473 2018-10-30 20:50:15Z suehring
55! new module for virtual measurements introduced
56!
57! 3472 2018-10-30 20:43:50Z suehring
58! Add indoor model (kanani, srissman, tlang)
59!
60! 3467 2018-10-30 19:05:21Z suehring
61! Implementation of a new aerosol module salsa.
62!
63! 3448 2018-10-29 18:14:31Z kanani
64! Add biometeorology
65!
66! 3421 2018-10-24 18:39:32Z gronemeier
67! Surface data output
68!
69! 3418 2018-10-24 16:07:39Z kanani
70! call to material_heat_model now with check if spinup runs (rvtils)
71!
72! 3378 2018-10-19 12:34:59Z kanani
73! merge from radiation branch (r3362) into trunk
74! (moh.hefny):
75! Bugfix in the if statement to call radiation_interaction
76!
77! 3347 2018-10-15 14:21:08Z suehring
78! - offline nesting separated from large-scale forcing module
79! - changes for synthetic turbulence generator
80!
81! 3343 2018-10-15 10:38:52Z suehring
82! - Formatting, clean-up, comments (kanani)
83! - Added CALL to chem_emissions_setup (Russo)
84! - Code added for decycling chemistry (basit)
85!
86! 3294 2018-10-01 02:37:10Z raasch
87! changes concerning modularization of ocean option
88!
89! 3274 2018-09-24 15:42:55Z knoop
90! Modularization of all bulk cloud physics code components
91!
92! 3241 2018-09-12 15:02:00Z raasch
93! unused variables removed
94!
95! 3198 2018-08-15 09:23:10Z sward
96! Added multi_agent_system_end; defined start time for MAS relative to
97! time_since_reference_point
98!
99! 3183 2018-07-27 14:25:55Z suehring
100! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
101! Rename subroutines and variables in COSMO nesting mode
102!
103! 3182 2018-07-27 13:36:03Z suehring
104! Added multi agent system
105!
106! 3042 2018-05-25 10:44:37Z schwenkel
107! Changed the name specific humidity to mixing ratio
108!
109! 3040 2018-05-25 10:22:08Z schwenkel
110! Fixed bug in IF statement
111! Ensure that the time when calling the radiation to be the time step of the
112! pre-calculated time when first calculate the positions of the sun
113!
114! 3004 2018-04-27 12:33:25Z Giersch
115! First call of flow_statistics has been removed. It is already called in
116! run_control itself
117!
118! 2984 2018-04-18 11:51:30Z hellstea
119! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
120! as seemingly unnecessary.
121!
122! 2941 2018-04-03 11:54:58Z kanani
123! Deduct spinup_time from RUN_CONTROL output of main 3d run
124! (use time_since_reference_point instead of simulated_time)
125!
126! 2938 2018-03-27 15:52:42Z suehring
127! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
128!
129! 2936 2018-03-27 14:49:27Z suehring
130! Little formatting adjustment.
131!
132! 2817 2018-02-19 16:32:21Z knoop
133! Preliminary gust module interface implemented
134!
135! 2801 2018-02-14 16:01:55Z thiele
136! Changed lpm from subroutine to module.
137! Introduce particle transfer in nested models.
138!
139! 2776 2018-01-31 10:44:42Z Giersch
140! Variable use_synthetic_turbulence_generator has been abbreviated
141!
142! 2773 2018-01-30 14:12:54Z suehring
143! - Nesting for chemical species
144!
145! 2766 2018-01-22 17:17:47Z kanani
146! Removed preprocessor directive __chem
147!
148! 2718 2018-01-02 08:49:38Z maronga
149! Corrected "Former revisions" section
150!
151! 2696 2017-12-14 17:12:51Z kanani
152! - Change in file header (GPL part)
153! - Implementation of uv exposure model (FK)
154! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
155! - renamed diffusivities to tcm_diffusivities (TG)
156! - implement prognostic equation for diss (TG)
157! - Moved/commented CALL to chem_emissions (FK)
158! - Added CALL to chem_emissions (FK)
159! - Implementation of chemistry module (FK)
160! - Calls for setting boundary conditions in USM and LSM (MS)
161! - Large-scale forcing with larger-scale models implemented (MS)
162! - Rename usm_radiation into radiation_interactions; merge with branch
163!   radiation (MS)
164! - added call for usm_green_heat_model for green building surfaces (RvT)
165! - added call for usm_temperature_near_surface for use in indoor model (RvT)
166!
167! 2617 2017-11-16 12:47:24Z suehring
168! Bugfix, assure that the reference state does not become zero.
169!
170! 2563 2017-10-19 15:36:10Z Giersch
171! Variable wind_turbine moved to module control_parameters
172!
173! 2365 2017-08-21 14:59:59Z kanani
174! Vertical grid nesting implemented (SadiqHuq)
175!
176! 2320 2017-07-21 12:47:43Z suehring
177! Set bottom boundary conditions after nesting interpolation and anterpolation
178!
179! 2299 2017-06-29 10:14:38Z maronga
180! Call of soil model adjusted
181!
182! 2292 2017-06-20 09:51:42Z schwenkel
183! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
184! includes two more prognostic equations for cloud drop concentration (nc) 
185! and cloud water content (qc).
186!
187! 2271 2017-06-09 12:34:55Z sward
188! Start timestep message changed
189!
190! 2259 2017-06-08 09:09:11Z gronemeier
191! Implemented synthetic turbulence generator
192!
193! 2233 2017-05-30 18:08:54Z suehring
194!
195! 2232 2017-05-30 17:47:52Z suehring
196! Adjustments to new topography and surface concept
197! Modify passed parameters for disturb_field
198!
199! 2178 2017-03-17 11:07:39Z hellstea
200! Setting perturbations at all times near inflow boundary is removed
201! in case of nested boundaries
202!
203! 2174 2017-03-13 08:18:57Z maronga
204! Added support for nesting with cloud microphysics
205!
206! 2118 2017-01-17 16:38:49Z raasch
207! OpenACC directives and related code removed
208!
209! 2050 2016-11-08 15:00:55Z gronemeier
210! Implement turbulent outflow condition
211!
212! 2031 2016-10-21 15:11:58Z knoop
213! renamed variable rho to rho_ocean
214!
215! 2011 2016-09-19 17:29:57Z kanani
216! Flag urban_surface is now defined in module control_parameters,
217! removed commented CALLs of global_min_max.
218!
219! 2007 2016-08-24 15:47:17Z kanani
220! Added CALLs for new urban surface model
221!
222! 2000 2016-08-20 18:09:15Z knoop
223! Forced header and separation lines into 80 columns
224!
225! 1976 2016-07-27 13:28:04Z maronga
226! Simplified calls to radiation model
227!
228! 1960 2016-07-12 16:34:24Z suehring
229! Separate humidity and passive scalar
230!
231! 1957 2016-07-07 10:43:48Z suehring
232! flight module added
233!
