source: palm/trunk/SOURCE/time_integration.f90 @ 3647

Last change on this file since 3647 was 3647, checked in by kanani, 3 years ago

Bugfix: add time_since_reference_point to IF clause for data_output calls (time_integration)

  • Property svn:keywords set to Id
File size: 71.1 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3647 2019-01-02 14:10:44Z kanani $
27! Bugfix: add time_since_reference_point to IF clause for data_output calls
28! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
29! Clean up indoor_model and biometeorology model call.
30!
31! 3646 2018-12-28 17:58:49Z kanani
32! Bugfix: use time_since_reference_point instead of simulated_time where
33! required (relevant when using wall/soil spinup)
34!
35! 3634 2018-12-18 12:31:28Z knoop
36! OpenACC port for SPEC
37!
38! 3597 2018-12-04 08:40:18Z maronga
39! Removed call to calculation of near air (10 cm) potential temperature (now in
40! surface layer fluxes)
41!
42! 3589 2018-11-30 15:09:51Z suehring
43! Move the control parameter "salsa" from salsa_mod to control_parameters
44! (M. Kurppa)
45!
46! 3582 2018-11-29 19:16:36Z suehring
47! dom_dwd_user, Schrempf:
48! Changes due to merge of uv exposure model into biometeorology_mod.
49!
50! 3525 2018-11-14 16:06:14Z kanani
51! Changes related to clean-up of biometeorology (dom_dwd_user)
52!
53! 3524 2018-11-14 13:36:44Z raasch
54! unused variables removed
55!
56! 3484 2018-11-02 14:41:25Z hellstea
57! pmci_ensure_nest_mass_conservation is premanently removed
58!
59! 3473 2018-10-30 20:50:15Z suehring
60! new module for virtual measurements introduced
61!
62! 3472 2018-10-30 20:43:50Z suehring
63! Add indoor model (kanani, srissman, tlang)
64!
65! 3467 2018-10-30 19:05:21Z suehring
66! Implementation of a new aerosol module salsa.
67!
68! 3448 2018-10-29 18:14:31Z kanani
69! Add biometeorology
70!
71! 3421 2018-10-24 18:39:32Z gronemeier
72! Surface data output
73!
74! 3418 2018-10-24 16:07:39Z kanani
75! call to material_heat_model now with check if spinup runs (rvtils)
76!
77! 3378 2018-10-19 12:34:59Z kanani
78! merge from radiation branch (r3362) into trunk
79! (moh.hefny):
80! Bugfix in the if statement to call radiation_interaction
81!
82! 3347 2018-10-15 14:21:08Z suehring
83! - offline nesting separated from large-scale forcing module
84! - changes for synthetic turbulence generator
85!
86! 3343 2018-10-15 10:38:52Z suehring
87! - Formatting, clean-up, comments (kanani)
88! - Added CALL to chem_emissions_setup (Russo)
89! - Code added for decycling chemistry (basit)
90!
91! 3294 2018-10-01 02:37:10Z raasch
92! changes concerning modularization of ocean option
93!
94! 3274 2018-09-24 15:42:55Z knoop
95! Modularization of all bulk cloud physics code components
96!
97! 3241 2018-09-12 15:02:00Z raasch
98! unused variables removed
99!
100! 3198 2018-08-15 09:23:10Z sward
101! Added multi_agent_system_end; defined start time for MAS relative to
102! time_since_reference_point
103!
104! 3183 2018-07-27 14:25:55Z suehring
105! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
106! Rename subroutines and variables in COSMO nesting mode
107!
108! 3182 2018-07-27 13:36:03Z suehring
109! Added multi agent system
110!
111! 3042 2018-05-25 10:44:37Z schwenkel
112! Changed the name specific humidity to mixing ratio
113!
114! 3040 2018-05-25 10:22:08Z schwenkel
115! Fixed bug in IF statement
116! Ensure that the time when calling the radiation to be the time step of the
117! pre-calculated time when first calculate the positions of the sun
118!
119! 3004 2018-04-27 12:33:25Z Giersch
120! First call of flow_statistics has been removed. It is already called in
121! run_control itself
122!
123! 2984 2018-04-18 11:51:30Z hellstea
124! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
125! as seemingly unnecessary.
126!
127! 2941 2018-04-03 11:54:58Z kanani
128! Deduct spinup_time from RUN_CONTROL output of main 3d run
129! (use time_since_reference_point instead of simulated_time)
130!
131! 2938 2018-03-27 15:52:42Z suehring
132! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
133!
134! 2936 2018-03-27 14:49:27Z suehring
135! Little formatting adjustment.
136!
137! 2817 2018-02-19 16:32:21Z knoop
138! Preliminary gust module interface implemented
139!
140! 2801 2018-02-14 16:01:55Z thiele
141! Changed lpm from subroutine to module.
142! Introduce particle transfer in nested models.
143!
144! 2776 2018-01-31 10:44:42Z Giersch
145! Variable use_synthetic_turbulence_generator has been abbreviated
146!
147! 2773 2018-01-30 14:12:54Z suehring
148! - Nesting for chemical species
149!
150! 2766 2018-01-22 17:17:47Z kanani
151! Removed preprocessor directive __chem
152!
153! 2718 2018-01-02 08:49:38Z maronga
154! Corrected "Former revisions" section
155!
156! 2696 2017-12-14 17:12:51Z kanani
157! - Change in file header (GPL part)
158! - Implementation of uv exposure model (FK)
159! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
160! - renamed diffusivities to tcm_diffusivities (TG)
161! - implement prognostic equation for diss (TG)
162! - Moved/commented CALL to chem_emissions (FK)
163! - Added CALL to chem_emissions (FK)
164! - Implementation of chemistry module (FK)
165! - Calls for setting boundary conditions in USM and LSM (MS)
166! - Large-scale forcing with larger-scale models implemented (MS)
167! - Rename usm_radiation into radiation_interactions; merge with branch
168!   radiation (MS)
169! - added call for usm_green_heat_model for green building surfaces (RvT)
170! - added call for usm_temperature_near_surface for use in indoor model (RvT)
171!
172! 2617 2017-11-16 12:47:24Z suehring
173! Bugfix, assure that the reference state does not become zero.
174!
175! 2563 2017-10-19 15:36:10Z Giersch
176! Variable wind_turbine moved to module control_parameters
177!
178! 2365 2017-08-21 14:59:59Z kanani
179! Vertical grid nesting implemented (SadiqHuq)
180!
181! 2320 2017-07-21 12:47:43Z suehring
182! Set bottom boundary conditions after nesting interpolation and anterpolation
183!
184! 2299 2017-06-29 10:14:38Z maronga
185! Call of soil model adjusted
186!
187! 2292 2017-06-20 09:51:42Z schwenkel
188! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
189! includes two more prognostic equations for cloud drop concentration (nc) 
190! and cloud water content (qc).
191!
192! 2271 2017-06-09 12:34:55Z sward
193! Start timestep message changed
194!
195! 2259 2017-06-08 09:09:11Z gronemeier
196! Implemented synthetic turbulence generator
197!
198! 2233 2017-05-30 18:08:54Z suehring
199!
200! 2232 2017-05-30 17:47:52Z suehring
201! Adjustments to new topography and surface concept
202! Modify passed parameters for disturb_field
203!
