[1826] | 1 | !> @file plant_canopy_model_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[3885] | 18 | ! Copyright 2017-2019 Institute of Computer Science of the |
---|
| 19 | ! Czech Academy of Sciences, Prague |
---|
[2000] | 20 | !------------------------------------------------------------------------------! |
---|
[1036] | 21 | ! |
---|
[257] | 22 | ! Current revisions: |
---|
[2977] | 23 | ! ------------------ |
---|
[2214] | 24 | ! |
---|
[3885] | 25 | ! |
---|
[2214] | 26 | ! Former revisions: |
---|
| 27 | ! ----------------- |
---|
| 28 | ! $Id: plant_canopy_model_mod.f90 4216 2019-09-04 09:09:03Z scharf $ |
---|
[4216] | 29 | ! Bugfixes in 3d data output |
---|
| 30 | ! |
---|
| 31 | ! 4205 2019-08-30 13:25:00Z suehring |
---|
[4205] | 32 | ! Missing working precision + bugfix in calculation of wind speed |
---|
| 33 | ! |
---|
| 34 | ! 4188 2019-08-26 14:15:47Z suehring |
---|
[4188] | 35 | ! Minor adjustment in error number |
---|
| 36 | ! |
---|
| 37 | ! 4187 2019-08-26 12:43:15Z suehring |
---|
[4187] | 38 | ! Give specific error numbers instead of PA0999 |
---|
| 39 | ! |
---|
| 40 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 41 | ! Corrected "Former revisions" section |
---|
| 42 | ! |
---|
| 43 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 44 | ! Replace function get_topography_top_index by topo_top_ind |
---|
| 45 | ! |
---|
| 46 | ! 4127 2019-07-30 14:47:10Z suehring |
---|
[4127] | 47 | ! Output of 3D plant canopy variables changed. It is now relative to the local |
---|
| 48 | ! terrain rather than located at the acutal vertical level in the model. This |
---|
| 49 | ! way, the vertical dimension of the output can be significantly reduced. |
---|
| 50 | ! (merge from branch resler) |
---|
| 51 | ! |
---|
| 52 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 53 | ! Changes related to global restructuring of location messages and introduction |
---|
| 54 | ! of additional debug messages |
---|
| 55 | ! |
---|
| 56 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
[3761] | 57 | ! unsed variables removed |
---|
| 58 | ! |
---|
| 59 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[3745] | 60 | ! Bugfix in transpiration, floating invalid when temperature |
---|
| 61 | ! becomes > 40 degrees |
---|
| 62 | ! |
---|
| 63 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 64 | ! Some interface calls moved to module_interface + cleanup |
---|
| 65 | ! |
---|
| 66 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3614] | 67 | ! unused variables removed |
---|
[3498] | 68 | ! |
---|
[4182] | 69 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 70 | ! Initial revision |
---|
| 71 | ! |
---|
[138] | 72 | ! Description: |
---|
| 73 | ! ------------ |
---|
[1682] | 74 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
[1826] | 75 | !> profile (subroutine pcm_init). |
---|
[1682] | 76 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
[1826] | 77 | !> due to canopy elements (subroutine pcm_tendency). |
---|
[3744] | 78 | ! |
---|
| 79 | ! @todo - precalculate constant terms in pcm_calc_transpiration_rate |
---|
[4216] | 80 | ! @todo - unify variable names (pcm_, pc_, ...) |
---|
[138] | 81 | !------------------------------------------------------------------------------! |
---|
[1682] | 82 | MODULE plant_canopy_model_mod |
---|
| 83 | |
---|
[1484] | 84 | USE arrays_3d, & |
---|
[3449] | 85 | ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw |
---|
[138] | 86 | |
---|
[3449] | 87 | USE basic_constants_and_equations_mod, & |
---|
| 88 | ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv |
---|
| 89 | |
---|
[3885] | 90 | USE control_parameters, & |
---|
