source: palm/trunk/SOURCE/time_integration.f90 @ 3634

Last change on this file since 3634 was 3634, checked in by knoop, 3 years ago

OpenACC port for SPEC

  • Property svn:keywords set to Id
File size: 69.0 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3634 2018-12-18 12:31:28Z knoop $
27! OpenACC port for SPEC
28!
29! 3597 2018-12-04 08:40:18Z maronga
30! Removed call to calculation of near air (10 cm) potential temperature (now in
31! surface layer fluxes)
32!
33! 3589 2018-11-30 15:09:51Z suehring
34! Move the control parameter "salsa" from salsa_mod to control_parameters
35! (M. Kurppa)
36!
37! 3582 2018-11-29 19:16:36Z suehring
38! dom_dwd_user, Schrempf:
39! Changes due to merge of uv exposure model into biometeorology_mod.
40!
41! 3525 2018-11-14 16:06:14Z kanani
42! Changes related to clean-up of biometeorology (dom_dwd_user)
43!
44! 3524 2018-11-14 13:36:44Z raasch
45! unused variables removed
46!
47! 3484 2018-11-02 14:41:25Z hellstea
48! pmci_ensure_nest_mass_conservation is premanently removed
49!
50! 3473 2018-10-30 20:50:15Z suehring
51! new module for virtual measurements introduced
52!
53! 3472 2018-10-30 20:43:50Z suehring
54! Add indoor model (kanani, srissman, tlang)
55!
56! 3467 2018-10-30 19:05:21Z suehring
57! Implementation of a new aerosol module salsa.
58!
59! 3448 2018-10-29 18:14:31Z kanani
60! Add biometeorology
61!
62! 3421 2018-10-24 18:39:32Z gronemeier
63! Surface data output
64!
65! 3418 2018-10-24 16:07:39Z kanani
66! call to material_heat_model now with check if spinup runs (rvtils)
67!
68! 3378 2018-10-19 12:34:59Z kanani
69! merge from radiation branch (r3362) into trunk
70! (moh.hefny):
71! Bugfix in the if statement to call radiation_interaction
72!
73! 3347 2018-10-15 14:21:08Z suehring
74! - offline nesting separated from large-scale forcing module
75! - changes for synthetic turbulence generator
76!
77! 3343 2018-10-15 10:38:52Z suehring
78! - Formatting, clean-up, comments (kanani)
79! - Added CALL to chem_emissions_setup (Russo)
80! - Code added for decycling chemistry (basit)
81!
82! 3294 2018-10-01 02:37:10Z raasch
83! changes concerning modularization of ocean option
84!
85! 3274 2018-09-24 15:42:55Z knoop
86! Modularization of all bulk cloud physics code components
87!
88! 3241 2018-09-12 15:02:00Z raasch
89! unused variables removed
90!
91! 3198 2018-08-15 09:23:10Z sward
92! Added multi_agent_system_end; defined start time for MAS relative to
93! time_since_reference_point
94!
95! 3183 2018-07-27 14:25:55Z suehring
96! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
97! Rename subroutines and variables in COSMO nesting mode
98!
99! 3182 2018-07-27 13:36:03Z suehring
100! Added multi agent system
101!
102! 3042 2018-05-25 10:44:37Z schwenkel
103! Changed the name specific humidity to mixing ratio
104!
105! 3040 2018-05-25 10:22:08Z schwenkel
106! Fixed bug in IF statement
107! Ensure that the time when calling the radiation to be the time step of the
108! pre-calculated time when first calculate the positions of the sun
109!
110! 3004 2018-04-27 12:33:25Z Giersch
111! First call of flow_statistics has been removed. It is already called in
112! run_control itself
113!
114! 2984 2018-04-18 11:51:30Z hellstea
115! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
116! as seemingly unnecessary.
117!
118! 2941 2018-04-03 11:54:58Z kanani
119! Deduct spinup_time from RUN_CONTROL output of main 3d run
120! (use time_since_reference_point instead of simulated_time)
121!
122! 2938 2018-03-27 15:52:42Z suehring
123! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
124!
125! 2936 2018-03-27 14:49:27Z suehring
126! Little formatting adjustment.
127!
128! 2817 2018-02-19 16:32:21Z knoop
129! Preliminary gust module interface implemented
130!
131! 2801 2018-02-14 16:01:55Z thiele
132! Changed lpm from subroutine to module.
133! Introduce particle transfer in nested models.
134!
135! 2776 2018-01-31 10:44:42Z Giersch
136! Variable use_synthetic_turbulence_generator has been abbreviated
137!
138! 2773 2018-01-30 14:12:54Z suehring
139! - Nesting for chemical species
140!
141! 2766 2018-01-22 17:17:47Z kanani
142! Removed preprocessor directive __chem
143!
144! 2718 2018-01-02 08:49:38Z maronga
145! Corrected "Former revisions" section
146!
147! 2696 2017-12-14 17:12:51Z kanani
148! - Change in file header (GPL part)
149! - Implementation of uv exposure model (FK)
150! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
151! - renamed diffusivities to tcm_diffusivities (TG)
152! - implement prognostic equation for diss (TG)
153! - Moved/commented CALL to chem_emissions (FK)
154! - Added CALL to chem_emissions (FK)
155! - Implementation of chemistry module (FK)
156! - Calls for setting boundary conditions in USM and LSM (MS)
157! - Large-scale forcing with larger-scale models implemented (MS)
158! - Rename usm_radiation into radiation_interactions; merge with branch
159!   radiation (MS)
160! - added call for usm_green_heat_model for green building surfaces (RvT)
161! - added call for usm_temperature_near_surface for use in indoor model (RvT)
162!
163! 2617 2017-11-16 12:47:24Z suehring
164! Bugfix, assure that the reference state does not become zero.
165!
166! 2563 2017-10-19 15:36:10Z Giersch
167! Variable wind_turbine moved to module control_parameters
168!
169! 2365 2017-08-21 14:59:59Z kanani
170! Vertical grid nesting implemented (SadiqHuq)
171!
172! 2320 2017-07-21 12:47:43Z suehring
173! Set bottom boundary conditions after nesting interpolation and anterpolation
174!
175! 2299 2017-06-29 10:14:38Z maronga
176! Call of soil model adjusted
177!
178! 2292 2017-06-20 09:51:42Z schwenkel
179! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
180! includes two more prognostic equations for cloud drop concentration (nc) 
181! and cloud water content (qc).
182!
183! 2271 2017-06-09 12:34:55Z sward
184! Start timestep message changed
185!
186! 2259 2017-06-08 09:09:11Z gronemeier
187! Implemented synthetic turbulence generator
188!
189! 2233 2017-05-30 18:08:54Z suehring
190!
191! 2232 2017-05-30 17:47:52Z suehring
192! Adjustments to new topography and surface concept
193! Modify passed parameters for disturb_field
194!
195! 2178 2017-03-17 11:07:39Z hellstea
196! Setting perturbations at all times near inflow boundary is removed
197! in case of nested boundaries
198!
199! 2174 2017-03-13 08:18:57Z maronga
200! Added support for nesting with cloud microphysics
201!