204! 2178 2017-03-17 11:07:39Z hellstea
205! Setting perturbations at all times near inflow boundary is removed
206! in case of nested boundaries
207!
208! 2174 2017-03-13 08:18:57Z maronga
209! Added support for nesting with cloud microphysics
210!
211! 2118 2017-01-17 16:38:49Z raasch
212! OpenACC directives and related code removed
213!
214! 2050 2016-11-08 15:00:55Z gronemeier
215! Implement turbulent outflow condition
216!
217! 2031 2016-10-21 15:11:58Z knoop
218! renamed variable rho to rho_ocean
219!
220! 2011 2016-09-19 17:29:57Z kanani
221! Flag urban_surface is now defined in module control_parameters,
222! removed commented CALLs of global_min_max.
223!
224! 2007 2016-08-24 15:47:17Z kanani
225! Added CALLs for new urban surface model
226!
227! 2000 2016-08-20 18:09:15Z knoop
228! Forced header and separation lines into 80 columns
229!
230! 1976 2016-07-27 13:28:04Z maronga
231! Simplified calls to radiation model
232!
233! 1960 2016-07-12 16:34:24Z suehring
234! Separate humidity and passive scalar
235!
236! 1957 2016-07-07 10:43:48Z suehring
237! flight module added
238!
239! 1919 2016-05-27 14:51:23Z raasch
240! Initial version of purely vertical nesting introduced.
241!
242! 1918 2016-05-27 14:35:57Z raasch
243! determination of time step moved to the end of the time step loop,
244! the first time step is now always calculated before the time step loop (i.e.
245! also in case of restart runs)
246!
247! 1914 2016-05-26 14:44:07Z witha
248! Added call for wind turbine model
249!
250! 1878 2016-04-19 12:30:36Z hellstea
251! Synchronization for nested runs rewritten
252!
253! 1853 2016-04-11 09:00:35Z maronga
254! Adjusted for use with radiation_scheme = constant
255!
256! 1849 2016-04-08 11:33:18Z hoffmann
257! Adapted for modularization of microphysics
258!
259! 1833 2016-04-07 14:23:03Z raasch
260! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
261!
262! 1831 2016-04-07 13:15:51Z hoffmann
263! turbulence renamed collision_turbulence
264!
265! 1822 2016-04-07 07:49:42Z hoffmann
266! icloud_scheme replaced by microphysics_*
267!
268! 1808 2016-04-05 19:44:00Z raasch
269! output message in case unscheduled radiation calls removed
270!
271! 1797 2016-03-21 16:50:28Z raasch
272! introduction of different datatransfer modes
273!
274! 1791 2016-03-11 10:41:25Z raasch
275! call of pmci_update_new removed
276!
277! 1786 2016-03-08 05:49:27Z raasch
278! +module spectrum
279!
280! 1783 2016-03-06 18:36:17Z raasch
281! switch back of netcdf data format for mask output moved to the mask output
282! routine
283!
284! 1781 2016-03-03 15:12:23Z raasch
285! some pmc calls removed at the beginning (before timeloop),
286! pmc initialization moved to the main program
287!
288! 1764 2016-02-28 12:45:19Z raasch
289! PMC_ACTIVE flags removed,
290! bugfix: nest synchronization after first call of timestep
291!
292! 1762 2016-02-25 12:31:13Z hellstea
293! Introduction of nested domain feature
294!
295! 1736 2015-12-04 08:56:33Z raasch
296! no perturbations added to total domain if energy limit has been set zero
297!
298! 1691 2015-10-26 16:17:44Z maronga
299! Added option for spin-ups without land surface and radiation models. Moved calls
300! for radiation and lan surface schemes.
301!
302! 1682 2015-10-07 23:56:08Z knoop
303! Code annotations made doxygen readable
304!
305! 1671 2015-09-25 03:29:37Z raasch
306! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
307! for particles
308!
309! 1585 2015-04-30 07:05:52Z maronga
310! Moved call of radiation scheme. Added support for RRTM
311!
312! 1551 2015-03-03 14:18:16Z maronga
313! Added interface for different radiation schemes.
314!
315! 1496 2014-12-02 17:25:50Z maronga
316! Added calls for the land surface model and radiation scheme
317!
318! 1402 2014-05-09 14:25:13Z raasch
319! location messages modified
320!
321! 1384 2014-05-02 14:31:06Z raasch
322! location messages added
323!
324! 1380 2014-04-28 12:40:45Z heinze
325! CALL of nudge_ref added
326! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
327!
328! 1365 2014-04-22 15:03:56Z boeske
329! Reset sums_ls_l to zero at each timestep
330! +sums_ls_l
331! Calculation of reference state (previously in subroutine calc_mean_profile)
332
333! 1342 2014-03-26 17:04:47Z kanani
334! REAL constants defined as wp-kind
335!
336! 1320 2014-03-20 08:40:49Z raasch
337! ONLY-attribute added to USE-statements,
338! kind-parameters added to all INTEGER and REAL declaration statements,
339! kinds are defined in new module kinds,
340! old module precision_kind is removed,
341! revision history before 2012 removed,
342! comment fields (!:) to be used for variable explanations added to
343! all variable declaration statements
344! 1318 2014-03-17 13:35:16Z raasch
345! module interfaces removed
346!
347! 1308 2014-03-13 14:58:42Z fricke
348! +netcdf_data_format_save
349! For masked data, parallel netcdf output is not tested so far, hence
350! netcdf_data_format is switched back to non-paralell output.
351!
352! 1276 2014-01-15 13:40:41Z heinze
353! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
354!
355! 1257 2013-11-08 15:18:40Z raasch
356! acc-update-host directive for timestep removed
357!
358! 1241 2013-10-30 11:36:58Z heinze
359! Generalize calc_mean_profile for wider use
360! Determine shf and qsws in dependence on data from LSF_DATA
361! Determine ug and vg in dependence on data from LSF_DATA
362! 1221 2013-09-10 08:59:13Z raasch
363! host update of arrays before timestep is called
364!
365! 1179 2013-06-14 05:57:58Z raasch
366! mean profiles for reference state are only calculated if required,
367! small bugfix for background communication
368!
369! 1171 2013-05-30 11:27:45Z raasch
370! split of prognostic_equations deactivated (comment lines), for the time being
371!
372! 1128 2013-04-12 06:19:32Z raasch
373! asynchronous transfer of ghost point data realized for acc-optimized version:
374! prognostic_equations are first called two times for those points required for
375! the left-right and north-south exchange, respectively, and then for the
376! remaining points,
377! those parts requiring global communication moved from prognostic_equations to
378! here
379!
380! 1115 2013-03-26 18:16:16Z hoffmann
381! calculation of qr and nr is restricted to precipitation
382!
383! 1113 2013-03-10 02:48:14Z raasch
384! GPU-porting of boundary conditions,
385! openACC directives updated
386! formal parameter removed from routine boundary_conds
387!
388! 1111 2013-03-08 23:54:10Z raasch
389! +internal timestep counter for cpu statistics added,
390! openACC directives updated
391!
392! 1092 2013-02-02 11:24:22Z raasch
393! unused variables removed
394!
395! 1065 2012-11-22 17:42:36Z hoffmann
396! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
397!