234! 1919 2016-05-27 14:51:23Z raasch
235! Initial version of purely vertical nesting introduced.
236!
237! 1918 2016-05-27 14:35:57Z raasch
238! determination of time step moved to the end of the time step loop,
239! the first time step is now always calculated before the time step loop (i.e.
240! also in case of restart runs)
241!
242! 1914 2016-05-26 14:44:07Z witha
243! Added call for wind turbine model
244!
245! 1878 2016-04-19 12:30:36Z hellstea
246! Synchronization for nested runs rewritten
247!
248! 1853 2016-04-11 09:00:35Z maronga
249! Adjusted for use with radiation_scheme = constant
250!
251! 1849 2016-04-08 11:33:18Z hoffmann
252! Adapted for modularization of microphysics
253!
254! 1833 2016-04-07 14:23:03Z raasch
255! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
256!
257! 1831 2016-04-07 13:15:51Z hoffmann
258! turbulence renamed collision_turbulence
259!
260! 1822 2016-04-07 07:49:42Z hoffmann
261! icloud_scheme replaced by microphysics_*
262!
263! 1808 2016-04-05 19:44:00Z raasch
264! output message in case unscheduled radiation calls removed
265!
266! 1797 2016-03-21 16:50:28Z raasch
267! introduction of different datatransfer modes
268!
269! 1791 2016-03-11 10:41:25Z raasch
270! call of pmci_update_new removed
271!
272! 1786 2016-03-08 05:49:27Z raasch
273! +module spectrum
274!
275! 1783 2016-03-06 18:36:17Z raasch
276! switch back of netcdf data format for mask output moved to the mask output
277! routine
278!
279! 1781 2016-03-03 15:12:23Z raasch
280! some pmc calls removed at the beginning (before timeloop),
281! pmc initialization moved to the main program
282!
283! 1764 2016-02-28 12:45:19Z raasch
284! PMC_ACTIVE flags removed,
285! bugfix: nest synchronization after first call of timestep
286!
287! 1762 2016-02-25 12:31:13Z hellstea
288! Introduction of nested domain feature
289!
290! 1736 2015-12-04 08:56:33Z raasch
291! no perturbations added to total domain if energy limit has been set zero
292!
293! 1691 2015-10-26 16:17:44Z maronga
294! Added option for spin-ups without land surface and radiation models. Moved calls
295! for radiation and lan surface schemes.
296!
297! 1682 2015-10-07 23:56:08Z knoop
298! Code annotations made doxygen readable
299!
300! 1671 2015-09-25 03:29:37Z raasch
301! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
302! for particles
303!
304! 1585 2015-04-30 07:05:52Z maronga
305! Moved call of radiation scheme. Added support for RRTM
306!
307! 1551 2015-03-03 14:18:16Z maronga
308! Added interface for different radiation schemes.
309!
310! 1496 2014-12-02 17:25:50Z maronga
311! Added calls for the land surface model and radiation scheme
312!
313! 1402 2014-05-09 14:25:13Z raasch
314! location messages modified
315!
316! 1384 2014-05-02 14:31:06Z raasch
317! location messages added
318!
319! 1380 2014-04-28 12:40:45Z heinze
320! CALL of nudge_ref added
321! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
322!
323! 1365 2014-04-22 15:03:56Z boeske
324! Reset sums_ls_l to zero at each timestep
325! +sums_ls_l
326! Calculation of reference state (previously in subroutine calc_mean_profile)
327
328! 1342 2014-03-26 17:04:47Z kanani
329! REAL constants defined as wp-kind
330!
331! 1320 2014-03-20 08:40:49Z raasch
332! ONLY-attribute added to USE-statements,
333! kind-parameters added to all INTEGER and REAL declaration statements,
334! kinds are defined in new module kinds,
335! old module precision_kind is removed,
336! revision history before 2012 removed,
337! comment fields (!:) to be used for variable explanations added to
338! all variable declaration statements
339! 1318 2014-03-17 13:35:16Z raasch
340! module interfaces removed
341!
342! 1308 2014-03-13 14:58:42Z fricke
343! +netcdf_data_format_save
344! For masked data, parallel netcdf output is not tested so far, hence
345! netcdf_data_format is switched back to non-paralell output.
346!
347! 1276 2014-01-15 13:40:41Z heinze
348! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
349!
350! 1257 2013-11-08 15:18:40Z raasch
351! acc-update-host directive for timestep removed
352!
353! 1241 2013-10-30 11:36:58Z heinze
354! Generalize calc_mean_profile for wider use
355! Determine shf and qsws in dependence on data from LSF_DATA
356! Determine ug and vg in dependence on data from LSF_DATA
357! 1221 2013-09-10 08:59:13Z raasch
358! host update of arrays before timestep is called
359!
360! 1179 2013-06-14 05:57:58Z raasch
361! mean profiles for reference state are only calculated if required,
362! small bugfix for background communication
363!
364! 1171 2013-05-30 11:27:45Z raasch
365! split of prognostic_equations deactivated (comment lines), for the time being
366!
367! 1128 2013-04-12 06:19:32Z raasch
368! asynchronous transfer of ghost point data realized for acc-optimized version:
369! prognostic_equations are first called two times for those points required for
370! the left-right and north-south exchange, respectively, and then for the
371! remaining points,
372! those parts requiring global communication moved from prognostic_equations to
373! here
374!
375! 1115 2013-03-26 18:16:16Z hoffmann
376! calculation of qr and nr is restricted to precipitation
377!
378! 1113 2013-03-10 02:48:14Z raasch
379! GPU-porting of boundary conditions,
380! openACC directives updated
381! formal parameter removed from routine boundary_conds
382!
383! 1111 2013-03-08 23:54:10Z raasch
384! +internal timestep counter for cpu statistics added,
385! openACC directives updated
386!
387! 1092 2013-02-02 11:24:22Z raasch
388! unused variables removed
389!
390! 1065 2012-11-22 17:42:36Z hoffmann
391! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
392!
393! 1053 2012-11-13 17:11:03Z hoffmann
394! exchange of ghost points for nr, qr added
395!
396! 1036 2012-10-22 13:43:42Z raasch
397! code put under GPL (PALM 3.9)
398!
399! 1019 2012-09-28 06:46:45Z raasch
400! non-optimized version of prognostic_equations removed
401!
402! 1015 2012-09-27 09:23:24Z raasch
403! +call of prognostic_equations_acc
404!
405! 1001 2012-09-13 14:08:46Z raasch
406! all actions concerning leapfrog- and upstream-spline-scheme removed
407!
408! 849 2012-03-15 10:35:09Z raasch
409! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
410!
411! 825 2012-02-19 03:03:44Z raasch
412! wang_collision_kernel renamed wang_kernel
413!
414! Revision 1.1  1997/08/11 06:19:04  raasch
415! Initial revision
416!
417!
418! Description:
419! ------------
420!> Integration in time of the model equations, statistical analysis and graphic
421!> output
422!------------------------------------------------------------------------------!