202! 2118 2017-01-17 16:38:49Z raasch
203! OpenACC directives and related code removed
204!
205! 2050 2016-11-08 15:00:55Z gronemeier
206! Implement turbulent outflow condition
207!
208! 2031 2016-10-21 15:11:58Z knoop
209! renamed variable rho to rho_ocean
210!
211! 2011 2016-09-19 17:29:57Z kanani
212! Flag urban_surface is now defined in module control_parameters,
213! removed commented CALLs of global_min_max.
214!
215! 2007 2016-08-24 15:47:17Z kanani
216! Added CALLs for new urban surface model
217!
218! 2000 2016-08-20 18:09:15Z knoop
219! Forced header and separation lines into 80 columns
220!
221! 1976 2016-07-27 13:28:04Z maronga
222! Simplified calls to radiation model
223!
224! 1960 2016-07-12 16:34:24Z suehring
225! Separate humidity and passive scalar
226!
227! 1957 2016-07-07 10:43:48Z suehring
228! flight module added
229!
230! 1919 2016-05-27 14:51:23Z raasch
231! Initial version of purely vertical nesting introduced.
232!
233! 1918 2016-05-27 14:35:57Z raasch
234! determination of time step moved to the end of the time step loop,
235! the first time step is now always calculated before the time step loop (i.e.
236! also in case of restart runs)
237!
238! 1914 2016-05-26 14:44:07Z witha
239! Added call for wind turbine model
240!
241! 1878 2016-04-19 12:30:36Z hellstea
242! Synchronization for nested runs rewritten
243!
244! 1853 2016-04-11 09:00:35Z maronga
245! Adjusted for use with radiation_scheme = constant
246!
247! 1849 2016-04-08 11:33:18Z hoffmann
248! Adapted for modularization of microphysics
249!
250! 1833 2016-04-07 14:23:03Z raasch
251! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
252!
253! 1831 2016-04-07 13:15:51Z hoffmann
254! turbulence renamed collision_turbulence
255!
256! 1822 2016-04-07 07:49:42Z hoffmann
257! icloud_scheme replaced by microphysics_*
258!
259! 1808 2016-04-05 19:44:00Z raasch
260! output message in case unscheduled radiation calls removed
261!
262! 1797 2016-03-21 16:50:28Z raasch
263! introduction of different datatransfer modes
264!
265! 1791 2016-03-11 10:41:25Z raasch
266! call of pmci_update_new removed
267!
268! 1786 2016-03-08 05:49:27Z raasch
269! +module spectrum
270!
271! 1783 2016-03-06 18:36:17Z raasch
272! switch back of netcdf data format for mask output moved to the mask output
273! routine
274!
275! 1781 2016-03-03 15:12:23Z raasch
276! some pmc calls removed at the beginning (before timeloop),
277! pmc initialization moved to the main program
278!
279! 1764 2016-02-28 12:45:19Z raasch
280! PMC_ACTIVE flags removed,
281! bugfix: nest synchronization after first call of timestep
282!
283! 1762 2016-02-25 12:31:13Z hellstea
284! Introduction of nested domain feature
285!
286! 1736 2015-12-04 08:56:33Z raasch
287! no perturbations added to total domain if energy limit has been set zero
288!
289! 1691 2015-10-26 16:17:44Z maronga
290! Added option for spin-ups without land surface and radiation models. Moved calls
291! for radiation and lan surface schemes.
292!
293! 1682 2015-10-07 23:56:08Z knoop
294! Code annotations made doxygen readable
295!
296! 1671 2015-09-25 03:29:37Z raasch
297! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
298! for particles
299!
300! 1585 2015-04-30 07:05:52Z maronga
301! Moved call of radiation scheme. Added support for RRTM
302!
303! 1551 2015-03-03 14:18:16Z maronga
304! Added interface for different radiation schemes.
305!
306! 1496 2014-12-02 17:25:50Z maronga
307! Added calls for the land surface model and radiation scheme
308!
309! 1402 2014-05-09 14:25:13Z raasch
310! location messages modified
311!
312! 1384 2014-05-02 14:31:06Z raasch
313! location messages added
314!
315! 1380 2014-04-28 12:40:45Z heinze
316! CALL of nudge_ref added
317! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
318!
319! 1365 2014-04-22 15:03:56Z boeske
320! Reset sums_ls_l to zero at each timestep
321! +sums_ls_l
322! Calculation of reference state (previously in subroutine calc_mean_profile)
323
324! 1342 2014-03-26 17:04:47Z kanani
325! REAL constants defined as wp-kind
326!
327! 1320 2014-03-20 08:40:49Z raasch
328! ONLY-attribute added to USE-statements,
329! kind-parameters added to all INTEGER and REAL declaration statements,
330! kinds are defined in new module kinds,
331! old module precision_kind is removed,
332! revision history before 2012 removed,
333! comment fields (!:) to be used for variable explanations added to
334! all variable declaration statements
335! 1318 2014-03-17 13:35:16Z raasch
336! module interfaces removed
337!
338! 1308 2014-03-13 14:58:42Z fricke
339! +netcdf_data_format_save
340! For masked data, parallel netcdf output is not tested so far, hence
341! netcdf_data_format is switched back to non-paralell output.
342!
343! 1276 2014-01-15 13:40:41Z heinze
344! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
345!
346! 1257 2013-11-08 15:18:40Z raasch
347! acc-update-host directive for timestep removed
348!
349! 1241 2013-10-30 11:36:58Z heinze
350! Generalize calc_mean_profile for wider use
351! Determine shf and qsws in dependence on data from LSF_DATA
352! Determine ug and vg in dependence on data from LSF_DATA
353! 1221 2013-09-10 08:59:13Z raasch
354! host update of arrays before timestep is called
355!
356! 1179 2013-06-14 05:57:58Z raasch
357! mean profiles for reference state are only calculated if required,
358! small bugfix for background communication
359!
360! 1171 2013-05-30 11:27:45Z raasch
361! split of prognostic_equations deactivated (comment lines), for the time being
362!
363! 1128 2013-04-12 06:19:32Z raasch
364! asynchronous transfer of ghost point data realized for acc-optimized version:
365! prognostic_equations are first called two times for those points required for
366! the left-right and north-south exchange, respectively, and then for the
367! remaining points,
368! those parts requiring global communication moved from prognostic_equations to
369! here
370!
371! 1115 2013-03-26 18:16:16Z hoffmann
372! calculation of qr and nr is restricted to precipitation
373!
374! 1113 2013-03-10 02:48:14Z raasch
375! GPU-porting of boundary conditions,
376! openACC directives updated
377! formal parameter removed from routine boundary_conds
378!
379! 1111 2013-03-08 23:54:10Z raasch
380! +internal timestep counter for cpu statistics added,
381! openACC directives updated
382!
383! 1092 2013-02-02 11:24:22Z raasch
384! unused variables removed
385!
386! 1065 2012-11-22 17:42:36Z hoffmann
387! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
388!
389! 1053 2012-11-13 17:11:03Z hoffmann
390! exchange of ghost points for nr, qr added
391!
392! 1036 2012-10-22 13:43:42Z raasch
393! code put under GPL (PALM 3.9)
394!