398! 1053 2012-11-13 17:11:03Z hoffmann
399! exchange of ghost points for nr, qr added
400!
401! 1036 2012-10-22 13:43:42Z raasch
402! code put under GPL (PALM 3.9)
403!
404! 1019 2012-09-28 06:46:45Z raasch
405! non-optimized version of prognostic_equations removed
406!
407! 1015 2012-09-27 09:23:24Z raasch
408! +call of prognostic_equations_acc
409!
410! 1001 2012-09-13 14:08:46Z raasch
411! all actions concerning leapfrog- and upstream-spline-scheme removed
412!
413! 849 2012-03-15 10:35:09Z raasch
414! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
415!
416! 825 2012-02-19 03:03:44Z raasch
417! wang_collision_kernel renamed wang_kernel
418!
419! Revision 1.1  1997/08/11 06:19:04  raasch
420! Initial revision
421!
422!
423! Description:
424! ------------
425!> Integration in time of the model equations, statistical analysis and graphic
426!> output
427!------------------------------------------------------------------------------!
428 SUBROUTINE time_integration
429 
430
431    USE advec_ws,                                                              &
432        ONLY:  ws_statistics
433
434    USE arrays_3d,                                                             &
435        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
436               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
437               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
438               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
439               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
440               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
441               v_p, v_stokes_zu, w, w_p, zu
442
443    USE biometeorology_mod,                                                    &
444        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
445               thermal_comfort, uvem_calc_exposure, uv_exposure
446
447    USE bulk_cloud_model_mod,                                                  &
448        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
449              collision_turbulence, microphysics_morrison, microphysics_seifert
450
451    USE calc_mean_profile_mod,                                                 &
452        ONLY:  calc_mean_profile
453
454    USE chem_emissions_mod,                                                    &
455        ONLY:  chem_emissions_setup
456
457    USE chem_modules,                                                          &
458        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
459
460    USE chemistry_model_mod,                                                   &
461        ONLY:  chem_boundary_conds, chem_species
462
463    USE control_parameters,                                                    &
464        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
465               average_count_3d, averaging_interval, averaging_interval_pr,    &
466               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
467               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
468               constant_flux_layer, constant_heatflux,                         &
469               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
470               coupling_start_time, current_timestep_number,                   &
471               disturbance_created, disturbance_energy_limit, dist_range,      &
472               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
473               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
474               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
475               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
476               first_call_lpm, first_call_mas, galilei_transformation,         &
477               humidity, indoor_model, intermediate_timestep_count,            &
478               intermediate_timestep_count_max,                                &
479               land_surface, large_scale_forcing,                              &
480               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
481               multi_agent_system_end, multi_agent_system_start,               &
482               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
483               ocean_mode, passive_scalar, pt_reference,                       &
484               pt_slope_offset, random_heatflux, rans_mode,                    &
485               rans_tke_e, run_coupled, salsa,                                 &
486               simulated_time, simulated_time_chr,                             &
487               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
488               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
489               skip_time_data_output_av, sloping_surface, stop_dt,             &
490               surface_data_output, terminate_coupled, terminate_run,          &
491               timestep_scheme,                                                &
492               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
493               time_do3d, time_domask, time_dopr, time_dopr_av,                &
494               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
495               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
496               time_run_control, time_since_reference_point, tsc,              &
497               turbulent_inflow, turbulent_outflow, urban_surface,             &
498               use_initial_profile_as_reference,                               &
499               use_single_reference_value, u_gtrans, v_gtrans,                 &
500               virtual_flight, virtual_measurement, wind_turbine,              &
501               ws_scheme_mom, ws_scheme_sca
502
503    USE cpulog,                                                                &
504        ONLY:  cpu_log, log_point, log_point_s
505
506    USE date_and_time_mod,                                                     &
507        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
508
509    USE flight_mod,                                                            &
510        ONLY:  flight_measurement
511
512    USE gust_mod,                                                              &
513        ONLY:  gust_actions, gust_module_enabled
514
515    USE indices,                                                               &
516        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
517               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
518
519    USE indoor_model_mod,                                                      &
520        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
521
522    USE interaction_droplets_ptq_mod,                                          &
523        ONLY:  interaction_droplets_ptq
524
525    USE interfaces
526
527    USE kinds
528
529    USE land_surface_model_mod,                                                &
530        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
531               skip_time_do_lsm
532
533    USE lsf_nudging_mod,                                                       &
534        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
535
536    USE multi_agent_system_mod,                                                &
537        ONLY:  agents_active, multi_agent_system
538
539    USE nesting_offl_mod,                                                      &
540        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
541       
542    USE netcdf_data_input_mod,                                                 &
543        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
544               netcdf_data_input_offline_nesting
545
546    USE ocean_mod,                                                             &
547        ONLY:  prho_reference
548
549    USE particle_attributes,                                                   &
550        ONLY:  particle_advection, particle_advection_start,                   &
551               use_sgs_for_particles, wang_kernel
552
553    USE pegrid
554
555    USE pmc_interface,                                                         &
556        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
557               pmci_synchronize
558
559    USE progress_bar,                                                          &
560        ONLY:  finish_progress_bar, output_progress_bar
561
562    USE prognostic_equations_mod,                                              &
563        ONLY:  prognostic_equations_cache, prognostic_equations_vector
564
565    USE radiation_model_mod,                                                   &
566        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
567              radiation_interaction, radiation_interactions,                   &
568              skip_time_do_radiation, time_radiation
569         
570    USE salsa_mod,                                                             &
571        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
572              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
573              skip_time_do_salsa                     
574   
575    USE salsa_util_mod,                                                        &
576           ONLY:  sums_salsa_ws_l     
577
578    USE spectra_mod,                                                           &
579        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
580              skip_time_dosp
581
582    USE statistics,                                                            &
583        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
584               rmask, statistic_regions, weight_substep, sums_l_l,             &
585               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
586               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
587               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
588               sums_wsnrs_ws_l, sums_wsss_ws_l
589
590    USE surface_layer_fluxes_mod,                                              &
591        ONLY:  surface_layer_fluxes
592
593    USE surface_mod,                                                           &
594        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
595               enter_surface_arrays, exit_surface_arrays
596
597    USE surface_output_mod,                                                    &
598        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
599               dt_dosurf_av, surface_output, surface_output_averaging,         &
600               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
601               time_dosurf_av
602
603    USE turbulence_closure_mod,                                                &
604        ONLY:  tcm_diffusivities, production_e_init
605
606    USE urban_surface_mod,                                                     &
607        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
608               usm_material_model,                                             &
609               usm_surface_energy_balance, usm_green_heat_model
610
611    USE synthetic_turbulence_generator_mod,                                    &
612        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
613               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
614               use_syn_turb_gen   
615
616    USE user_actions_mod,                                                      &
617        ONLY:  user_actions
618
619
620    USE wind_turbine_model_mod,                                                &
621        ONLY:  wtm_forces
622
623    USE lpm_mod,                                                               &
624        ONLY:  lpm
625
626    USE vertical_nesting_mod,                                                  &
627        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
628               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
629               vnest_deallocate, vnest_init, vnest_init_fine,                  &
630               vnest_start_time
631               
632    USE virtual_measurement_mod,                                               &
633        ONLY:  vm_sampling, vm_time_start
634
635    IMPLICIT NONE
636
637    CHARACTER (LEN=9) ::  time_to_string   !<
638   
639    INTEGER(iwp)      ::  b !< index for aerosol size bins   
640    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
641    INTEGER(iwp)      ::  g !< index for gaseous compounds
642    INTEGER(iwp)      ::  lsp
643    INTEGER(iwp)      ::  lsp_usr   !<
644    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
645
646    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
647                            !< steering of run control output interval
648    REAL(wp) ::  time_since_reference_point_save  !< original value of
649                                                  !< time_since_reference_point
650
651
652! Copy data from arrays_3d
653!$ACC DATA &
654!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
655!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
656!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
657!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
658!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
659!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
660!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
661!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
662!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
663
664!$ACC DATA &
665!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
666!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
667!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
668!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
669!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
670!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
671!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
672!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
673!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
675!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
676
677!$ACC DATA &
678!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
679!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
680!$ACC COPYIN(zu(nzb:nzt+1)) &
681!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
682!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
683!$ACC COPYIN(ddzw(1:nzt+1)) &
684!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
685!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
686!$ACC COPYIN(ref_state(0:nz+1)) &
687!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
688!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
689!$ACC COPYIN(pt_init(0:nz+1)) &
690!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
691
692! Copy data from control_parameters
693!$ACC DATA &
694!$ACC COPYIN(tsc(1:5))
695
696! Copy data from indices
697!$ACC DATA &
698!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
701
702! Copy data from surface_mod
703!$ACC DATA &
704!$ACC COPYIN(bc_h(0:1)) &
705!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
706!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
707!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
708!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
709!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
710!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
711
712! Copy data from statistics
713!$ACC DATA &
714!$ACC COPYIN(hom(nzb+1:nzb_max,1,1:3,0)) &
715!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
716!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
717!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
718!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
719!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
720!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
721!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
722!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
723!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
724!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
725!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
726!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
727!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
728!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
729!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
730!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
731!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
732
733!