| 91 | ONLY: debug_output, humidity |
---|
[3449] | 92 | |
---|
[1484] | 93 | USE indices, & |
---|
| 94 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
[4168] | 95 | nz, nzb, nzt, topo_top_ind |
---|
[1484] | 96 | |
---|
| 97 | USE kinds |
---|
| 98 | |
---|
[3449] | 99 | USE pegrid |
---|
| 100 | |
---|
[1484] | 101 | |
---|
| 102 | IMPLICIT NONE |
---|
| 103 | |
---|
| 104 | |
---|
[3449] | 105 | CHARACTER (LEN=30) :: canopy_mode = 'block' !< canopy coverage |
---|
| 106 | LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat |
---|
| 107 | !< for resolved plant canopy inside radiation model |
---|
| 108 | !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) |
---|
[1484] | 109 | |
---|
[3449] | 110 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
| 111 | INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
[1484] | 112 | |
---|
[3449] | 113 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top |
---|
[2696] | 114 | |
---|
[3449] | 115 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
[1484] | 116 | |
---|
[2696] | 117 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 118 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
| 119 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
| 120 | REAL(wp) :: cdc = 0.0_wp !< canopy drag coeff. (abbreviation used in equations) |
---|
| 121 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
| 122 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
| 123 | REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient |
---|
| 124 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
| 125 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
| 126 | REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
| 127 | REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
[2768] | 128 | REAL(wp) :: lsc = 0.0_wp !< leaf surface concentration |
---|
[2696] | 129 | REAL(wp) :: lsec = 0.0_wp !< leaf scalar exchange coeff. |
---|
[1484] | 130 | |
---|
[2696] | 131 | REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
| 132 | REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
[1484] | 133 | |
---|
[2977] | 134 | REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types |
---|
| 135 | !< of plant canopy (e.g. deciduous tree during winter) |
---|
| 136 | |
---|
[1682] | 137 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
| 138 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
[1484] | 139 | |
---|
[4127] | 140 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
| 141 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
| 142 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_heating_rate !< plant canopy heating rate |
---|
| 143 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_transpiration_rate !< plant canopy transpiration rate |
---|
| 144 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_latent_rate !< plant canopy latent heating rate |
---|
[1484] | 145 | |
---|
[4127] | 146 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate |
---|
| 147 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate |
---|
| 148 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate |
---|
| 149 | |
---|
[1484] | 150 | SAVE |
---|
| 151 | |
---|
| 152 | |
---|
[138] | 153 | PRIVATE |
---|
[1826] | 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Public functions |
---|
[3449] | 157 | PUBLIC pcm_calc_transpiration_rate, pcm_check_data_output, & |
---|
[4127] | 158 | pcm_check_parameters, pcm_3d_data_averaging, & |
---|
| 159 | pcm_data_output_3d, pcm_define_netcdf_grid, & |
---|
[3449] | 160 | pcm_header, pcm_init, pcm_parin, pcm_tendency |
---|
[138] | 161 | |
---|
[1826] | 162 | ! |
---|
| 163 | !-- Public variables and constants |