395! 1019 2012-09-28 06:46:45Z raasch
396! non-optimized version of prognostic_equations removed
397!
398! 1015 2012-09-27 09:23:24Z raasch
399! +call of prognostic_equations_acc
400!
401! 1001 2012-09-13 14:08:46Z raasch
402! all actions concerning leapfrog- and upstream-spline-scheme removed
403!
404! 849 2012-03-15 10:35:09Z raasch
405! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
406!
407! 825 2012-02-19 03:03:44Z raasch
408! wang_collision_kernel renamed wang_kernel
409!
410! Revision 1.1  1997/08/11 06:19:04  raasch
411! Initial revision
412!
413!
414! Description:
415! ------------
416!> Integration in time of the model equations, statistical analysis and graphic
417!> output
418!------------------------------------------------------------------------------!
419 SUBROUTINE time_integration
420 
421
422    USE advec_ws,                                                              &
423        ONLY:  ws_statistics
424
425    USE arrays_3d,                                                             &
426        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
427               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
428               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
429               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
430               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
431               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
432               v_p, v_stokes_zu, w, w_p, zu
433
434    USE biometeorology_mod,                                                    &
435        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
436               thermal_comfort, uvem_calc_exposure, uv_exposure
437
438    USE bulk_cloud_model_mod,                                                  &
439        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
440              collision_turbulence, microphysics_morrison, microphysics_seifert
441
442    USE calc_mean_profile_mod,                                                 &
443        ONLY:  calc_mean_profile
444
445    USE chem_emissions_mod,                                                    &
446        ONLY:  chem_emissions_setup
447
448    USE chem_modules,                                                          &
449        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
450
451    USE chemistry_model_mod,                                                   &
452        ONLY:  chem_boundary_conds, chem_species
453
454    USE control_parameters,                                                    &
455        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
456               average_count_3d, averaging_interval, averaging_interval_pr,    &
457               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
458               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
459               constant_flux_layer, constant_heatflux,                         &
460               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
461               coupling_start_time, current_timestep_number,                   &
462               disturbance_created, disturbance_energy_limit, dist_range,      &
463               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
464               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
465               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
466               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
467               first_call_lpm, first_call_mas, galilei_transformation,         &
468               humidity, indoor_model, intermediate_timestep_count,            &
469               intermediate_timestep_count_max,                                &
470               land_surface, large_scale_forcing,                              &
471               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
472               multi_agent_system_end, multi_agent_system_start,               &
473               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
474               ocean_mode, passive_scalar, pt_reference,                       &
475               pt_slope_offset, random_heatflux, rans_mode,                    &
476               rans_tke_e, run_coupled, salsa,                                 &
477               simulated_time, simulated_time_chr,                             &
478               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
479               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
480               skip_time_data_output_av, sloping_surface, stop_dt,             &
481               surface_data_output, terminate_coupled, terminate_run,          &
482               timestep_scheme,                                                &
483               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
484               time_do3d, time_domask, time_dopr, time_dopr_av,                &
485               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
486               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
487               time_run_control, time_since_reference_point, tsc,              &
488               turbulent_inflow, turbulent_outflow, urban_surface,             &
489               use_initial_profile_as_reference,                               &
490               use_single_reference_value, u_gtrans, v_gtrans,                 &
491               virtual_flight, virtual_measurement, wind_turbine,              &
492               ws_scheme_mom, ws_scheme_sca
493
494    USE cpulog,                                                                &
495        ONLY:  cpu_log, log_point, log_point_s
496
497    USE date_and_time_mod,                                                     &
498        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
499
500    USE flight_mod,                                                            &
501        ONLY:  flight_measurement
502
503    USE gust_mod,                                                              &
504        ONLY:  gust_actions, gust_module_enabled
505
506    USE indices,                                                               &
507        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
508               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
509
510    USE indoor_model_mod,                                                      &
511        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
512
513    USE interaction_droplets_ptq_mod,                                          &
514        ONLY:  interaction_droplets_ptq
515
516    USE interfaces
517
518    USE kinds
519
520    USE land_surface_model_mod,                                                &
521        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
522               skip_time_do_lsm
523
524    USE lsf_nudging_mod,                                                       &
525        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
526
527    USE multi_agent_system_mod,                                                &
528        ONLY:  agents_active, multi_agent_system
529
530    USE nesting_offl_mod,                                                      &
531        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
532       
533    USE netcdf_data_input_mod,                                                 &
534        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
535               netcdf_data_input_offline_nesting
536
537    USE ocean_mod,                                                             &
538        ONLY:  prho_reference
539
540    USE particle_attributes,                                                   &
541        ONLY:  particle_advection, particle_advection_start,                   &
542               use_sgs_for_particles, wang_kernel
543
544    USE pegrid
545
546    USE pmc_interface,                                                         &
547        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
548               pmci_synchronize
549
550    USE progress_bar,                                                          &
551        ONLY:  finish_progress_bar, output_progress_bar
552
553    USE prognostic_equations_mod,                                              &
554        ONLY:  prognostic_equations_cache, prognostic_equations_vector
555
556    USE radiation_model_mod,                                                   &
557        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
558              radiation_interaction, radiation_interactions,                   &
559              skip_time_do_radiation, time_radiation
560         
561    USE salsa_mod,                                                             &
562        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
563              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
564              skip_time_do_salsa                     
565   
566    USE salsa_util_mod,                                                        &
567           ONLY:  sums_salsa_ws_l     
568
569    USE spectra_mod,                                                           &
570        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
571              skip_time_dosp
572
573    USE statistics,                                                            &
574        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
575               rmask, statistic_regions, weight_substep, sums_l_l,             &
576               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
577               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
578               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
579               sums_wsnrs_ws_l, sums_wsss_ws_l
580
581    USE surface_layer_fluxes_mod,                                              &
582        ONLY:  surface_layer_fluxes
583
584    USE surface_mod,                                                           &
585        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
586               enter_surface_arrays, exit_surface_arrays
587
588    USE surface_output_mod,                                                    &
589        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
590               dt_dosurf_av, surface_output, surface_output_averaging,         &
591               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
592               time_dosurf_av
593
594    USE turbulence_closure_mod,                                                &
595        ONLY:  tcm_diffusivities, production_e_init
596
597    USE urban_surface_mod,                                                     &
598        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
599               usm_material_model,                                             &
600               usm_surface_energy_balance, usm_green_heat_model
601
602    USE synthetic_turbulence_generator_mod,                                    &
603        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
604               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
605               use_syn_turb_gen   
606
607    USE user_actions_mod,                                                      &
608        ONLY:  user_actions
609
610
611    USE wind_turbine_model_mod,                                                &
612        ONLY:  wtm_forces
613
614    USE lpm_mod,                                                               &
615        ONLY:  lpm
616
617    USE vertical_nesting_mod,                                                  &
618        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
619               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
620               vnest_deallocate, vnest_init, vnest_init_fine,                  &
621               vnest_start_time
622               
623    USE virtual_measurement_mod,                                               &
624        ONLY:  vm_sampling, vm_time_start
625
626    IMPLICIT NONE
627
628    CHARACTER (LEN=9) ::  time_to_string   !<
629   
630    INTEGER(iwp)      ::  b !< index for aerosol size bins   
631    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
632    INTEGER(iwp)      ::  g !< index for gaseous compounds
633    INTEGER(iwp)      ::  lsp
634    INTEGER(iwp)      ::  lsp_usr   !<
635    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
636
637    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
638                            !< steering of run control output interval
639    REAL(wp) ::  time_since_reference_point_save  !< original value of
640                                                  !< time_since_reference_point
641
642
643! Copy data from arrays_3d
644!$ACC DATA &
645!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
646!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
647!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
648!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
649!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
650!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
651!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
652!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
653!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
654
655!$ACC DATA &
656!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
657!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
658!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
659!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
660!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
661!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
662!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
663!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
664!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
665!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
666!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
667
668!$ACC DATA &
669!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
670!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
671!$ACC COPYIN(zu(nzb:nzt+1)) &
672!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
673!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
674!$ACC COPYIN(ddzw(1:nzt+1)) &
675!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
676!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
677!$ACC COPYIN(ref_state(0:nz+1)) &
678!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
679!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
680!$ACC COPYIN(pt_init(0:nz+1)) &
681!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
682
683! Copy data from control_parameters
684!$ACC DATA &
685!$ACC COPYIN(tsc(1:5))
686
687! Copy data from indices
688!$ACC DATA &
689!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
690!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
691!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
692
693! Copy data from surface_mod
694!$ACC DATA &
695!$ACC COPYIN(bc_h(0:1)) &
696!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
697!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
698!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
699!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
700!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
701!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
702
703! Copy data from statistics
704!$ACC DATA &
705!$ACC COPYIN(hom(nzb+1:nzb_max,1,1:3,0)) &
706!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
707!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
708!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
709!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
710!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
711!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
712!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
713!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
714!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
715!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
716!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
717!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
718!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
719!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
720!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
721!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
722!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
723
724!