734!-- At beginning determine the first time step
735    CALL timestep
736!
737!-- Synchronize the timestep in case of nested run.
738    IF ( nested_run )  THEN
739!
740!--    Synchronization by unifying the time step.
741!--    Global minimum of all time-steps is used for all.
742       CALL pmci_synchronize
743    ENDIF
744
745!
746!-- Determine and print out the run control quantities before the first time
747!-- step of this run. For the initial run, some statistics (e.g. divergence)
748!-- need to be determined first --> CALL flow_statistics at the beginning of
749!-- run_control
750    CALL run_control
751!
752!-- Data exchange between coupled models in case that a call has been omitted
753!-- at the end of the previous run of a job chain.
754    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
755!
756!--    In case of model termination initiated by the local model the coupler
757!--    must not be called because this would again cause an MPI hang.
758       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
759          CALL surface_coupler
760          time_coupling = time_coupling - dt_coupling
761       ENDDO
762       IF (time_coupling == 0.0_wp  .AND.                                      &
763           time_since_reference_point < dt_coupling )                          &
764       THEN
765          time_coupling = time_since_reference_point
766       ENDIF
767    ENDIF
768
769#if defined( __dvrp_graphics )
770!
771!-- Time measurement with dvrp software 
772    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
773#endif
774
775    CALL location_message( 'starting timestep-sequence', .TRUE. )
776!
777!-- Start of the time loop
778    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
779                .NOT. terminate_run )
780
781       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
782!
783!--    Vertical nesting: initialize fine grid
784       IF ( vnested ) THEN
785          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
786             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
787             CALL vnest_init_fine
788             vnest_init = .TRUE.
789             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
790          ENDIF
791       ENDIF
792!
793!--    Determine ug, vg and w_subs in dependence on data from external file
794!--    LSF_DATA
795       IF ( large_scale_forcing .AND. lsf_vert )  THEN
796           CALL ls_forcing_vert ( simulated_time )
797           sums_ls_l = 0.0_wp
798       ENDIF
799
800!
801!--    Set pt_init and q_init to the current profiles taken from
802!--    NUDGING_DATA
803       IF ( nudging )  THEN
804           CALL nudge_ref ( simulated_time )
805!
806!--        Store temperature gradient at the top boundary for possible Neumann
807!--        boundary condition
808           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
809           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
810           IF ( air_chemistry )  THEN
811              DO  lsp = 1, nspec
812                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
813                                - chem_species(lsp)%conc_pr_init(nzt) )       &
814                               / dzu(nzt+1)
815              ENDDO
816           ENDIF
817       ENDIF
818!
819!--    If forcing by larger-scale models is applied, check if new data
820!--    at domain boundaries need to be read.
821       IF ( nesting_offline )  THEN
822          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
823             CALL netcdf_data_input_offline_nesting
824       ENDIF
825
826!
827!--    Execute the gust module actions
828       IF ( gust_module_enabled )  THEN
829          CALL gust_actions( 'before_timestep' )
830       ENDIF
831
832!
833!--    Execute the user-defined actions
834       CALL user_actions( 'before_timestep' )
835
836!
837!--    Calculate forces by wind turbines
838       IF ( wind_turbine )  THEN
839
840          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
841
842          CALL wtm_forces
843
844          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
845
846       ENDIF   
847       
848#ifdef _OPENACC
849       CALL enter_surface_arrays
850#endif
851       
852!
853!--    Start of intermediate step loop
854       intermediate_timestep_count = 0
855       DO  WHILE ( intermediate_timestep_count < &
856                   intermediate_timestep_count_max )
857
858          intermediate_timestep_count = intermediate_timestep_count + 1
859
860!
861!--       Set the steering factors for the prognostic equations which depend
862!--       on the timestep scheme
863          CALL timestep_scheme_steering
864
865!
866!--       Calculate those variables needed in the tendency terms which need
867!--       global communication
868          IF ( .NOT. use_single_reference_value  .AND. &
869               .NOT. use_initial_profile_as_reference )  THEN
870!
871!--          Horizontally averaged profiles to be used as reference state in
872!--          buoyancy terms (WARNING: only the respective last call of
873!--          calc_mean_profile defines the reference state!)
874             IF ( .NOT. neutral )  THEN
875                CALL calc_mean_profile( pt, 4 )
876                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
877             ENDIF
878             IF ( ocean_mode )  THEN
879                CALL calc_mean_profile( rho_ocean, 64 )
880                ref_state(:)  = hom(:,1,64,0)
881             ENDIF
882             IF ( humidity )  THEN
883                CALL calc_mean_profile( vpt, 44 )
884                ref_state(:)  = hom(:,1,44,0)
885             ENDIF
886!
887!--          Assure that ref_state does not become zero at any level
888!--          ( might be the case if a vertical level is completely occupied
889!--            with topography ).
890             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
891                                ref_state == 0.0_wp )
892          ENDIF
893
894          IF ( .NOT. constant_diffusion )  CALL production_e_init
895          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
896               intermediate_timestep_count == 1 )  CALL ws_statistics
897!