---|
[3467] | 164 | PUBLIC cdc, pc_heating_rate, pc_transpiration_rate, pc_latent_rate, & |
---|
| 165 | canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, & |
---|
| 166 | plant_canopy_transpiration |
---|
[1484] | 167 | |
---|
[3449] | 168 | INTERFACE pcm_calc_transpiration_rate |
---|
| 169 | MODULE PROCEDURE pcm_calc_transpiration_rate |
---|
| 170 | END INTERFACE pcm_calc_transpiration_rate |
---|
| 171 | |
---|
[2209] | 172 | INTERFACE pcm_check_data_output |
---|
| 173 | MODULE PROCEDURE pcm_check_data_output |
---|
| 174 | END INTERFACE pcm_check_data_output |
---|
| 175 | |
---|
[1826] | 176 | INTERFACE pcm_check_parameters |
---|
| 177 | MODULE PROCEDURE pcm_check_parameters |
---|
[2209] | 178 | END INTERFACE pcm_check_parameters |
---|
| 179 | |
---|
[4127] | 180 | INTERFACE pcm_3d_data_averaging |
---|
| 181 | MODULE PROCEDURE pcm_3d_data_averaging |
---|
| 182 | END INTERFACE pcm_3d_data_averaging |
---|
| 183 | |
---|
[2209] | 184 | INTERFACE pcm_data_output_3d |
---|
| 185 | MODULE PROCEDURE pcm_data_output_3d |
---|
| 186 | END INTERFACE pcm_data_output_3d |
---|
| 187 | |
---|
| 188 | INTERFACE pcm_define_netcdf_grid |
---|
| 189 | MODULE PROCEDURE pcm_define_netcdf_grid |
---|
| 190 | END INTERFACE pcm_define_netcdf_grid |
---|
[1826] | 191 | |
---|
| 192 | INTERFACE pcm_header |
---|
| 193 | MODULE PROCEDURE pcm_header |
---|
| 194 | END INTERFACE pcm_header |
---|
| 195 | |
---|
| 196 | INTERFACE pcm_init |
---|
| 197 | MODULE PROCEDURE pcm_init |
---|
| 198 | END INTERFACE pcm_init |
---|
[138] | 199 | |
---|
[1826] | 200 | INTERFACE pcm_parin |
---|
| 201 | MODULE PROCEDURE pcm_parin |
---|
[2007] | 202 | END INTERFACE pcm_parin |
---|
| 203 | |
---|
| 204 | INTERFACE pcm_read_plant_canopy_3d |
---|
| 205 | MODULE PROCEDURE pcm_read_plant_canopy_3d |
---|
| 206 | END INTERFACE pcm_read_plant_canopy_3d |
---|
[1826] | 207 | |
---|
| 208 | INTERFACE pcm_tendency |
---|
| 209 | MODULE PROCEDURE pcm_tendency |
---|
| 210 | MODULE PROCEDURE pcm_tendency_ij |
---|
| 211 | END INTERFACE pcm_tendency |
---|
[1484] | 212 | |
---|
| 213 | |
---|
[138] | 214 | CONTAINS |
---|
| 215 | |
---|
[2209] | 216 | |
---|
[3449] | 217 | |
---|
[2209] | 218 | !------------------------------------------------------------------------------! |
---|
| 219 | ! Description: |
---|
| 220 | ! ------------ |
---|
[3449] | 221 | !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart |
---|
| 222 | !> with parametrizations described in Daudet et al. (1999; Agricult. and Forest |
---|
| 223 | !> Meteorol. 97) and Ngao, Adam and Saudreau (2017; Agricult. and Forest Meteorol |
---|
| 224 | !> 237-238). Model functions f1-f4 were adapted from Stewart (1998; Agric. |
---|
| 225 | !> and Forest. Meteorol. 43) instead, because they are valid for broader intervals |
---|
| 226 | !> of values. Funcion f4 used in form present in van Wijk et al. (1998; |
---|
| 227 | !> Tree Physiology 20). |
---|
| 228 | !> |
---|
| 229 | !> This subroutine is called from subroutine radiation_interaction |
---|
| 230 | !> after the calculation of radiation in plant canopy boxes. |
---|
| 231 | !> (arrays pcbinsw and pcbinlw). |
---|
| 232 | !> |
---|
| 233 | !------------------------------------------------------------------------------! |
---|
| 234 | SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) |
---|
| 235 | |
---|
| 236 | USE control_parameters, & |
---|
| 237 | ONLY: dz |
---|
| 238 | |
---|
| 239 | USE grid_variables, & |
---|
| 240 | ONLY: dx, dy |
---|
| 241 | |
---|
| 242 | IMPLICIT NONE |
---|
| 243 | !-- input parameters |
---|
[4205] | 244 | INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox |
---|