725!-- At beginning determine the first time step
726    CALL timestep
727!
728!-- Synchronize the timestep in case of nested run.
729    IF ( nested_run )  THEN
730!
731!--    Synchronization by unifying the time step.
732!--    Global minimum of all time-steps is used for all.
733       CALL pmci_synchronize
734    ENDIF
735
736!
737!-- Determine and print out the run control quantities before the first time
738!-- step of this run. For the initial run, some statistics (e.g. divergence)
739!-- need to be determined first --> CALL flow_statistics at the beginning of
740!-- run_control
741    CALL run_control
742!
743!-- Data exchange between coupled models in case that a call has been omitted
744!-- at the end of the previous run of a job chain.
745    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
746!
747!--    In case of model termination initiated by the local model the coupler
748!--    must not be called because this would again cause an MPI hang.
749       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
750          CALL surface_coupler
751          time_coupling = time_coupling - dt_coupling
752       ENDDO
753       IF (time_coupling == 0.0_wp  .AND.                                      &
754           time_since_reference_point < dt_coupling )                          &
755       THEN
756          time_coupling = time_since_reference_point
757       ENDIF
758    ENDIF
759
760#if defined( __dvrp_graphics )
761!
762!-- Time measurement with dvrp software 
763    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
764#endif
765
766    CALL location_message( 'starting timestep-sequence', .TRUE. )
767!
768!-- Start of the time loop
769    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
770                .NOT. terminate_run )
771
772       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
773!
774!--    Vertical nesting: initialize fine grid
775       IF ( vnested ) THEN
776          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
777             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
778             CALL vnest_init_fine
779             vnest_init = .TRUE.
780             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
781          ENDIF
782       ENDIF
783!
784!--    Determine ug, vg and w_subs in dependence on data from external file
785!--    LSF_DATA
786       IF ( large_scale_forcing .AND. lsf_vert )  THEN
787           CALL ls_forcing_vert ( simulated_time )
788           sums_ls_l = 0.0_wp
789       ENDIF
790
791!
792!--    Set pt_init and q_init to the current profiles taken from
793!--    NUDGING_DATA
794       IF ( nudging )  THEN
795           CALL nudge_ref ( simulated_time )
796!
797!--        Store temperature gradient at the top boundary for possible Neumann
798!--        boundary condition
799           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
800           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
801           IF ( air_chemistry )  THEN
802              DO  lsp = 1, nspec
803                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
804                                - chem_species(lsp)%conc_pr_init(nzt) )       &
805                               / dzu(nzt+1)
806              ENDDO
807           ENDIF
808       ENDIF
809!
810!--    If forcing by larger-scale models is applied, check if new data
811!--    at domain boundaries need to be read.
812       IF ( nesting_offline )  THEN
813          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
814             CALL netcdf_data_input_offline_nesting
815       ENDIF
816
817!
818!--    Execute the gust module actions
819       IF ( gust_module_enabled )  THEN
820          CALL gust_actions( 'before_timestep' )
821       ENDIF
822
823!
824!--    Execute the user-defined actions
825       CALL user_actions( 'before_timestep' )
826
827!
828!--    Calculate forces by wind turbines
829       IF ( wind_turbine )  THEN
830
831          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
832
833          CALL wtm_forces
834
835          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
836
837       ENDIF   
838       
839#ifdef _OPENACC
840       CALL enter_surface_arrays
841#endif
842       
843!
844!--    Start of intermediate step loop
845       intermediate_timestep_count = 0
846       DO  WHILE ( intermediate_timestep_count < &
847                   intermediate_timestep_count_max )
848
849          intermediate_timestep_count = intermediate_timestep_count + 1
850
851!
852!--       Set the steering factors for the prognostic equations which depend
853!--       on the timestep scheme
854          CALL timestep_scheme_steering
855
856!
857!--       Calculate those variables needed in the tendency terms which need
858!--       global communication
859          IF ( .NOT. use_single_reference_value  .AND. &
860               .NOT. use_initial_profile_as_reference )  THEN
861!
862!--          Horizontally averaged profiles to be used as reference state in
863!--          buoyancy terms (WARNING: only the respective last call of
864!--          calc_mean_profile defines the reference state!)
865             IF ( .NOT. neutral )  THEN
866                CALL calc_mean_profile( pt, 4 )
867                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
868             ENDIF
869             IF ( ocean_mode )  THEN
870                CALL calc_mean_profile( rho_ocean, 64 )
871                ref_state(:)  = hom(:,1,64,0)
872             ENDIF
873             IF ( humidity )  THEN
874                CALL calc_mean_profile( vpt, 44 )
875                ref_state(:)  = hom(:,1,44,0)
876             ENDIF
877!
878!--          Assure that ref_state does not become zero at any level
879!--          ( might be the case if a vertical level is completely occupied
880!--            with topography ).
881             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
882                                ref_state == 0.0_wp )
883          ENDIF
884
885          IF ( .NOT. constant_diffusion )  CALL production_e_init
886          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
887               intermediate_timestep_count == 1 )  CALL ws_statistics
888!