423 SUBROUTINE time_integration
424 
425
426    USE advec_ws,                                                              &
427        ONLY:  ws_statistics
428
429    USE arrays_3d,                                                             &
430        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
431               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
432               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
433               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
434               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
435               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
436               v_p, v_stokes_zu, w, w_p, zu
437
438    USE biometeorology_mod,                                                    &
439        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
440               thermal_comfort, uvem_calc_exposure, uv_exposure
441
442    USE bulk_cloud_model_mod,                                                  &
443        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
444              collision_turbulence, microphysics_morrison, microphysics_seifert
445
446    USE calc_mean_profile_mod,                                                 &
447        ONLY:  calc_mean_profile
448
449    USE chem_emissions_mod,                                                    &
450        ONLY:  chem_emissions_setup
451
452    USE chem_modules,                                                          &
453        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
454
455    USE chemistry_model_mod,                                                   &
456        ONLY:  chem_boundary_conds, chem_species
457
458    USE control_parameters,                                                    &
459        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
460               average_count_3d, averaging_interval, averaging_interval_pr,    &
461               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
462               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
463               constant_flux_layer, constant_heatflux,                         &
464               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
465               coupling_start_time, current_timestep_number,                   &
466               disturbance_created, disturbance_energy_limit, dist_range,      &
467               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
468               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
469               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
470               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
471               first_call_lpm, first_call_mas, galilei_transformation,         &
472               humidity, indoor_model, intermediate_timestep_count,            &
473               intermediate_timestep_count_max,                                &
474               land_surface, large_scale_forcing,                              &
475               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
476               multi_agent_system_end, multi_agent_system_start,               &
477               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
478               ocean_mode, passive_scalar, pt_reference,                       &
479               pt_slope_offset, random_heatflux, rans_mode,                    &
480               rans_tke_e, run_coupled, salsa,                                 &
481               simulated_time, simulated_time_chr,                             &
482               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
483               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
484               skip_time_data_output_av, sloping_surface, stop_dt,             &
485               surface_data_output, terminate_coupled, terminate_run,          &
486               timestep_scheme,                                                &
487               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
488               time_do3d, time_domask, time_dopr, time_dopr_av,                &
489               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
490               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
491               time_run_control, time_since_reference_point, tsc,              &
492               turbulent_inflow, turbulent_outflow, urban_surface,             &
493               use_initial_profile_as_reference,                               &
494               use_single_reference_value, u_gtrans, v_gtrans,                 &
495               virtual_flight, virtual_measurement, wind_turbine,              &
496               ws_scheme_mom, ws_scheme_sca 
497
498    USE cpulog,                                                                &
499        ONLY:  cpu_log, log_point, log_point_s
500
501    USE date_and_time_mod,                                                     &
502        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
503
504    USE flight_mod,                                                            &
505        ONLY:  flight_measurement
506
507    USE gust_mod,                                                              &
508        ONLY:  gust_actions, gust_module_enabled
509
510    USE indices,                                                               &
511        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
512               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
513
514    USE indoor_model_mod,                                                      &
515        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
516
517    USE interaction_droplets_ptq_mod,                                          &
518        ONLY:  interaction_droplets_ptq
519
520    USE interfaces
521
522    USE kinds
523
524    USE land_surface_model_mod,                                                &
525        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
526               skip_time_do_lsm
527
528    USE lsf_nudging_mod,                                                       &
529        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
530
531    USE multi_agent_system_mod,                                                &
532        ONLY:  agents_active, multi_agent_system
533
534    USE nesting_offl_mod,                                                      &
535        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
536       
537    USE netcdf_data_input_mod,                                                 &
538        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
539               netcdf_data_input_offline_nesting
540
541    USE ocean_mod,                                                             &
542        ONLY:  prho_reference
543
544    USE particle_attributes,                                                   &
545        ONLY:  particle_advection, particle_advection_start,                   &
546               use_sgs_for_particles, wang_kernel
547
548    USE pegrid
549
550    USE pmc_interface,                                                         &
551        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
552               pmci_synchronize
553
554    USE progress_bar,                                                          &
555        ONLY:  finish_progress_bar, output_progress_bar
556
557    USE prognostic_equations_mod,                                              &
558        ONLY:  prognostic_equations_cache, prognostic_equations_vector
559
560    USE radiation_model_mod,                                                   &
561        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
562              radiation_interaction, radiation_interactions,                   &
563              skip_time_do_radiation, time_radiation
564         
565    USE salsa_mod,                                                             &
566        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
567              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
568              skip_time_do_salsa                     
569   
570    USE salsa_util_mod,                                                        &
571           ONLY:  sums_salsa_ws_l     
572
573    USE spectra_mod,                                                           &
574        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
575              skip_time_dosp
576
577    USE statistics,                                                            &
578        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
579               rmask, statistic_regions, weight_substep, sums_l_l,             &
580               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
581               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
582               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
583               sums_wsnrs_ws_l, sums_wsss_ws_l
584
585    USE surface_layer_fluxes_mod,                                              &
586        ONLY:  surface_layer_fluxes
587
588    USE surface_mod,                                                           &
589        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
590               enter_surface_arrays, exit_surface_arrays
591
592    USE surface_output_mod,                                                    &
593        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
594               dt_dosurf_av, surface_output, surface_output_averaging,         &
595               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
596               time_dosurf_av
597
598    USE turbulence_closure_mod,                                                &
599        ONLY:  tcm_diffusivities, production_e_init
600
601    USE urban_surface_mod,                                                     &
602        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
603               usm_material_model,                                             &
604               usm_surface_energy_balance, usm_green_heat_model
605
606    USE synthetic_turbulence_generator_mod,                                    &
607        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
608               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
609               use_syn_turb_gen   
610
611    USE user_actions_mod,                                                      &
612        ONLY:  user_actions
613
614
615    USE wind_turbine_model_mod,                                                &
616        ONLY:  wtm_forces
617
618    USE lpm_mod,                                                               &
619        ONLY:  lpm
620
621    USE vertical_nesting_mod,                                                  &
622        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
623               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
624               vnest_deallocate, vnest_init, vnest_init_fine,                  &
625               vnest_start_time
626               
627    USE virtual_measurement_mod,                                               &
628        ONLY:  vm_sampling, vm_time_start
629
630    IMPLICIT NONE
631
632    CHARACTER (LEN=9) ::  time_to_string   !<
633   
634    INTEGER(iwp)      ::  b !< index for aerosol size bins   
635    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
636    INTEGER(iwp)      ::  g !< index for gaseous compounds
637    INTEGER(iwp)      ::  lsp
638    INTEGER(iwp)      ::  lsp_usr   !<
639    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
640
641    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
642                            !< steering of run control output interval
643    REAL(wp) ::  time_since_reference_point_save  !< original value of
644                                                  !< time_since_reference_point
645
646
647! Copy data from arrays_3d
648!$ACC DATA &
649!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
650!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
651!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
652!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
653!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
654!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
655!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
656!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
657!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
658
659!$ACC DATA &
660!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
661!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
662!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
663!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
664!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
665!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
666!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
667!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
668!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
669!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
670!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
671
672!$ACC DATA &
673!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
674!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
675!$ACC COPYIN(zu(nzb:nzt+1)) &
676!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
677!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
678!$ACC COPYIN(ddzw(1:nzt+1)) &
679!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
680!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
681!$ACC COPYIN(ref_state(0:nz+1)) &
682!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
683!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
684!$ACC COPYIN(pt_init(0:nz+1)) &
685!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
686
687! Copy data from control_parameters
688!$ACC DATA &
689!$ACC COPYIN(tsc(1:5))
690
691! Copy data from indices
692!$ACC DATA &
693!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
694!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
695!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
696
697! Copy data from surface_mod
698!$ACC DATA &
699!$ACC COPYIN(bc_h(0:1)) &
700!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
701!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
702!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
703!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
704!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
705!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
706
707! Copy data from statistics
708!$ACC DATA &
709!$ACC COPYIN(hom(nzb+1:nzb_max,1,1:3,0)) &
710!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
711!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
712!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
713!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
714!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
715!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
716!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
717!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
718!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
719!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
720!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
721!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
722!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
723!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
724!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
725!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
726!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
727
728!