898!--       In case of nudging calculate current nudging time scale and horizontal
899!--       means of u, v, pt and q
900          IF ( nudging )  THEN
901             CALL calc_tnudge( simulated_time )
902             CALL calc_mean_profile( u, 1 )
903             CALL calc_mean_profile( v, 2 )
904             CALL calc_mean_profile( pt, 4 )
905             CALL calc_mean_profile( q, 41 )
906          ENDIF
907
908!
909!--       Solve the prognostic equations. A fast cache optimized version with
910!--       only one single loop is used in case of Piascek-Williams advection
911!--       scheme. NEC vector machines use a different version, because
912!--       in the other versions a good vectorization is prohibited due to
913!--       inlining problems.
914          IF ( loop_optimization == 'cache' )  THEN
915             CALL prognostic_equations_cache
916          ELSEIF ( loop_optimization == 'vector' )  THEN
917             CALL prognostic_equations_vector
918          ENDIF
919
920!
921!--       Particle transport/physics with the Lagrangian particle model
922!--       (only once during intermediate steps, because it uses an Euler-step)
923!--       ### particle model should be moved before prognostic_equations, in order
924!--       to regard droplet interactions directly
925          IF ( particle_advection  .AND.                         &
926               time_since_reference_point >= particle_advection_start  .AND. &
927               intermediate_timestep_count == 1 )  THEN
928             CALL lpm
929             first_call_lpm = .FALSE.
930          ENDIF
931
932!
933!--       Interaction of droplets with temperature and mixing ratio.
934!--       Droplet condensation and evaporation is calculated within
935!--       advec_particles.
936          IF ( cloud_droplets  .AND.  &
937               intermediate_timestep_count == intermediate_timestep_count_max )&
938          THEN
939             CALL interaction_droplets_ptq
940          ENDIF
941
942!
943!--       Movement of agents in multi agent system
944          IF ( agents_active  .AND.                                            &
945               time_since_reference_point >= multi_agent_system_start  .AND.   &
946               time_since_reference_point <= multi_agent_system_end    .AND.   &
947               intermediate_timestep_count == 1 )  THEN
948             CALL multi_agent_system
949             first_call_mas = .FALSE.
950          ENDIF
951
952!
953!--       Exchange of ghost points (lateral boundary conditions)
954          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
955
956          CALL exchange_horiz( u_p, nbgp )
957          CALL exchange_horiz( v_p, nbgp )
958          CALL exchange_horiz( w_p, nbgp )
959          CALL exchange_horiz( pt_p, nbgp )
960          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
961          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
962               .OR.  use_sgs_for_particles )  THEN
963             IF ( rans_tke_e )  THEN
964                CALL exchange_horiz( diss_p, nbgp )
965             ELSE
966                CALL exchange_horiz( diss, nbgp )
967             ENDIF
968          ENDIF
969          IF ( ocean_mode )  THEN
970             CALL exchange_horiz( sa_p, nbgp )
971             CALL exchange_horiz( rho_ocean, nbgp )
972             CALL exchange_horiz( prho, nbgp )
973          ENDIF
974          IF ( humidity )  THEN
975             CALL exchange_horiz( q_p, nbgp )
976             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
977                CALL exchange_horiz( qc_p, nbgp )
978                CALL exchange_horiz( nc_p, nbgp )
979             ENDIF
980             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
981                CALL exchange_horiz( qr_p, nbgp )
982                CALL exchange_horiz( nr_p, nbgp )
983             ENDIF
984          ENDIF
985          IF ( cloud_droplets )  THEN
986             CALL exchange_horiz( ql, nbgp )
987             CALL exchange_horiz( ql_c, nbgp )
988             CALL exchange_horiz( ql_v, nbgp )
989             CALL exchange_horiz( ql_vp, nbgp )
990          ENDIF
991          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
992          IF ( air_chemistry )  THEN
993             DO  lsp = 1, nspec
994                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
995!
996!--             kanani: Push chem_boundary_conds after CALL boundary_conds
997                lsp_usr = 1
998                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
999                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1000                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1001                                                chem_species(lsp)%conc_pr_init )
1002                   ENDIF
1003                   lsp_usr = lsp_usr + 1
1004                ENDDO
1005             ENDDO
1006          ENDIF
1007
1008          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1009          THEN
1010             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1011             DO  b = 1, nbins
1012                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1013                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1014                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1015                                           aerosol_number(b)%init )
1016                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1017                DO  c = 1, ncc_tot
1018                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1019                                        nbgp )
1020                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1021                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1022                                              aerosol_mass((c-1)*nbins+b)%init )
1023                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1024                ENDDO
1025             ENDDO
1026             IF ( .NOT. salsa_gases_from_chem )  THEN
1027                DO  g = 1, ngast
1028                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1029                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1030                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1031                                              salsa_gas(g)%init )
1032                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1033             ENDDO
1034             ENDIF
1035             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1036          ENDIF         
1037          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1038
1039!
1040!--       Boundary conditions for the prognostic quantities (except of the
1041!--       velocities at the outflow in case of a non-cyclic lateral wall)
1042          CALL boundary_conds
1043!
1044!--       Swap the time levels in preparation for the next time step.
1045          CALL swap_timelevel
1046
1047!
1048!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1049          IF ( vnest_init ) THEN
1050             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
1051             CALL vnest_anterpolate
1052             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
1053          ENDIF
1054
1055          IF ( nested_run )  THEN
1056
1057             CALL cpu_log( log_point(60), 'nesting', 'start' )
1058!
1059!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1060!--          and pmci_child_datatrans are called inside the wrapper
1061!--          subroutine pmci_datatrans according to the control parameters
1062!--          nesting_mode and nesting_datatransfer_mode.
1063!--          TO_DO: why is nesting_mode given as a parameter here?
1064             CALL pmci_datatrans( nesting_mode )
1065
1066             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1067                  nesting_mode == 'vertical' )  THEN
1068!
1069!--             Exchange_horiz is needed for all parent-domains after the
1070!--             anterpolation
1071                CALL exchange_horiz( u, nbgp )
1072                CALL exchange_horiz( v, nbgp )
1073                CALL exchange_horiz( w, nbgp )
1074                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1075
1076                IF ( humidity )  THEN
1077
1078                   CALL exchange_horiz( q, nbgp )
1079
1080                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1081                       CALL exchange_horiz( qc, nbgp )
1082                       CALL exchange_horiz( nc, nbgp )
1083                   ENDIF
1084                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1085                       CALL exchange_horiz( qr, nbgp )
1086                       CALL exchange_horiz( nr, nbgp )
1087                   ENDIF
1088
1089                ENDIF
1090
1091                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1092               
1093                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1094
1095                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1096                                                      rans_tke_e )             &
1097                   CALL exchange_horiz( diss, nbgp )
1098
1099                IF ( air_chemistry )  THEN
1100                   DO  n = 1, nspec     
1101                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1102                   ENDDO
1103                ENDIF
1104
1105             ENDIF
1106!
1107!--          Set boundary conditions again after interpolation and anterpolation.
1108             CALL pmci_boundary_conds
1109
1110             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1111
1112          ENDIF
1113
1114!
1115!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1116!--       when a sloping surface is used
1117          IF ( sloping_surface )  THEN
1118             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1119                                                    pt_slope_offset
1120             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1121                                                    pt_slope_offset
1122          ENDIF
1123
1124!