889!--       In case of nudging calculate current nudging time scale and horizontal
890!--       means of u, v, pt and q
891          IF ( nudging )  THEN
892             CALL calc_tnudge( simulated_time )
893             CALL calc_mean_profile( u, 1 )
894             CALL calc_mean_profile( v, 2 )
895             CALL calc_mean_profile( pt, 4 )
896             CALL calc_mean_profile( q, 41 )
897          ENDIF
898
899!
900!--       Solve the prognostic equations. A fast cache optimized version with
901!--       only one single loop is used in case of Piascek-Williams advection
902!--       scheme. NEC vector machines use a different version, because
903!--       in the other versions a good vectorization is prohibited due to
904!--       inlining problems.
905          IF ( loop_optimization == 'cache' )  THEN
906             CALL prognostic_equations_cache
907          ELSEIF ( loop_optimization == 'vector' )  THEN
908             CALL prognostic_equations_vector
909          ENDIF
910
911!
912!--       Particle transport/physics with the Lagrangian particle model
913!--       (only once during intermediate steps, because it uses an Euler-step)
914!--       ### particle model should be moved before prognostic_equations, in order
915!--       to regard droplet interactions directly
916          IF ( particle_advection  .AND.                         &
917               simulated_time >= particle_advection_start  .AND. &
918               intermediate_timestep_count == 1 )  THEN
919             CALL lpm
920             first_call_lpm = .FALSE.
921          ENDIF
922
923!
924!--       Interaction of droplets with temperature and mixing ratio.
925!--       Droplet condensation and evaporation is calculated within
926!--       advec_particles.
927          IF ( cloud_droplets  .AND.  &
928               intermediate_timestep_count == intermediate_timestep_count_max )&
929          THEN
930             CALL interaction_droplets_ptq
931          ENDIF
932
933!
934!--       Movement of agents in multi agent system
935          IF ( agents_active  .AND.                                            &
936               time_since_reference_point >= multi_agent_system_start  .AND.   &
937               time_since_reference_point <= multi_agent_system_end    .AND.   &
938               intermediate_timestep_count == 1 )  THEN
939             CALL multi_agent_system
940             first_call_mas = .FALSE.
941          ENDIF
942
943!
944!--       Exchange of ghost points (lateral boundary conditions)
945          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
946
947          CALL exchange_horiz( u_p, nbgp )
948          CALL exchange_horiz( v_p, nbgp )
949          CALL exchange_horiz( w_p, nbgp )
950          CALL exchange_horiz( pt_p, nbgp )
951          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
952          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
953               .OR.  use_sgs_for_particles )  THEN
954             IF ( rans_tke_e )  THEN
955                CALL exchange_horiz( diss_p, nbgp )
956             ELSE
957                CALL exchange_horiz( diss, nbgp )
958             ENDIF
959          ENDIF
960          IF ( ocean_mode )  THEN
961             CALL exchange_horiz( sa_p, nbgp )
962             CALL exchange_horiz( rho_ocean, nbgp )
963             CALL exchange_horiz( prho, nbgp )
964          ENDIF
965          IF ( humidity )  THEN
966             CALL exchange_horiz( q_p, nbgp )
967             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
968                CALL exchange_horiz( qc_p, nbgp )
969                CALL exchange_horiz( nc_p, nbgp )
970             ENDIF
971             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
972                CALL exchange_horiz( qr_p, nbgp )
973                CALL exchange_horiz( nr_p, nbgp )
974             ENDIF
975          ENDIF
976          IF ( cloud_droplets )  THEN
977             CALL exchange_horiz( ql, nbgp )
978             CALL exchange_horiz( ql_c, nbgp )
979             CALL exchange_horiz( ql_v, nbgp )
980             CALL exchange_horiz( ql_vp, nbgp )
981          ENDIF
982          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
983          IF ( air_chemistry )  THEN
984             DO  lsp = 1, nspec
985                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
986!
987!--             kanani: Push chem_boundary_conds after CALL boundary_conds
988                lsp_usr = 1
989                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
990                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
991                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
992                                                chem_species(lsp)%conc_pr_init )
993                   ENDIF
994                   lsp_usr = lsp_usr + 1
995                ENDDO
996             ENDDO
997          ENDIF
998
999          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1000          THEN
1001             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1002             DO  b = 1, nbins
1003                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1004                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1005                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1006                                           aerosol_number(b)%init )
1007                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1008                DO  c = 1, ncc_tot
1009                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1010                                        nbgp )
1011                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1012                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1013                                              aerosol_mass((c-1)*nbins+b)%init )
1014                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1015                ENDDO
1016             ENDDO
1017             IF ( .NOT. salsa_gases_from_chem )  THEN
1018                DO  g = 1, ngast
1019                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1020                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1021                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1022                                              salsa_gas(g)%init )
1023                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1024             ENDDO
1025             ENDIF
1026             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1027          ENDIF         
1028          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1029
1030!
1031!--       Boundary conditions for the prognostic quantities (except of the
1032!--       velocities at the outflow in case of a non-cyclic lateral wall)
1033          CALL boundary_conds
1034!
1035!--       Swap the time levels in preparation for the next time step.
1036          CALL swap_timelevel
1037
1038!
1039!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1040          IF ( vnest_init ) THEN
1041             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
1042             CALL vnest_anterpolate
1043             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
1044          ENDIF
1045
1046          IF ( nested_run )  THEN
1047
1048             CALL cpu_log( log_point(60), 'nesting', 'start' )
1049!
1050!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1051!--          and pmci_child_datatrans are called inside the wrapper
1052!--          subroutine pmci_datatrans according to the control parameters
1053!--          nesting_mode and nesting_datatransfer_mode.
1054!--          TO_DO: why is nesting_mode given as a parameter here?
1055             CALL pmci_datatrans( nesting_mode )
1056
1057             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1058                  nesting_mode == 'vertical' )  THEN
1059!
1060!--             Exchange_horiz is needed for all parent-domains after the
1061!--             anterpolation
1062                CALL exchange_horiz( u, nbgp )
1063                CALL exchange_horiz( v, nbgp )
1064                CALL exchange_horiz( w, nbgp )
1065                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1066
1067                IF ( humidity )  THEN
1068
1069                   CALL exchange_horiz( q, nbgp )
1070
1071                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1072                       CALL exchange_horiz( qc, nbgp )
1073                       CALL exchange_horiz( nc, nbgp )
1074                   ENDIF
1075                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1076                       CALL exchange_horiz( qr, nbgp )
1077                       CALL exchange_horiz( nr, nbgp )
1078                   ENDIF
1079
1080                ENDIF
1081
1082                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1083               
1084                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1085
1086                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1087                                                      rans_tke_e )             &
1088                   CALL exchange_horiz( diss, nbgp )
1089
1090                IF ( air_chemistry )  THEN
1091                   DO  n = 1, nspec     
1092                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1093                   ENDDO
1094                ENDIF
1095
1096             ENDIF
1097!
1098!--          Set boundary conditions again after interpolation and anterpolation.
1099             CALL pmci_boundary_conds
1100
1101             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1102
1103          ENDIF
1104
1105!
1106!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1107!--       when a sloping surface is used
1108          IF ( sloping_surface )  THEN
1109             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1110                                                    pt_slope_offset
1111             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1112                                                    pt_slope_offset
1113          ENDIF
1114
1115!