729!-- At beginning determine the first time step
730    CALL timestep
731!
732!-- Synchronize the timestep in case of nested run.
733    IF ( nested_run )  THEN
734!
735!--    Synchronization by unifying the time step.
736!--    Global minimum of all time-steps is used for all.
737       CALL pmci_synchronize
738    ENDIF
739
740!
741!-- Determine and print out the run control quantities before the first time
742!-- step of this run. For the initial run, some statistics (e.g. divergence)
743!-- need to be determined first --> CALL flow_statistics at the beginning of
744!-- run_control
745    CALL run_control
746!
747!-- Data exchange between coupled models in case that a call has been omitted
748!-- at the end of the previous run of a job chain.
749    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
750!
751!--    In case of model termination initiated by the local model the coupler
752!--    must not be called because this would again cause an MPI hang.
753       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
754          CALL surface_coupler
755          time_coupling = time_coupling - dt_coupling
756       ENDDO
757       IF (time_coupling == 0.0_wp  .AND.                                      &
758           time_since_reference_point < dt_coupling )                          &
759       THEN
760          time_coupling = time_since_reference_point
761       ENDIF
762    ENDIF
763
764#if defined( __dvrp_graphics )
765!
766!-- Time measurement with dvrp software 
767    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
768#endif
769
770    CALL location_message( 'starting timestep-sequence', .TRUE. )
771!
772!-- Start of the time loop
773    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
774                .NOT. terminate_run )
775
776       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
777!
778!--    Vertical nesting: initialize fine grid
779       IF ( vnested ) THEN
780          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
781             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
782             CALL vnest_init_fine
783             vnest_init = .TRUE.
784             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
785          ENDIF
786       ENDIF
787!
788!--    Determine ug, vg and w_subs in dependence on data from external file
789!--    LSF_DATA
790       IF ( large_scale_forcing .AND. lsf_vert )  THEN
791           CALL ls_forcing_vert ( simulated_time )
792           sums_ls_l = 0.0_wp
793       ENDIF
794
795!
796!--    Set pt_init and q_init to the current profiles taken from
797!--    NUDGING_DATA
798       IF ( nudging )  THEN
799           CALL nudge_ref ( simulated_time )
800!
801!--        Store temperature gradient at the top boundary for possible Neumann
802!--        boundary condition
803           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
804           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
805           IF ( air_chemistry )  THEN
806              DO  lsp = 1, nspec
807                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
808                                - chem_species(lsp)%conc_pr_init(nzt) )       &
809                               / dzu(nzt+1)
810              ENDDO
811           ENDIF
812       ENDIF
813!
814!--    If forcing by larger-scale models is applied, check if new data
815!--    at domain boundaries need to be read.
816       IF ( nesting_offline )  THEN
817          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
818             CALL netcdf_data_input_offline_nesting
819       ENDIF
820
821!
822!--    Execute the gust module actions
823       IF ( gust_module_enabled )  THEN
824          CALL gust_actions( 'before_timestep' )
825       ENDIF
826
827!
828!--    Execute the user-defined actions
829       CALL user_actions( 'before_timestep' )
830
831!
832!--    Calculate forces by wind turbines
833       IF ( wind_turbine )  THEN
834
835          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
836
837          CALL wtm_forces
838
839          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
840
841       ENDIF   
842       
843#ifdef _OPENACC
844       CALL enter_surface_arrays
845#endif
846       
847!
848!--    Start of intermediate step loop
849       intermediate_timestep_count = 0
850       DO  WHILE ( intermediate_timestep_count < &
851                   intermediate_timestep_count_max )
852
853          intermediate_timestep_count = intermediate_timestep_count + 1
854
855!
856!--       Set the steering factors for the prognostic equations which depend
857!--       on the timestep scheme
858          CALL timestep_scheme_steering
859
860!
861!--       Calculate those variables needed in the tendency terms which need
862!--       global communication
863          IF ( .NOT. use_single_reference_value  .AND. &
864               .NOT. use_initial_profile_as_reference )  THEN
865!
866!--          Horizontally averaged profiles to be used as reference state in
867!--          buoyancy terms (WARNING: only the respective last call of
868!--          calc_mean_profile defines the reference state!)
869             IF ( .NOT. neutral )  THEN
870                CALL calc_mean_profile( pt, 4 )
871                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
872             ENDIF
873             IF ( ocean_mode )  THEN
874                CALL calc_mean_profile( rho_ocean, 64 )
875                ref_state(:)  = hom(:,1,64,0)
876             ENDIF
877             IF ( humidity )  THEN
878                CALL calc_mean_profile( vpt, 44 )
879                ref_state(:)  = hom(:,1,44,0)
880             ENDIF
881!
882!--          Assure that ref_state does not become zero at any level
883!--          ( might be the case if a vertical level is completely occupied
884!--            with topography ).
885             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
886                                ref_state == 0.0_wp )
887          ENDIF
888
889          IF ( .NOT. constant_diffusion )  CALL production_e_init
890          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
891               intermediate_timestep_count == 1 )  CALL ws_statistics
892!
893!--       In case of nudging calculate current nudging time scale and horizontal
894!--       means of u, v, pt and q
895          IF ( nudging )  THEN
896             CALL calc_tnudge( simulated_time )
897             CALL calc_mean_profile( u, 1 )
898             CALL calc_mean_profile( v, 2 )
899             CALL calc_mean_profile( pt, 4 )
900             CALL calc_mean_profile( q, 41 )
901          ENDIF
902
903!
904!--       Solve the prognostic equations. A fast cache optimized version with
905!--       only one single loop is used in case of Piascek-Williams advection
906!--       scheme. NEC vector machines use a different version, because
907!--       in the other versions a good vectorization is prohibited due to
908!--       inlining problems.