| 245 | REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) |
---|
| 246 | REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) |
---|
| 247 | REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) |
---|
| 248 | REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) |
---|
[3449] | 249 | |
---|
| 250 | !-- variables and parameters for calculation of transpiration rate |
---|
[4205] | 251 | REAL(wp) :: sat_press, sat_press_d, temp, v_lad |
---|
| 252 | REAL(wp) :: d_fact, g_b, g_s, wind_speed, evapor_rate |
---|
| 253 | REAL(wp) :: f1, f2, f3, f4, vpd, rswc, e_eq, e_imp, rad |
---|
| 254 | REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) |
---|
| 255 | REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) |
---|
| 256 | REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) |
---|
| 257 | REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) |
---|
| 258 | REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) |
---|
| 259 | REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 |
---|
| 260 | REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 |
---|
[3449] | 261 | |
---|
| 262 | |
---|
| 263 | !-- Temperature (deg C) |
---|
| 264 | temp = pt(k,j,i) * exner(k) - degc_to_k |
---|
| 265 | !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface |
---|
[4205] | 266 | v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) |
---|
[3449] | 267 | !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) |
---|
| 268 | !-- There are updated formulas available, kept consistent with the rest of the parametrization |
---|
| 269 | sat_press = 610.8_wp * exp(17.27_wp * temp/(temp + 237.3_wp)) |
---|
| 270 | !-- Saturation pressure derivative (derivative of the above) |
---|
| 271 | sat_press_d = sat_press * 17.27_wp * 237.3_wp / (temp + 237.3_wp)**2 |
---|
| 272 | !-- Wind speed |
---|
[3744] | 273 | wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & |
---|
[4205] | 274 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & |
---|
| 275 | ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) |
---|
[3449] | 276 | !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 |
---|
| 277 | g_b = 0.01_wp * wind_speed + 0.0071_wp |
---|
| 278 | !-- Radiation flux per leaf surface unit |
---|
| 279 | rad = pcbsw * v_lad |
---|
| 280 | !-- First function for calculation of stomatal conductivity (radiation dependency) |
---|
| 281 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 |
---|
[4205] | 282 | f1 = rad * (1000.0_wp+42.1_wp) / 1000.0_wp / (rad+42.1_wp) |
---|
[3449] | 283 | !-- Second function for calculation of stomatal conductivity (temperature dependency) |
---|
| 284 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 |
---|
[3744] | 285 | f2 = MAX(t2_min, (temp-t2_min) * MAX(0.0_wp,t2_max-temp)**((t2_max-16.9_wp)/(16.9_wp-t2_min)) / & |
---|
[3449] | 286 | ((16.9_wp-t2_min) * (t2_max-16.9_wp)**((t2_max-16.9_wp)/(16.9_wp-t2_min))) ) |
---|
| 287 | !-- Water pressure deficit |
---|
| 288 | !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure |
---|
| 289 | vpd = max( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) |
---|
| 290 | !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) |
---|
| 291 | !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) |
---|
| 292 | !-- The coefficients of the linear dependence should better correspond to broad-leaved trees |
---|
| 293 | !-- than the coefficients from Stewart (1988) which correspond to conifer trees. |
---|
| 294 | vpd = MIN(MAX(vpd,770.0_wp),3820.0_wp) |
---|
[4205] | 295 | f3 = -2E-4_wp * vpd + 1.154_wp |
---|
[3449] | 296 | !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) |
---|
| 297 | !-- Residual soil water content |
---|