1116!--       Impose a turbulent inflow using the recycling method
1117          IF ( turbulent_inflow )  CALL  inflow_turbulence
1118
1119!
1120!--       Set values at outflow boundary using the special outflow condition
1121          IF ( turbulent_outflow )  CALL  outflow_turbulence
1122
1123!
1124!--       Impose a random perturbation on the horizontal velocity field
1125          IF ( create_disturbances  .AND.                                      &
1126               ( call_psolver_at_all_substeps  .AND.                           &
1127               intermediate_timestep_count == intermediate_timestep_count_max )&
1128          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1129               intermediate_timestep_count == 1 ) )                            &
1130          THEN
1131             time_disturb = time_disturb + dt_3d
1132             IF ( time_disturb >= dt_disturb )  THEN
1133                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1134                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1135                   CALL disturb_field( 'u', tend, u )
1136                   CALL disturb_field( 'v', tend, v )
1137                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1138                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1139                THEN
1140!
1141!--                Runs with a non-cyclic lateral wall need perturbations
1142!--                near the inflow throughout the whole simulation
1143                   dist_range = 1
1144                   CALL disturb_field( 'u', tend, u )
1145                   CALL disturb_field( 'v', tend, v )
1146                   dist_range = 0
1147                ENDIF
1148                time_disturb = time_disturb - dt_disturb
1149             ENDIF
1150          ENDIF
1151
1152!
1153!--       Map forcing data derived from larger scale model onto domain
1154!--       boundaries.
1155          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1156                                       intermediate_timestep_count_max  )      &
1157             CALL nesting_offl_bc
1158!
1159!--       Impose a turbulent inflow using synthetic generated turbulence,
1160!--       only once per time step.
1161          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1162             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1163             CALL stg_main
1164          ENDIF
1165!
1166!--       Ensure mass conservation. This need to be done after imposing
1167!--       synthetic turbulence and top boundary condition for pressure is set to
1168!--       Neumann conditions.
1169!--       Is this also required in case of Dirichlet?
1170          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1171!
1172!--       Reduce the velocity divergence via the equation for perturbation
1173!--       pressure.
1174          IF ( intermediate_timestep_count == 1  .OR. &
1175                call_psolver_at_all_substeps )  THEN
1176
1177             IF (  vnest_init ) THEN
1178!
1179!--             Compute pressure in the CG, interpolate top boundary conditions
1180!--             to the FG and then compute pressure in the FG
1181                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1182
1183                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1184                CALL vnest_boundary_conds
1185                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1186 
1187                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1188
1189!--             Anterpolate TKE, satisfy Germano Identity
1190                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1191                CALL vnest_anterpolate_e
1192                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1193
1194             ELSE
1195
1196                CALL pres
1197
1198             ENDIF
1199
1200          ENDIF
1201
1202!
1203!--       If required, compute liquid water content
1204          IF ( bulk_cloud_model )  THEN
1205             CALL calc_liquid_water_content
1206          ENDIF
1207!
1208!--       If required, compute virtual potential temperature
1209          IF ( humidity )  THEN
1210             CALL compute_vpt
1211          ENDIF
1212
1213!
1214!--       Compute the diffusion quantities
1215          IF ( .NOT. constant_diffusion )  THEN
1216
1217!
1218!--          Determine surface fluxes shf and qsws and surface values
1219!--          pt_surface and q_surface in dependence on data from external
1220!--          file LSF_DATA respectively
1221             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1222                 intermediate_timestep_count == intermediate_timestep_count_max )&
1223             THEN
1224                CALL ls_forcing_surf( simulated_time )
1225             ENDIF
1226
1227!
1228!--          First the vertical (and horizontal) fluxes in the surface
1229!--          (constant flux) layer are computed
1230             IF ( constant_flux_layer )  THEN
1231                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1232                CALL surface_layer_fluxes
1233                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1234             ENDIF
1235!
1236!--          If required, solve the energy balance for the surface and run soil
1237!--          model. Call for horizontal as well as vertical surfaces
1238             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1239
1240                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1241!
1242!--             Call for horizontal upward-facing surfaces
1243                CALL lsm_energy_balance( .TRUE., -1 )
1244                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1245!
1246!--             Call for northward-facing surfaces
1247                CALL lsm_energy_balance( .FALSE., 0 )
1248                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1249!
1250!--             Call for southward-facing surfaces
1251                CALL lsm_energy_balance( .FALSE., 1 )
1252                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1253!
1254!--             Call for eastward-facing surfaces
1255                CALL lsm_energy_balance( .FALSE., 2 )
1256                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1257!
1258!--             Call for westward-facing surfaces
1259                CALL lsm_energy_balance( .FALSE., 3 )
1260                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1261               
1262!
1263!--             At the end, set boundary conditons for potential temperature
1264!--             and humidity after running the land-surface model. This
1265!--             might be important for the nesting, where arrays are transfered.
1266                CALL lsm_boundary_condition
1267
1268               
1269                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1270             ENDIF
1271!
1272!--          If required, solve the energy balance for urban surfaces and run
1273!--          the material heat model
1274             IF (urban_surface) THEN
1275                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1276               
1277                CALL usm_surface_energy_balance( .FALSE. )
1278                IF ( usm_material_model )  THEN
1279                   CALL usm_green_heat_model
1280                   CALL usm_material_heat_model ( .FALSE. )
1281                ENDIF
1282
1283!
1284!--             At the end, set boundary conditons for potential temperature
1285!--             and humidity after running the urban-surface model. This
1286!--             might be important for the nesting, where arrays are transfered.
1287                CALL usm_boundary_condition
1288
1289                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1290             ENDIF
1291!
1292!--          Compute the diffusion coefficients
1293             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1294             IF ( .NOT. humidity ) THEN
1295                IF ( ocean_mode )  THEN
1296                   CALL tcm_diffusivities( prho, prho_reference )
1297                ELSE
1298                   CALL tcm_diffusivities( pt, pt_reference )
1299                ENDIF
1300             ELSE
1301                CALL tcm_diffusivities( vpt, pt_reference )
1302             ENDIF
1303             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1304!
1305!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1306             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1307
1308          ENDIF
1309
1310!
1311!--       If required, calculate radiative fluxes and heating rates
1312          IF ( radiation .AND. intermediate_timestep_count                     &
1313               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1314               skip_time_do_radiation )  THEN
1315
1316               time_radiation = time_radiation + dt_3d
1317
1318             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1319             THEN
1320
1321                CALL cpu_log( log_point(50), 'radiation', 'start' )
1322
1323                IF ( .NOT. force_radiation_call )  THEN
1324                   time_radiation = time_radiation - dt_radiation
1325                ENDIF
1326
1327!
1328!--             Adjust the current time to the time step of the radiation model.
1329!--             Needed since radiation is pre-calculated and stored only on apparent
1330!--             solar positions
1331                time_since_reference_point_save = time_since_reference_point
1332                time_since_reference_point =                                   &
1333                                    REAL( FLOOR( time_since_reference_point /  &
1334                                                 dt_radiation), wp )           &
1335                                             * dt_radiation
1336
1337                CALL radiation_control
1338
1339                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1340
1341                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1342                     radiation_interactions )  THEN
1343                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1344                   CALL radiation_interaction
1345                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1346                ENDIF
1347   
1348!