909          IF ( loop_optimization == 'cache' )  THEN
910             CALL prognostic_equations_cache
911          ELSEIF ( loop_optimization == 'vector' )  THEN
912             CALL prognostic_equations_vector
913          ENDIF
914
915!
916!--       Particle transport/physics with the Lagrangian particle model
917!--       (only once during intermediate steps, because it uses an Euler-step)
918!--       ### particle model should be moved before prognostic_equations, in order
919!--       to regard droplet interactions directly
920          IF ( particle_advection  .AND.                         &
921               time_since_reference_point >= particle_advection_start  .AND. &
922               intermediate_timestep_count == 1 )  THEN
923             CALL lpm
924             first_call_lpm = .FALSE.
925          ENDIF
926
927!
928!--       Interaction of droplets with temperature and mixing ratio.
929!--       Droplet condensation and evaporation is calculated within
930!--       advec_particles.
931          IF ( cloud_droplets  .AND.  &
932               intermediate_timestep_count == intermediate_timestep_count_max )&
933          THEN
934             CALL interaction_droplets_ptq
935          ENDIF
936
937!
938!--       Movement of agents in multi agent system
939          IF ( agents_active  .AND.                                            &
940               time_since_reference_point >= multi_agent_system_start  .AND.   &
941               time_since_reference_point <= multi_agent_system_end    .AND.   &
942               intermediate_timestep_count == 1 )  THEN
943             CALL multi_agent_system
944             first_call_mas = .FALSE.
945          ENDIF
946
947!
948!--       Exchange of ghost points (lateral boundary conditions)
949          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
950
951          CALL exchange_horiz( u_p, nbgp )
952          CALL exchange_horiz( v_p, nbgp )
953          CALL exchange_horiz( w_p, nbgp )
954          CALL exchange_horiz( pt_p, nbgp )
955          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
956          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
957               .OR.  use_sgs_for_particles )  THEN
958             IF ( rans_tke_e )  THEN
959                CALL exchange_horiz( diss_p, nbgp )
960             ELSE
961                CALL exchange_horiz( diss, nbgp )
962             ENDIF
963          ENDIF
964          IF ( ocean_mode )  THEN
965             CALL exchange_horiz( sa_p, nbgp )
966             CALL exchange_horiz( rho_ocean, nbgp )
967             CALL exchange_horiz( prho, nbgp )
968          ENDIF
969          IF ( humidity )  THEN
970             CALL exchange_horiz( q_p, nbgp )
971             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
972                CALL exchange_horiz( qc_p, nbgp )
973                CALL exchange_horiz( nc_p, nbgp )
974             ENDIF
975             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
976                CALL exchange_horiz( qr_p, nbgp )
977                CALL exchange_horiz( nr_p, nbgp )
978             ENDIF
979          ENDIF
980          IF ( cloud_droplets )  THEN
981             CALL exchange_horiz( ql, nbgp )
982             CALL exchange_horiz( ql_c, nbgp )
983             CALL exchange_horiz( ql_v, nbgp )
984             CALL exchange_horiz( ql_vp, nbgp )
985          ENDIF
986          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
987          IF ( air_chemistry )  THEN
988             DO  lsp = 1, nspec
989                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
990!
991!--             kanani: Push chem_boundary_conds after CALL boundary_conds
992                lsp_usr = 1
993                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
994                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
995                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
996                                                chem_species(lsp)%conc_pr_init )
997                   ENDIF
998                   lsp_usr = lsp_usr + 1
999                ENDDO
1000             ENDDO
1001          ENDIF
1002
1003          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1004          THEN
1005             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1006             DO  b = 1, nbins
1007                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1008                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1009                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1010                                           aerosol_number(b)%init )
1011                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1012                DO  c = 1, ncc_tot
1013                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1014                                        nbgp )
1015                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1016                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1017                                              aerosol_mass((c-1)*nbins+b)%init )
1018                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1019                ENDDO
1020             ENDDO
1021             IF ( .NOT. salsa_gases_from_chem )  THEN
1022                DO  g = 1, ngast
1023                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1024                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1025                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1026                                              salsa_gas(g)%init )
1027                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1028             ENDDO
1029             ENDIF
1030             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1031          ENDIF         
1032          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1033
1034!
1035!--       Boundary conditions for the prognostic quantities (except of the
1036!--       velocities at the outflow in case of a non-cyclic lateral wall)
1037          CALL boundary_conds
1038!
1039!--       Swap the time levels in preparation for the next time step.
1040          CALL swap_timelevel
1041
1042!
1043!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1044          IF ( vnest_init ) THEN
1045             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
1046             CALL vnest_anterpolate
1047             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
1048          ENDIF
1049
1050          IF ( nested_run )  THEN
1051
1052             CALL cpu_log( log_point(60), 'nesting', 'start' )
1053!
1054!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1055!--          and pmci_child_datatrans are called inside the wrapper
1056!--          subroutine pmci_datatrans according to the control parameters
1057!--          nesting_mode and nesting_datatransfer_mode.
1058!--          TO_DO: why is nesting_mode given as a parameter here?
1059             CALL pmci_datatrans( nesting_mode )
1060
1061             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1062                  nesting_mode == 'vertical' )  THEN
1063!
1064!--             Exchange_horiz is needed for all parent-domains after the
1065!--             anterpolation
1066                CALL exchange_horiz( u, nbgp )
1067                CALL exchange_horiz( v, nbgp )
1068                CALL exchange_horiz( w, nbgp )
1069                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1070
1071                IF ( humidity )  THEN
1072
1073                   CALL exchange_horiz( q, nbgp )
1074
1075                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1076                       CALL exchange_horiz( qc, nbgp )
1077                       CALL exchange_horiz( nc, nbgp )
1078                   ENDIF
1079                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1080                       CALL exchange_horiz( qr, nbgp )
1081                       CALL exchange_horiz( nr, nbgp )
1082                   ENDIF
1083
1084                ENDIF
1085
1086                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1087               
1088                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1089
1090                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1091                                                      rans_tke_e )             &
1092                   CALL exchange_horiz( diss, nbgp )
1093
1094                IF ( air_chemistry )  THEN
1095                   DO  n = 1, nspec     
1096                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1097                   ENDDO
1098                ENDIF
1099
1100             ENDIF
1101!
1102!--          Set boundary conditions again after interpolation and anterpolation.
1103             CALL pmci_boundary_conds
1104
1105             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1106
1107          ENDIF
1108
1109!
1110!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1111!--       when a sloping surface is used
1112          IF ( sloping_surface )  THEN
1113             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1114                                                    pt_slope_offset
1115             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1116                                                    pt_slope_offset
1117          ENDIF
1118
1119!
1120!--       Impose a turbulent inflow using the recycling method
1121          IF ( turbulent_inflow )  CALL  inflow_turbulence
1122
1123!