1125!--       Impose a turbulent inflow using the recycling method
1126          IF ( turbulent_inflow )  CALL  inflow_turbulence
1127
1128!
1129!--       Set values at outflow boundary using the special outflow condition
1130          IF ( turbulent_outflow )  CALL  outflow_turbulence
1131
1132!
1133!--       Impose a random perturbation on the horizontal velocity field
1134          IF ( create_disturbances  .AND.                                      &
1135               ( call_psolver_at_all_substeps  .AND.                           &
1136               intermediate_timestep_count == intermediate_timestep_count_max )&
1137          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1138               intermediate_timestep_count == 1 ) )                            &
1139          THEN
1140             time_disturb = time_disturb + dt_3d
1141             IF ( time_disturb >= dt_disturb )  THEN
1142                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1143                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1144                   CALL disturb_field( 'u', tend, u )
1145                   CALL disturb_field( 'v', tend, v )
1146                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1147                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1148                THEN
1149!
1150!--                Runs with a non-cyclic lateral wall need perturbations
1151!--                near the inflow throughout the whole simulation
1152                   dist_range = 1
1153                   CALL disturb_field( 'u', tend, u )
1154                   CALL disturb_field( 'v', tend, v )
1155                   dist_range = 0
1156                ENDIF
1157                time_disturb = time_disturb - dt_disturb
1158             ENDIF
1159          ENDIF
1160
1161!
1162!--       Map forcing data derived from larger scale model onto domain
1163!--       boundaries.
1164          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1165                                       intermediate_timestep_count_max  )      &
1166             CALL nesting_offl_bc
1167!
1168!--       Impose a turbulent inflow using synthetic generated turbulence,
1169!--       only once per time step.
1170          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1171             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1172             CALL stg_main
1173          ENDIF
1174!
1175!--       Ensure mass conservation. This need to be done after imposing
1176!--       synthetic turbulence and top boundary condition for pressure is set to
1177!--       Neumann conditions.
1178!--       Is this also required in case of Dirichlet?
1179          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1180!
1181!--       Reduce the velocity divergence via the equation for perturbation
1182!--       pressure.
1183          IF ( intermediate_timestep_count == 1  .OR. &
1184                call_psolver_at_all_substeps )  THEN
1185
1186             IF (  vnest_init ) THEN
1187!
1188!--             Compute pressure in the CG, interpolate top boundary conditions
1189!--             to the FG and then compute pressure in the FG
1190                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1191
1192                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1193                CALL vnest_boundary_conds
1194                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1195 
1196                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1197
1198!--             Anterpolate TKE, satisfy Germano Identity
1199                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1200                CALL vnest_anterpolate_e
1201                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1202
1203             ELSE
1204
1205                CALL pres
1206
1207             ENDIF
1208
1209          ENDIF
1210
1211!
1212!--       If required, compute liquid water content
1213          IF ( bulk_cloud_model )  THEN
1214             CALL calc_liquid_water_content
1215          ENDIF
1216!
1217!--       If required, compute virtual potential temperature
1218          IF ( humidity )  THEN
1219             CALL compute_vpt
1220          ENDIF
1221
1222!
1223!--       Compute the diffusion quantities
1224          IF ( .NOT. constant_diffusion )  THEN
1225
1226!
1227!--          Determine surface fluxes shf and qsws and surface values
1228!--          pt_surface and q_surface in dependence on data from external
1229!--          file LSF_DATA respectively
1230             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1231                 intermediate_timestep_count == intermediate_timestep_count_max )&
1232             THEN
1233                CALL ls_forcing_surf( simulated_time )
1234             ENDIF
1235
1236!
1237!--          First the vertical (and horizontal) fluxes in the surface
1238!--          (constant flux) layer are computed
1239             IF ( constant_flux_layer )  THEN
1240                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1241                CALL surface_layer_fluxes
1242                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1243             ENDIF
1244!
1245!--          If required, solve the energy balance for the surface and run soil
1246!--          model. Call for horizontal as well as vertical surfaces
1247             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1248
1249                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1250!
1251!--             Call for horizontal upward-facing surfaces
1252                CALL lsm_energy_balance( .TRUE., -1 )
1253                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1254!
1255!--             Call for northward-facing surfaces
1256                CALL lsm_energy_balance( .FALSE., 0 )
1257                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1258!
1259!--             Call for southward-facing surfaces
1260                CALL lsm_energy_balance( .FALSE., 1 )
1261                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1262!
1263!--             Call for eastward-facing surfaces
1264                CALL lsm_energy_balance( .FALSE., 2 )
1265                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1266!
1267!--             Call for westward-facing surfaces
1268                CALL lsm_energy_balance( .FALSE., 3 )
1269                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1270               
1271!
1272!--             At the end, set boundary conditons for potential temperature
1273!--             and humidity after running the land-surface model. This
1274!--             might be important for the nesting, where arrays are transfered.
1275                CALL lsm_boundary_condition
1276
1277               
1278                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1279             ENDIF
1280!
1281!--          If required, solve the energy balance for urban surfaces and run
1282!--          the material heat model
1283             IF (urban_surface) THEN
1284                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1285               
1286                CALL usm_surface_energy_balance( .FALSE. )
1287                IF ( usm_material_model )  THEN
1288                   CALL usm_green_heat_model
1289                   CALL usm_material_heat_model ( .FALSE. )
1290                ENDIF
1291
1292!
1293!--             At the end, set boundary conditons for potential temperature
1294!--             and humidity after running the urban-surface model. This
1295!--             might be important for the nesting, where arrays are transfered.
1296                CALL usm_boundary_condition
1297
1298                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1299             ENDIF
1300!
1301!--          Compute the diffusion coefficients
1302             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1303             IF ( .NOT. humidity ) THEN
1304                IF ( ocean_mode )  THEN
1305                   CALL tcm_diffusivities( prho, prho_reference )
1306                ELSE
1307                   CALL tcm_diffusivities( pt, pt_reference )
1308                ENDIF
1309             ELSE
1310                CALL tcm_diffusivities( vpt, pt_reference )
1311             ENDIF
1312             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1313!
1314!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1315             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1316
1317          ENDIF
1318
1319!
1320!--       If required, calculate radiative fluxes and heating rates
1321          IF ( radiation .AND. intermediate_timestep_count                     &
1322               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1323               skip_time_do_radiation )  THEN
1324
1325               time_radiation = time_radiation + dt_3d
1326
1327             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1328             THEN
1329
1330                CALL cpu_log( log_point(50), 'radiation', 'start' )
1331
1332                IF ( .NOT. force_radiation_call )  THEN
1333                   time_radiation = time_radiation - dt_radiation
1334                ENDIF
1335
1336!
1337!--             Adjust the current time to the time step of the radiation model.
1338!--             Needed since radiation is pre-calculated and stored only on apparent
1339!--             solar positions
1340                time_since_reference_point_save = time_since_reference_point
1341                time_since_reference_point =                                   &
1342                                    REAL( FLOOR( time_since_reference_point /  &
1343                                                 dt_radiation), wp )           &
1344                                             * dt_radiation
1345
1346                CALL radiation_control
1347
1348                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1349
1350                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1351                     radiation_interactions )  THEN
1352                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1353                   CALL radiation_interaction
1354                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1355                ENDIF
1356   
1357!