1349!--             Return the current time to its original value
1350                time_since_reference_point = time_since_reference_point_save
1351
1352             ENDIF
1353          ENDIF
1354
1355       ENDDO   ! Intermediate step loop
1356
1357!
1358!--    Will be used at some point by flow_statistics.
1359       !$ACC UPDATE HOST(e, u, v, w, pt) &
1360       !$ACC HOST(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1361       !$ACC HOST(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1362       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1363       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1364       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1365       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1366       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1367       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1368       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1369       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1370       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1371       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1372       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1373       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1377#ifdef _OPENACC
1378       CALL exit_surface_arrays
1379#endif
1380
1381!
1382!--    If required, consider chemical emissions
1383       IF ( air_chemistry  .AND.  do_emis )  THEN
1384!
1385!--       Update the time --> kanani: revise location of this CALL
1386          CALL calc_date_and_time
1387!
1388!--       Call emission routine only once an hour
1389          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1390             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1391             hour_call_emis = hour_of_year
1392          ENDIF
1393       ENDIF
1394
1395!
1396!--    If required, calculate indoor temperature, waste heat, heat flux
1397!--    through wall, etc.
1398!--    dt_indoor steers the frequency of the indoor model calculations
1399       IF (       indoor_model                                                    &
1400            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1401            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1402
1403          time_indoor = time_indoor + dt_3d
1404
1405          IF ( time_indoor >= dt_indoor )  THEN
1406
1407             time_indoor = time_indoor - dt_indoor
1408
1409             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1410             CALL im_main_heatcool
1411             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1412
1413          ENDIF
1414       ENDIF
1415!
1416!--    Increase simulation time and output times
1417       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1418       current_timestep_number    = current_timestep_number + 1
1419       simulated_time             = simulated_time   + dt_3d
1420       time_since_reference_point = simulated_time - coupling_start_time
1421       simulated_time_chr         = time_to_string( time_since_reference_point )
1422
1423
1424
1425
1426       IF ( simulated_time >= skip_time_data_output_av )  THEN
1427          time_do_av         = time_do_av       + dt_3d
1428       ENDIF
1429       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1430          time_do2d_xy       = time_do2d_xy     + dt_3d
1431       ENDIF
1432       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1433          time_do2d_xz       = time_do2d_xz     + dt_3d
1434       ENDIF
1435       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1436          time_do2d_yz       = time_do2d_yz     + dt_3d
1437       ENDIF
1438       IF ( simulated_time >= skip_time_do3d    )  THEN
1439          time_do3d          = time_do3d        + dt_3d
1440       ENDIF
1441       DO  mid = 1, masks
1442          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1443             time_domask(mid)= time_domask(mid) + dt_3d
1444          ENDIF
1445       ENDDO
1446       time_dvrp          = time_dvrp        + dt_3d
1447       IF ( simulated_time >= skip_time_dosp )  THEN
1448          time_dosp       = time_dosp        + dt_3d
1449       ENDIF
1450       time_dots          = time_dots        + dt_3d
1451       IF ( .NOT. first_call_lpm )  THEN
1452          time_dopts      = time_dopts       + dt_3d
1453       ENDIF
1454       IF ( simulated_time >= skip_time_dopr )  THEN
1455          time_dopr       = time_dopr        + dt_3d
1456       ENDIF
1457       time_dopr_listing  = time_dopr_listing + dt_3d
1458       time_run_control   = time_run_control + dt_3d
1459!
1460!--    Increment time-counter for surface output
1461       IF ( surface_data_output )  THEN
1462          IF ( simulated_time >= skip_time_dosurf )  THEN
1463             time_dosurf    = time_dosurf + dt_3d
1464          ENDIF
1465          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1466             time_dosurf_av = time_dosurf_av + dt_3d
1467          ENDIF
1468       ENDIF
1469!
1470!--    In case of synthetic turbulence generation and parametrized turbulence
1471!--    information, update the time counter and if required, adjust the
1472!--    STG to new atmospheric conditions.
1473       IF ( use_syn_turb_gen  )  THEN
1474          IF ( parametrize_inflow_turbulence )  THEN
1475             time_stg_adjust = time_stg_adjust + dt_3d
1476             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1477          ENDIF
1478          time_stg_call = time_stg_call + dt_3d
1479       ENDIF
1480
1481!
1482!--    Data exchange between coupled models
1483       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1484                                          .AND. .NOT. vnested )  THEN
1485          time_coupling = time_coupling + dt_3d
1486
1487!
1488!--       In case of model termination initiated by the local model
1489!--       (terminate_coupled > 0), the coupler must be skipped because it would
1490!--       cause an MPI intercomminucation hang.
1491!--       If necessary, the coupler will be called at the beginning of the
1492!--       next restart run.
1493          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1494             CALL surface_coupler
1495             time_coupling = time_coupling - dt_coupling
1496          ENDDO
1497       ENDIF
1498
1499!
1500!--    Biometeorology calculation of stationary thermal indices
1501       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1502!
1503!--       If required, do thermal comfort calculations
1504          IF ( thermal_comfort )  THEN
1505             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1506             time_bio_results = time_since_reference_point
1507          ENDIF
1508!
1509!--       If required, do UV exposure calculations
1510          IF ( uv_exposure )  THEN
1511             CALL uvem_calc_exposure
1512          ENDIF
1513       ENDIF
1514
1515!
1516!--    Execute the gust module actions
1517       IF ( gust_module_enabled )  THEN
1518          CALL gust_actions( 'after_integration' )
1519       ENDIF
1520
1521!
1522!--    Execute user-defined actions
1523       CALL user_actions( 'after_integration' )
1524
1525!
1526!--    If Galilei transformation is used, determine the distance that the
1527!--    model has moved so far
1528       IF ( galilei_transformation )  THEN
1529          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1530          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1531       ENDIF
1532
1533!
1534!--    Check, if restart is necessary (because cpu-time is expiring or
1535!--    because it is forced by user) and set stop flag
1536!--    This call is skipped if the remote model has already initiated a restart.
1537       IF ( .NOT. terminate_run )  CALL check_for_restart
1538
1539!
1540!--    Carry out statistical analysis and output at the requested output times.
1541!--    The MOD function is used for calculating the output time counters (like
1542!--    time_dopr) in order to regard a possible decrease of the output time
1543!--    interval in case of restart runs
1544
1545!
1546!--    Set a flag indicating that so far no statistics have been created
1547!--    for this time step
1548       flow_statistics_called = .FALSE.
1549
1550!
1551!--    If required, call flow_statistics for averaging in time
1552       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1553            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1554            simulated_time >= skip_time_dopr )  THEN
1555          time_dopr_av = time_dopr_av + dt_3d
1556          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1557             do_sum = .TRUE.
1558             time_dopr_av = MOD( time_dopr_av, &
1559                                    MAX( dt_averaging_input_pr, dt_3d ) )
1560          ENDIF
1561       ENDIF
1562       IF ( do_sum )  CALL flow_statistics
1563
1564!