1124!--       Set values at outflow boundary using the special outflow condition
1125          IF ( turbulent_outflow )  CALL  outflow_turbulence
1126
1127!
1128!--       Impose a random perturbation on the horizontal velocity field
1129          IF ( create_disturbances  .AND.                                      &
1130               ( call_psolver_at_all_substeps  .AND.                           &
1131               intermediate_timestep_count == intermediate_timestep_count_max )&
1132          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1133               intermediate_timestep_count == 1 ) )                            &
1134          THEN
1135             time_disturb = time_disturb + dt_3d
1136             IF ( time_disturb >= dt_disturb )  THEN
1137                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1138                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1139                   CALL disturb_field( 'u', tend, u )
1140                   CALL disturb_field( 'v', tend, v )
1141                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1142                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1143                THEN
1144!
1145!--                Runs with a non-cyclic lateral wall need perturbations
1146!--                near the inflow throughout the whole simulation
1147                   dist_range = 1
1148                   CALL disturb_field( 'u', tend, u )
1149                   CALL disturb_field( 'v', tend, v )
1150                   dist_range = 0
1151                ENDIF
1152                time_disturb = time_disturb - dt_disturb
1153             ENDIF
1154          ENDIF
1155
1156!
1157!--       Map forcing data derived from larger scale model onto domain
1158!--       boundaries.
1159          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1160                                       intermediate_timestep_count_max  )      &
1161             CALL nesting_offl_bc
1162!
1163!--       Impose a turbulent inflow using synthetic generated turbulence,
1164!--       only once per time step.
1165          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1166             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1167             CALL stg_main
1168          ENDIF
1169!
1170!--       Ensure mass conservation. This need to be done after imposing
1171!--       synthetic turbulence and top boundary condition for pressure is set to
1172!--       Neumann conditions.
1173!--       Is this also required in case of Dirichlet?
1174          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1175!
1176!--       Reduce the velocity divergence via the equation for perturbation
1177!--       pressure.
1178          IF ( intermediate_timestep_count == 1  .OR. &
1179                call_psolver_at_all_substeps )  THEN
1180
1181             IF (  vnest_init ) THEN
1182!
1183!--             Compute pressure in the CG, interpolate top boundary conditions
1184!--             to the FG and then compute pressure in the FG
1185                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1186
1187                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1188                CALL vnest_boundary_conds
1189                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1190 
1191                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1192
1193!--             Anterpolate TKE, satisfy Germano Identity
1194                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1195                CALL vnest_anterpolate_e
1196                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1197
1198             ELSE
1199
1200                CALL pres
1201
1202             ENDIF
1203
1204          ENDIF
1205
1206!
1207!--       If required, compute liquid water content
1208          IF ( bulk_cloud_model )  THEN
1209             CALL calc_liquid_water_content
1210          ENDIF
1211!
1212!--       If required, compute virtual potential temperature
1213          IF ( humidity )  THEN
1214             CALL compute_vpt 
1215          ENDIF 
1216
1217!
1218!--       Compute the diffusion quantities
1219          IF ( .NOT. constant_diffusion )  THEN
1220
1221!
1222!--          Determine surface fluxes shf and qsws and surface values
1223!--          pt_surface and q_surface in dependence on data from external
1224!--          file LSF_DATA respectively
1225             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1226                 intermediate_timestep_count == intermediate_timestep_count_max )&
1227             THEN
1228                CALL ls_forcing_surf( simulated_time )
1229             ENDIF
1230
1231!
1232!--          First the vertical (and horizontal) fluxes in the surface
1233!--          (constant flux) layer are computed
1234             IF ( constant_flux_layer )  THEN
1235                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1236                CALL surface_layer_fluxes
1237                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1238             ENDIF
1239!
1240!--          If required, solve the energy balance for the surface and run soil
1241!--          model. Call for horizontal as well as vertical surfaces
1242             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1243
1244                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1245!
1246!--             Call for horizontal upward-facing surfaces
1247                CALL lsm_energy_balance( .TRUE., -1 )
1248                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1249!
1250!--             Call for northward-facing surfaces
1251                CALL lsm_energy_balance( .FALSE., 0 )
1252                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1253!
1254!--             Call for southward-facing surfaces
1255                CALL lsm_energy_balance( .FALSE., 1 )
1256                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1257!
1258!--             Call for eastward-facing surfaces
1259                CALL lsm_energy_balance( .FALSE., 2 )
1260                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1261!
1262!--             Call for westward-facing surfaces
1263                CALL lsm_energy_balance( .FALSE., 3 )
1264                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1265               
1266!
1267!--             At the end, set boundary conditons for potential temperature
1268!--             and humidity after running the land-surface model. This
1269!--             might be important for the nesting, where arrays are transfered.
1270                CALL lsm_boundary_condition
1271
1272               
1273                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1274             ENDIF
1275!
1276!--          If required, solve the energy balance for urban surfaces and run
1277!--          the material heat model
1278             IF (urban_surface) THEN
1279                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1280               
1281                CALL usm_surface_energy_balance( .FALSE. )
1282                IF ( usm_material_model )  THEN
1283                   CALL usm_green_heat_model
1284                   CALL usm_material_heat_model ( .FALSE. )
1285                ENDIF
1286
1287!
1288!--             At the end, set boundary conditons for potential temperature
1289!--             and humidity after running the urban-surface model. This
1290!--             might be important for the nesting, where arrays are transfered.
1291                CALL usm_boundary_condition
1292
1293                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1294             ENDIF
1295!
1296!--          Compute the diffusion coefficients
1297             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1298             IF ( .NOT. humidity ) THEN
1299                IF ( ocean_mode )  THEN
1300                   CALL tcm_diffusivities( prho, prho_reference )
1301                ELSE
1302                   CALL tcm_diffusivities( pt, pt_reference )
1303                ENDIF
1304             ELSE
1305                CALL tcm_diffusivities( vpt, pt_reference )
1306             ENDIF
1307             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1308!
1309!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1310             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1311
1312          ENDIF
1313
1314!
1315!--       If required, calculate radiative fluxes and heating rates
1316          IF ( radiation .AND. intermediate_timestep_count                     &
1317               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1318               skip_time_do_radiation )  THEN
1319
1320               time_radiation = time_radiation + dt_3d
1321
1322             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1323             THEN
1324
1325                CALL cpu_log( log_point(50), 'radiation', 'start' )
1326
1327                IF ( .NOT. force_radiation_call )  THEN
1328                   time_radiation = time_radiation - dt_radiation
1329                ENDIF
1330
1331!
1332!--             Adjust the current time to the time step of the radiation model.
1333!--             Needed since radiation is pre-calculated and stored only on apparent
1334!--             solar positions
1335                time_since_reference_point_save = time_since_reference_point
1336                time_since_reference_point =                                   &
1337                                    REAL( FLOOR( time_since_reference_point /  &
1338                                                 dt_radiation), wp )           &
1339                                             * dt_radiation
1340
1341                CALL radiation_control
1342
1343                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1344
1345                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1346                     radiation_interactions )  THEN
1347                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1348                   CALL radiation_interaction
1349                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1350                ENDIF
1351   
1352!