1358!--             Return the current time to its original value
1359                time_since_reference_point = time_since_reference_point_save
1360
1361             ENDIF
1362          ENDIF
1363
1364       ENDDO   ! Intermediate step loop
1365
1366!
1367!--    Will be used at some point by flow_statistics.
1368       !$ACC UPDATE HOST(e, u, v, w, pt) &
1369       !$ACC HOST(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1370       !$ACC HOST(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1371       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1372       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1373       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1386#ifdef _OPENACC
1387       CALL exit_surface_arrays
1388#endif
1389
1390!
1391!--    If required, consider chemical emissions
1392       IF ( air_chemistry  .AND.  do_emis )  THEN
1393!
1394!--       Update the time --> kanani: revise location of this CALL
1395          CALL calc_date_and_time
1396!
1397!--       Call emission routine only once an hour
1398          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1399             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1400             hour_call_emis = hour_of_year
1401          ENDIF
1402       ENDIF
1403
1404!
1405!--    If required, calculate indoor temperature, waste heat, heat flux
1406!--    through wall, etc.
1407!--    dt_indoor steers the frequency of the indoor model calculations
1408       IF ( indoor_model )  THEN
1409
1410          time_indoor = time_indoor + dt_3d
1411
1412          IF ( time_indoor >= dt_indoor )  THEN
1413
1414             time_indoor = time_indoor - dt_indoor
1415
1416             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1417             CALL im_main_heatcool
1418             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1419
1420          ENDIF
1421       ENDIF
1422!
1423!--    Increase simulation time and output times
1424       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1425       current_timestep_number    = current_timestep_number + 1
1426       simulated_time             = simulated_time   + dt_3d
1427       time_since_reference_point = simulated_time - coupling_start_time
1428       simulated_time_chr         = time_to_string( time_since_reference_point )
1429
1430
1431
1432
1433       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1434          time_do_av         = time_do_av       + dt_3d
1435       ENDIF
1436       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1437          time_do2d_xy       = time_do2d_xy     + dt_3d
1438       ENDIF
1439       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1440          time_do2d_xz       = time_do2d_xz     + dt_3d
1441       ENDIF
1442       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1443          time_do2d_yz       = time_do2d_yz     + dt_3d
1444       ENDIF
1445       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1446          time_do3d          = time_do3d        + dt_3d
1447       ENDIF
1448       DO  mid = 1, masks
1449          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1450             time_domask(mid)= time_domask(mid) + dt_3d
1451          ENDIF
1452       ENDDO
1453       time_dvrp          = time_dvrp        + dt_3d
1454       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1455          time_dosp       = time_dosp        + dt_3d
1456       ENDIF
1457       time_dots          = time_dots        + dt_3d
1458       IF ( .NOT. first_call_lpm )  THEN
1459          time_dopts      = time_dopts       + dt_3d
1460       ENDIF
1461       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1462          time_dopr       = time_dopr        + dt_3d
1463       ENDIF
1464       time_dopr_listing  = time_dopr_listing + dt_3d
1465       time_run_control   = time_run_control + dt_3d
1466!
1467!--    Increment time-counter for surface output
1468       IF ( surface_data_output )  THEN
1469          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1470             time_dosurf    = time_dosurf + dt_3d
1471          ENDIF
1472          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1473             time_dosurf_av = time_dosurf_av + dt_3d
1474          ENDIF
1475       ENDIF
1476!
1477!--    In case of synthetic turbulence generation and parametrized turbulence
1478!--    information, update the time counter and if required, adjust the
1479!--    STG to new atmospheric conditions.
1480       IF ( use_syn_turb_gen  )  THEN
1481          IF ( parametrize_inflow_turbulence )  THEN
1482             time_stg_adjust = time_stg_adjust + dt_3d
1483             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1484          ENDIF
1485          time_stg_call = time_stg_call + dt_3d
1486       ENDIF
1487
1488!
1489!--    Data exchange between coupled models
1490       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1491                                          .AND. .NOT. vnested )  THEN
1492          time_coupling = time_coupling + dt_3d
1493
1494!
1495!--       In case of model termination initiated by the local model
1496!--       (terminate_coupled > 0), the coupler must be skipped because it would
1497!--       cause an MPI intercomminucation hang.
1498!--       If necessary, the coupler will be called at the beginning of the
1499!--       next restart run.
1500          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1501             CALL surface_coupler
1502             time_coupling = time_coupling - dt_coupling
1503          ENDDO
1504       ENDIF
1505
1506!
1507!--    Biometeorology calculation of stationary thermal indices
1508!--    Todo (kanani): biometeorology needs own time_... treatment.
1509!--                   It might be that time_do2d_xy differs from time_do3d,
1510!--                   and then we might get trouble with the biomet output,
1511!--                   because we can have 2d and/or 3d biomet output!!
1512       IF (         biometeorology  &
1513             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1514                      .OR.                                                                                   &
1515                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1516                    ) )  THEN
1517!
1518!--       If required, do thermal comfort calculations
1519          IF ( thermal_comfort )  THEN
1520             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1521             time_bio_results = time_since_reference_point
1522          ENDIF
1523!
1524!--       If required, do UV exposure calculations
1525          IF ( uv_exposure )  THEN
1526             CALL uvem_calc_exposure
1527          ENDIF
1528       ENDIF
1529
1530!
1531!--    Execute the gust module actions
1532       IF ( gust_module_enabled )  THEN
1533          CALL gust_actions( 'after_integration' )
1534       ENDIF
1535
1536!
1537!--    Execute user-defined actions
1538       CALL user_actions( 'after_integration' )
1539
1540!
1541!--    If Galilei transformation is used, determine the distance that the
1542!--    model has moved so far
1543       IF ( galilei_transformation )  THEN
1544          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1545          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1546       ENDIF
1547
1548!
1549!--    Check, if restart is necessary (because cpu-time is expiring or
1550!--    because it is forced by user) and set stop flag
1551!--    This call is skipped if the remote model has already initiated a restart.
1552       IF ( .NOT. terminate_run )  CALL check_for_restart
1553
1554!
1555!--    Carry out statistical analysis and output at the requested output times.
1556!--    The MOD function is used for calculating the output time counters (like
1557!--    time_dopr) in order to regard a possible decrease of the output time
1558!--    interval in case of restart runs
1559
1560!
1561!--    Set a flag indicating that so far no statistics have been created
1562!--    for this time step
1563       flow_statistics_called = .FALSE.
1564
1565!
1566!--    If required, call flow_statistics for averaging in time
1567       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1568            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1569            time_since_reference_point >= skip_time_dopr )  THEN
1570          time_dopr_av = time_dopr_av + dt_3d
1571          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1572             do_sum = .TRUE.
1573             time_dopr_av = MOD( time_dopr_av, &
1574                                    MAX( dt_averaging_input_pr, dt_3d ) )
1575          ENDIF
1576       ENDIF
1577       IF ( do_sum )  CALL flow_statistics
1578
1579!
1580!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1581       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1582            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1583            time_since_reference_point >= skip_time_data_output_av )           &
1584       THEN
1585          time_do_sla = time_do_sla + dt_3d
1586          IF ( time_do_sla >= dt_averaging_input )  THEN
1587             CALL sum_up_3d_data
1588             average_count_3d = average_count_3d + 1
1589             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1590          ENDIF
1591       ENDIF
1592!