1565!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1566       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1567            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1568            simulated_time >= skip_time_data_output_av )                    &
1569       THEN
1570          time_do_sla = time_do_sla + dt_3d
1571          IF ( time_do_sla >= dt_averaging_input )  THEN
1572             CALL sum_up_3d_data
1573             average_count_3d = average_count_3d + 1
1574             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1575          ENDIF
1576       ENDIF
1577!
1578!--    Average surface data
1579       IF ( surface_data_output )  THEN
1580          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1581               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1582          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1583             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1584                CALL surface_output_averaging
1585                average_count_surf = average_count_surf + 1
1586             ENDIF
1587          ENDIF
1588       ENDIF
1589
1590!
1591!--    Calculate spectra for time averaging
1592       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1593            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1594            simulated_time >= skip_time_dosp )  THEN
1595          time_dosp_av = time_dosp_av + dt_3d
1596          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1597             CALL calc_spectra
1598             time_dosp_av = MOD( time_dosp_av, &
1599                                 MAX( dt_averaging_input_pr, dt_3d ) )
1600          ENDIF
1601       ENDIF
1602
1603!
1604!--    Call flight module and output data
1605       IF ( virtual_flight )  THEN
1606          CALL flight_measurement
1607          CALL data_output_flight
1608       ENDIF
1609!
1610!--    Take virtual measurements
1611       IF ( virtual_measurement  .AND.                                         &
1612            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1613
1614!
1615!--    Profile output (ASCII) on file
1616       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1617          CALL print_1d
1618          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1619                                                           dt_3d ) )
1620       ENDIF
1621
1622!
1623!--    Graphic output for PROFIL
1624       IF ( time_dopr >= dt_dopr )  THEN
1625          IF ( dopr_n /= 0 )  CALL data_output_profiles
1626          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1627          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1628       ENDIF
1629
1630!
1631!--    Graphic output for time series
1632       IF ( time_dots >= dt_dots )  THEN
1633          CALL data_output_tseries
1634          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1635       ENDIF
1636
1637!
1638!--    Output of spectra (formatted for use with PROFIL), in case of no
1639!--    time averaging, spectra has to be calculated before
1640       IF ( time_dosp >= dt_dosp )  THEN
1641          IF ( average_count_sp == 0 )  CALL calc_spectra
1642          CALL data_output_spectra
1643          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1644       ENDIF
1645
1646!
1647!--    2d-data output (cross-sections)
1648       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1649          CALL data_output_2d( 'xy', 0 )
1650          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1651       ENDIF
1652       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1653          CALL data_output_2d( 'xz', 0 )
1654          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1655       ENDIF
1656       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1657          CALL data_output_2d( 'yz', 0 )
1658          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1659       ENDIF
1660
1661!
1662!--    3d-data output (volume data)
1663       IF ( time_do3d >= dt_do3d )  THEN
1664          CALL data_output_3d( 0 )
1665          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1666       ENDIF
1667
1668!
1669!--    Masked data output
1670       DO  mid = 1, masks
1671          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1672             CALL data_output_mask( 0 )
1673             time_domask(mid) = MOD( time_domask(mid),  &
1674                                     MAX( dt_domask(mid), dt_3d ) )
1675          ENDIF
1676       ENDDO
1677
1678!
1679!--    Output of time-averaged 2d/3d/masked data
1680       IF ( time_do_av >= dt_data_output_av )  THEN
1681          CALL average_3d_data
1682          CALL data_output_2d( 'xy', 1 )
1683          CALL data_output_2d( 'xz', 1 )
1684          CALL data_output_2d( 'yz', 1 )
1685          CALL data_output_3d( 1 )
1686          DO  mid = 1, masks
1687             CALL data_output_mask( 1 )
1688          ENDDO
1689          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1690       ENDIF
1691!
1692!--    Output of surface data, instantaneous and averaged data
1693       IF ( surface_data_output )  THEN
1694          IF ( time_dosurf >= dt_dosurf )  THEN
1695             CALL surface_output( 0 )
1696             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1697          ENDIF
1698          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1699             CALL surface_output( 1 )
1700             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1701          ENDIF
1702       ENDIF
1703
1704!
1705!--    Output of particle time series
1706       IF ( particle_advection )  THEN
1707          IF ( time_dopts >= dt_dopts  .OR. &
1708               ( simulated_time >= particle_advection_start  .AND. &
1709                 first_call_lpm ) )  THEN
1710             CALL data_output_ptseries
1711             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1712          ENDIF
1713       ENDIF
1714
1715!
1716!--    Output of dvrp-graphics (isosurface, particles, slicer)
1717#if defined( __dvrp_graphics )
1718       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1719#endif
1720       IF ( time_dvrp >= dt_dvrp )  THEN
1721          CALL data_output_dvrp
1722          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1723       ENDIF
1724#if defined( __dvrp_graphics )
1725       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1726#endif
1727
1728!
1729!--    If required, set the heat flux for the next time step at a random value
1730       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1731          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1732          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1733          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1734       ENDIF
1735
1736!
1737!--    Execute the gust module actions
1738       IF ( gust_module_enabled )  THEN
1739          CALL gust_actions( 'after_timestep' )
1740       ENDIF
1741
1742!
1743!--    Execute user-defined actions
1744       CALL user_actions( 'after_timestep' )
1745
1746!
1747!--    Determine size of next time step. Save timestep dt_3d because it is
1748!--    newly calculated in routine timestep, but required further below for
1749!--    steering the run control output interval
1750       dt_3d_old = dt_3d
1751       CALL timestep
1752
1753!
1754!--    Synchronize the timestep in case of nested run.
1755       IF ( nested_run )  THEN
1756!
1757!--       Synchronize by unifying the time step.
1758!--       Global minimum of all time-steps is used for all.
1759          CALL pmci_synchronize
1760       ENDIF
1761
1762!
1763!--    Computation and output of run control parameters.
1764!--    This is also done whenever perturbations have been imposed
1765       IF ( time_run_control >= dt_run_control  .OR.                     &
1766            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1767       THEN
1768          CALL run_control
1769          IF ( time_run_control >= dt_run_control )  THEN
1770             time_run_control = MOD( time_run_control, &
1771                                     MAX( dt_run_control, dt_3d_old ) )
1772          ENDIF
1773       ENDIF
1774
1775!
1776!--    Output elapsed simulated time in form of a progress bar on stdout
1777       IF ( myid == 0 )  CALL output_progress_bar
1778
1779       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1780
1781
1782    ENDDO   ! time loop
1783
1784!$ACC END DATA
1785!$ACC END DATA
1786!$ACC END DATA
1787!$ACC END DATA
1788!$ACC END DATA
1789!$ACC END DATA
1790!$ACC END DATA
1791
1792!
1793!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1794    IF ( vnest_init )  CALL vnest_deallocate
1795
1796    IF ( myid == 0 )  CALL finish_progress_bar
1797
1798#if defined( __dvrp_graphics )
1799    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1800#endif
1801
1802    CALL location_message( 'finished time-stepping', .TRUE. )
1803
1804 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.