1353!--             Return the current time to its original value
1354                time_since_reference_point = time_since_reference_point_save
1355
1356             ENDIF
1357          ENDIF
1358
1359       ENDDO   ! Intermediate step loop
1360
1361!
1362!--    Will be used at some point by flow_statistics.
1363       !$ACC UPDATE HOST(e, u, v, w, pt) &
1364       !$ACC HOST(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1365       !$ACC HOST(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1366       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1367       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1368       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1369       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1370       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1371       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1372       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1373       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1381#ifdef _OPENACC
1382       CALL exit_surface_arrays
1383#endif
1384
1385!
1386!--    If required, consider chemical emissions
1387       IF ( air_chemistry  .AND.  do_emis )  THEN
1388!
1389!--       Update the time --> kanani: revise location of this CALL
1390          CALL calc_date_and_time
1391!
1392!--       Call emission routine only once an hour
1393          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1394             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1395             hour_call_emis = hour_of_year
1396          ENDIF
1397       ENDIF
1398
1399!
1400!--    If required, calculate indoor temperature, waste heat, heat flux
1401!--    through wall, etc.
1402!--    dt_indoor steers the frequency of the indoor model calculations
1403       IF (       indoor_model                                                    &
1404            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1405            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1406
1407          time_indoor = time_indoor + dt_3d
1408
1409          IF ( time_indoor >= dt_indoor )  THEN
1410
1411             time_indoor = time_indoor - dt_indoor
1412
1413             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1414             CALL im_main_heatcool
1415             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1416
1417          ENDIF
1418       ENDIF
1419!
1420!--    Increase simulation time and output times
1421       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1422       current_timestep_number    = current_timestep_number + 1
1423       simulated_time             = simulated_time   + dt_3d
1424       time_since_reference_point = simulated_time - coupling_start_time
1425       simulated_time_chr         = time_to_string( time_since_reference_point )
1426
1427
1428
1429
1430       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1431          time_do_av         = time_do_av       + dt_3d
1432       ENDIF
1433       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1434          time_do2d_xy       = time_do2d_xy     + dt_3d
1435       ENDIF
1436       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1437          time_do2d_xz       = time_do2d_xz     + dt_3d
1438       ENDIF
1439       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1440          time_do2d_yz       = time_do2d_yz     + dt_3d
1441       ENDIF
1442       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1443          time_do3d          = time_do3d        + dt_3d
1444       ENDIF
1445       DO  mid = 1, masks
1446          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1447             time_domask(mid)= time_domask(mid) + dt_3d
1448          ENDIF
1449       ENDDO
1450       time_dvrp          = time_dvrp        + dt_3d
1451       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1452          time_dosp       = time_dosp        + dt_3d
1453       ENDIF
1454       time_dots          = time_dots        + dt_3d
1455       IF ( .NOT. first_call_lpm )  THEN
1456          time_dopts      = time_dopts       + dt_3d
1457       ENDIF
1458       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1459          time_dopr       = time_dopr        + dt_3d
1460       ENDIF
1461       time_dopr_listing  = time_dopr_listing + dt_3d
1462       time_run_control   = time_run_control + dt_3d
1463!
1464!--    Increment time-counter for surface output
1465       IF ( surface_data_output )  THEN
1466          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1467             time_dosurf    = time_dosurf + dt_3d
1468          ENDIF
1469          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1470             time_dosurf_av = time_dosurf_av + dt_3d
1471          ENDIF
1472       ENDIF
1473!
1474!--    In case of synthetic turbulence generation and parametrized turbulence
1475!--    information, update the time counter and if required, adjust the
1476!--    STG to new atmospheric conditions.
1477       IF ( use_syn_turb_gen  )  THEN
1478          IF ( parametrize_inflow_turbulence )  THEN
1479             time_stg_adjust = time_stg_adjust + dt_3d
1480             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1481          ENDIF
1482          time_stg_call = time_stg_call + dt_3d
1483       ENDIF
1484
1485!
1486!--    Data exchange between coupled models
1487       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1488                                          .AND. .NOT. vnested )  THEN
1489          time_coupling = time_coupling + dt_3d
1490
1491!
1492!--       In case of model termination initiated by the local model
1493!--       (terminate_coupled > 0), the coupler must be skipped because it would
1494!--       cause an MPI intercomminucation hang.
1495!--       If necessary, the coupler will be called at the beginning of the
1496!--       next restart run.
1497          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1498             CALL surface_coupler
1499             time_coupling = time_coupling - dt_coupling
1500          ENDDO
1501       ENDIF
1502
1503!
1504!--    Biometeorology calculation of stationary thermal indices
1505       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1506!
1507!--       If required, do thermal comfort calculations
1508          IF ( thermal_comfort )  THEN
1509             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1510             time_bio_results = time_since_reference_point
1511          ENDIF
1512!
1513!--       If required, do UV exposure calculations
1514          IF ( uv_exposure )  THEN
1515             CALL uvem_calc_exposure
1516          ENDIF
1517       ENDIF
1518
1519!
1520!--    Execute the gust module actions
1521       IF ( gust_module_enabled )  THEN
1522          CALL gust_actions( 'after_integration' )
1523       ENDIF
1524
1525!
1526!--    Execute user-defined actions
1527       CALL user_actions( 'after_integration' )
1528
1529!
1530!--    If Galilei transformation is used, determine the distance that the
1531!--    model has moved so far
1532       IF ( galilei_transformation )  THEN
1533          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1534          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1535       ENDIF
1536
1537!
1538!--    Check, if restart is necessary (because cpu-time is expiring or
1539!--    because it is forced by user) and set stop flag
1540!--    This call is skipped if the remote model has already initiated a restart.
1541       IF ( .NOT. terminate_run )  CALL check_for_restart
1542
1543!
1544!--    Carry out statistical analysis and output at the requested output times.
1545!--    The MOD function is used for calculating the output time counters (like
1546!--    time_dopr) in order to regard a possible decrease of the output time
1547!--    interval in case of restart runs
1548
1549!
1550!--    Set a flag indicating that so far no statistics have been created
1551!--    for this time step
1552       flow_statistics_called = .FALSE.
1553
1554!
1555!--    If required, call flow_statistics for averaging in time
1556       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1557            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1558            time_since_reference_point >= skip_time_dopr )  THEN
1559          time_dopr_av = time_dopr_av + dt_3d
1560          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1561             do_sum = .TRUE.
1562             time_dopr_av = MOD( time_dopr_av, &
1563                                    MAX( dt_averaging_input_pr, dt_3d ) )
1564          ENDIF
1565       ENDIF
1566       IF ( do_sum )  CALL flow_statistics
1567
1568!