1593!--    Average surface data
1594       IF ( surface_data_output )  THEN
1595          IF (         averaging_interval_surf /= 0.0_wp                               &
1596                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1597                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1598             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1599                CALL surface_output_averaging
1600                average_count_surf = average_count_surf + 1
1601             ENDIF
1602          ENDIF
1603       ENDIF
1604
1605!
1606!--    Calculate spectra for time averaging
1607       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1608            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1609            time_since_reference_point >= skip_time_dosp )  THEN
1610          time_dosp_av = time_dosp_av + dt_3d
1611          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1612             CALL calc_spectra
1613             time_dosp_av = MOD( time_dosp_av, &
1614                                 MAX( dt_averaging_input_pr, dt_3d ) )
1615          ENDIF
1616       ENDIF
1617
1618!
1619!--    Call flight module and output data
1620       IF ( virtual_flight )  THEN
1621          CALL flight_measurement
1622          CALL data_output_flight
1623       ENDIF
1624!
1625!--    Take virtual measurements
1626       IF ( virtual_measurement  .AND.                                         &
1627            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1628
1629!
1630!--    Profile output (ASCII) on file
1631       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1632          CALL print_1d
1633          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1634                                                           dt_3d ) )
1635       ENDIF
1636
1637!
1638!--    Graphic output for PROFIL
1639       IF (        time_dopr >= dt_dopr                                     &
1640            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1641          IF ( dopr_n /= 0 )  CALL data_output_profiles
1642          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1643          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1644       ENDIF
1645
1646!
1647!--    Graphic output for time series
1648       IF ( time_dots >= dt_dots )  THEN
1649          CALL data_output_tseries
1650          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1651       ENDIF
1652
1653!
1654!--    Output of spectra (formatted for use with PROFIL), in case of no
1655!--    time averaging, spectra has to be calculated before
1656       IF (         time_dosp >= dt_dosp                                     &
1657             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1658          IF ( average_count_sp == 0 )  CALL calc_spectra
1659          CALL data_output_spectra
1660          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1661       ENDIF
1662
1663!
1664!--    2d-data output (cross-sections)
1665       IF (         time_do2d_xy >= dt_do2d_xy                               &
1666             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1667          CALL data_output_2d( 'xy', 0 )
1668          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1669       ENDIF
1670       IF (         time_do2d_xz >= dt_do2d_xz                               &
1671             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1672          CALL data_output_2d( 'xz', 0 )
1673          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1674       ENDIF
1675       IF (         time_do2d_yz >= dt_do2d_yz                               &
1676             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1677          CALL data_output_2d( 'yz', 0 )
1678          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1679       ENDIF
1680
1681!
1682!--    3d-data output (volume data)
1683       IF (         time_do3d >= dt_do3d                                     & 
1684             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1685          CALL data_output_3d( 0 )
1686          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1687       ENDIF
1688
1689!
1690!--    Masked data output
1691       DO  mid = 1, masks
1692          IF (         time_domask(mid) >= dt_domask(mid)                          &
1693                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1694             CALL data_output_mask( 0 )
1695             time_domask(mid) = MOD( time_domask(mid),                             &
1696                                     MAX( dt_domask(mid), dt_3d ) )
1697          ENDIF
1698       ENDDO
1699
1700!
1701!--    Output of time-averaged 2d/3d/masked data
1702       IF (         time_do_av >= dt_data_output_av                                &
1703             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1704          CALL average_3d_data
1705          CALL data_output_2d( 'xy', 1 )
1706          CALL data_output_2d( 'xz', 1 )
1707          CALL data_output_2d( 'yz', 1 )
1708          CALL data_output_3d( 1 )
1709          DO  mid = 1, masks
1710             CALL data_output_mask( 1 )
1711          ENDDO
1712          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1713       ENDIF
1714!
1715!--    Output of surface data, instantaneous and averaged data
1716       IF ( surface_data_output )  THEN
1717          IF (         time_dosurf >= dt_dosurf                                    &
1718                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1719             CALL surface_output( 0 )
1720             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1721          ENDIF
1722          IF (         time_dosurf_av >= dt_dosurf_av                              &
1723                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1724             CALL surface_output( 1 )
1725             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1726          ENDIF
1727       ENDIF
1728
1729!
1730!--    Output of particle time series
1731       IF ( particle_advection )  THEN
1732          IF ( time_dopts >= dt_dopts  .OR.                                    &
1733               ( time_since_reference_point >= particle_advection_start  .AND. &
1734                 first_call_lpm ) )  THEN
1735             CALL data_output_ptseries
1736             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1737          ENDIF
1738       ENDIF
1739
1740!
1741!--    Output of dvrp-graphics (isosurface, particles, slicer)
1742#if defined( __dvrp_graphics )
1743       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1744#endif
1745       IF ( time_dvrp >= dt_dvrp )  THEN
1746          CALL data_output_dvrp
1747          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1748       ENDIF
1749#if defined( __dvrp_graphics )
1750       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1751#endif
1752
1753!
1754!--    If required, set the heat flux for the next time step at a random value
1755       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1756          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1757          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1758          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1759       ENDIF
1760
1761!
1762!--    Execute the gust module actions
1763       IF ( gust_module_enabled )  THEN
1764          CALL gust_actions( 'after_timestep' )
1765       ENDIF
1766
1767!
1768!--    Execute user-defined actions
1769       CALL user_actions( 'after_timestep' )
1770
1771!
1772!--    Determine size of next time step. Save timestep dt_3d because it is
1773!--    newly calculated in routine timestep, but required further below for
1774!--    steering the run control output interval
1775       dt_3d_old = dt_3d
1776       CALL timestep
1777
1778!
1779!--    Synchronize the timestep in case of nested run.
1780       IF ( nested_run )  THEN
1781!
1782!--       Synchronize by unifying the time step.
1783!--       Global minimum of all time-steps is used for all.
1784          CALL pmci_synchronize
1785       ENDIF
1786
1787!
1788!--    Computation and output of run control parameters.
1789!--    This is also done whenever perturbations have been imposed
1790       IF ( time_run_control >= dt_run_control  .OR.                     &
1791            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1792       THEN
1793          CALL run_control
1794          IF ( time_run_control >= dt_run_control )  THEN
1795             time_run_control = MOD( time_run_control, &
1796                                     MAX( dt_run_control, dt_3d_old ) )
1797          ENDIF
1798       ENDIF
1799
1800!
1801!--    Output elapsed simulated time in form of a progress bar on stdout
1802       IF ( myid == 0 )  CALL output_progress_bar
1803
1804       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1805
1806
1807    ENDDO   ! time loop
1808
1809!$ACC END DATA
1810!$ACC END DATA
1811!$ACC END DATA
1812!$ACC END DATA
1813!$ACC END DATA
1814!$ACC END DATA
1815!$ACC END DATA
1816
1817!
1818!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1819    IF ( vnest_init )  CALL vnest_deallocate
1820
1821    IF ( myid == 0 )  CALL finish_progress_bar
1822
1823#if defined( __dvrp_graphics )
1824    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1825#endif
1826
1827    CALL location_message( 'finished time-stepping', .TRUE. )
1828
1829 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.