1569!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1570       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1571            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1572            time_since_reference_point >= skip_time_data_output_av )                    &
1573       THEN
1574          time_do_sla = time_do_sla + dt_3d
1575          IF ( time_do_sla >= dt_averaging_input )  THEN
1576             CALL sum_up_3d_data
1577             average_count_3d = average_count_3d + 1
1578             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1579          ENDIF
1580       ENDIF
1581!
1582!--    Average surface data
1583       IF ( surface_data_output )  THEN
1584          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1585               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1586          .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1587             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1588                CALL surface_output_averaging
1589                average_count_surf = average_count_surf + 1
1590             ENDIF
1591          ENDIF
1592       ENDIF
1593
1594!
1595!--    Calculate spectra for time averaging
1596       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1597            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1598            time_since_reference_point >= skip_time_dosp )  THEN
1599          time_dosp_av = time_dosp_av + dt_3d
1600          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1601             CALL calc_spectra
1602             time_dosp_av = MOD( time_dosp_av, &
1603                                 MAX( dt_averaging_input_pr, dt_3d ) )
1604          ENDIF
1605       ENDIF
1606
1607!
1608!--    Call flight module and output data
1609       IF ( virtual_flight )  THEN
1610          CALL flight_measurement
1611          CALL data_output_flight
1612       ENDIF
1613!
1614!--    Take virtual measurements
1615       IF ( virtual_measurement  .AND.                                         &
1616            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1617
1618!
1619!--    Profile output (ASCII) on file
1620       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1621          CALL print_1d
1622          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1623                                                           dt_3d ) )
1624       ENDIF
1625
1626!
1627!--    Graphic output for PROFIL
1628       IF ( time_dopr >= dt_dopr )  THEN
1629          IF ( dopr_n /= 0 )  CALL data_output_profiles
1630          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1631          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1632       ENDIF
1633
1634!
1635!--    Graphic output for time series
1636       IF ( time_dots >= dt_dots )  THEN
1637          CALL data_output_tseries
1638          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1639       ENDIF
1640
1641!
1642!--    Output of spectra (formatted for use with PROFIL), in case of no
1643!--    time averaging, spectra has to be calculated before
1644       IF ( time_dosp >= dt_dosp )  THEN
1645          IF ( average_count_sp == 0 )  CALL calc_spectra
1646          CALL data_output_spectra
1647          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1648       ENDIF
1649
1650!
1651!--    2d-data output (cross-sections)
1652       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1653          CALL data_output_2d( 'xy', 0 )
1654          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1655       ENDIF
1656       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1657          CALL data_output_2d( 'xz', 0 )
1658          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1659       ENDIF
1660       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1661          CALL data_output_2d( 'yz', 0 )
1662          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1663       ENDIF
1664
1665!
1666!--    3d-data output (volume data)
1667       IF ( time_do3d >= dt_do3d )  THEN
1668          CALL data_output_3d( 0 )
1669          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1670       ENDIF
1671
1672!
1673!--    Masked data output
1674       DO  mid = 1, masks
1675          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1676             CALL data_output_mask( 0 )
1677             time_domask(mid) = MOD( time_domask(mid),  &
1678                                     MAX( dt_domask(mid), dt_3d ) )
1679          ENDIF
1680       ENDDO
1681
1682!
1683!--    Output of time-averaged 2d/3d/masked data
1684       IF ( time_do_av >= dt_data_output_av )  THEN
1685          CALL average_3d_data
1686          CALL data_output_2d( 'xy', 1 )
1687          CALL data_output_2d( 'xz', 1 )
1688          CALL data_output_2d( 'yz', 1 )
1689          CALL data_output_3d( 1 )
1690          DO  mid = 1, masks
1691             CALL data_output_mask( 1 )
1692          ENDDO
1693          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1694       ENDIF
1695!
1696!--    Output of surface data, instantaneous and averaged data
1697       IF ( surface_data_output )  THEN
1698          IF ( time_dosurf >= dt_dosurf )  THEN
1699             CALL surface_output( 0 )
1700             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1701          ENDIF
1702          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1703             CALL surface_output( 1 )
1704             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1705          ENDIF
1706       ENDIF
1707
1708!
1709!--    Output of particle time series
1710       IF ( particle_advection )  THEN
1711          IF ( time_dopts >= dt_dopts  .OR. &
1712               ( time_since_reference_point >= particle_advection_start  .AND. &
1713                 first_call_lpm ) )  THEN
1714             CALL data_output_ptseries
1715             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1716          ENDIF
1717       ENDIF
1718
1719!
1720!--    Output of dvrp-graphics (isosurface, particles, slicer)
1721#if defined( __dvrp_graphics )
1722       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1723#endif
1724       IF ( time_dvrp >= dt_dvrp )  THEN
1725          CALL data_output_dvrp
1726          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1727       ENDIF
1728#if defined( __dvrp_graphics )
1729       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1730#endif
1731
1732!
1733!--    If required, set the heat flux for the next time step at a random value
1734       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1735          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1736          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1737          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1738       ENDIF
1739
1740!
1741!--    Execute the gust module actions
1742       IF ( gust_module_enabled )  THEN
1743          CALL gust_actions( 'after_timestep' )
1744       ENDIF
1745
1746!
1747!--    Execute user-defined actions
1748       CALL user_actions( 'after_timestep' )
1749
1750!
1751!--    Determine size of next time step. Save timestep dt_3d because it is
1752!--    newly calculated in routine timestep, but required further below for
1753!--    steering the run control output interval
1754       dt_3d_old = dt_3d
1755       CALL timestep
1756
1757!
1758!--    Synchronize the timestep in case of nested run.
1759       IF ( nested_run )  THEN
1760!
1761!--       Synchronize by unifying the time step.
1762!--       Global minimum of all time-steps is used for all.
1763          CALL pmci_synchronize
1764       ENDIF
1765
1766!
1767!--    Computation and output of run control parameters.
1768!--    This is also done whenever perturbations have been imposed
1769       IF ( time_run_control >= dt_run_control  .OR.                     &
1770            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1771       THEN
1772          CALL run_control
1773          IF ( time_run_control >= dt_run_control )  THEN
1774             time_run_control = MOD( time_run_control, &
1775                                     MAX( dt_run_control, dt_3d_old ) )
1776          ENDIF
1777       ENDIF
1778
1779!
1780!--    Output elapsed simulated time in form of a progress bar on stdout
1781       IF ( myid == 0 )  CALL output_progress_bar
1782
1783       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1784
1785
1786    ENDDO   ! time loop
1787
1788!$ACC END DATA
1789!$ACC END DATA
1790!$ACC END DATA
1791!$ACC END DATA
1792!$ACC END DATA
1793!$ACC END DATA
1794!$ACC END DATA
1795
1796!
1797!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1798    IF ( vnest_init )  CALL vnest_deallocate
1799
1800    IF ( myid == 0 )  CALL finish_progress_bar
1801
1802#if defined( __dvrp_graphics )
1803    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1804#endif
1805
1806    CALL location_message( 'finished time-stepping', .TRUE. )
1807
1808 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.