| 298 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 |
---|
| 299 | !-- TODO - over LSM surface might be calculated from LSM parameters |
---|
| 300 | rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) |
---|
| 301 | !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of Stewart(1988)) |
---|
[4205] | 302 | f4 = MAX(0.0_wp, MIN(1.0_wp - 0.041_wp * EXP(3.2_wp * rswc), 1.0_wp - 0.041_wp)) |
---|
[3449] | 303 | !-- Stomatal conductivity |
---|
| 304 | !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 |
---|
| 305 | !-- (notation according to Ngao, Adam and Saudreau (2017) and others) |
---|
[4205] | 306 | g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp |
---|
[3449] | 307 | !-- Decoupling factor |
---|
| 308 | !-- Daudet et al. (1999) eq. 6 |
---|
[4205] | 309 | d_fact = (sat_press_d / gama_psychr + 2.0_wp ) / & |
---|
| 310 | (sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) |
---|
[3449] | 311 | !-- Equilibrium evaporation rate |
---|
| 312 | !-- Daudet et al. (1999) eq. 4 |
---|
| 313 | e_eq = (pcbsw + pcblw) * v_lad * sat_press_d / & |
---|
| 314 | gama_psychr /( sat_press_d / gama_psychr + 2.0_wp ) / l_v |
---|
| 315 | !-- Imposed evaporation rate |
---|
| 316 | !-- Daudet et al. (1999) eq. 5 |
---|
| 317 | e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v |
---|
| 318 | !-- Evaporation rate |
---|
| 319 | !-- Daudet et al. (1999) eq. 3 |
---|
| 320 | !-- (evaporation rate is limited to non-negative values) |
---|
| 321 | evapor_rate = MAX(d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp) |
---|
| 322 | !-- Conversion of evaporation rate to q tendency in gridbox |
---|
| 323 | !-- dq/dt = E * LAD * V_g / (rho_air * V_g) |
---|
| 324 | pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt |
---|
| 325 | !-- latent heat from evaporation |
---|
| 326 | pcblh = pcbtr * lv_d_cp !-- = - dT/dt |
---|
| 327 | |
---|
| 328 | END SUBROUTINE pcm_calc_transpiration_rate |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | !------------------------------------------------------------------------------! |
---|
| 332 | ! Description: |
---|
| 333 | ! ------------ |
---|
[2209] | 334 | !> Check data output for plant canopy model |
---|
| 335 | !------------------------------------------------------------------------------! |
---|
| 336 | SUBROUTINE pcm_check_data_output( var, unit ) |
---|
[1826] | 337 | |
---|
[2209] | 338 | |
---|
| 339 | USE control_parameters, & |
---|
[3241] | 340 | ONLY: message_string, urban_surface |
---|
[2209] | 341 | |
---|
| 342 | IMPLICIT NONE |
---|
| 343 | |
---|
| 344 | CHARACTER (LEN=*) :: unit !< |
---|
| 345 | CHARACTER (LEN=*) :: var !< |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | SELECT CASE ( TRIM( var ) ) |
---|
| 349 | |
---|
| 350 | CASE ( 'pcm_heatrate' ) |
---|
[2770] | 351 | IF ( cthf == 0.0_wp .AND. .NOT. urban_surface ) THEN |
---|
[2768] | 352 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
| 353 | 'res setting of parameter cthf /= 0.0' |
---|
| 354 | CALL message( 'pcm_check_data_output', 'PA1000', 1, 2, 0, 6, 0 ) |
---|
| 355 | ENDIF |
---|
[2209] | 356 | unit = 'K s-1' |
---|
| 357 | |
---|
[3014] | 358 | CASE ( 'pcm_transpirationrate' ) |
---|
| 359 | unit = 'kg kg-1 s-1' |
---|
| 360 | |
---|
[3449] | 361 | CASE ( 'pcm_latentrate' ) |
---|
| 362 | unit = 'K s-1' |
---|
| 363 | |
---|
| 364 | CASE ( 'pcm_bowenratio' ) |
---|
| 365 | unit = 'K s-1' |
---|
| 366 | |
---|
[2209] | 367 | CASE ( 'pcm_lad' ) |
---|
| 368 | unit = 'm2 m-3' |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | CASE DEFAULT |
---|
| 372 | unit = 'illegal' |
---|
| 373 | |
---|
| 374 | END SELECT |
---|
| 375 | |
---|
| 376 | |
---|
| 377 | END SUBROUTINE pcm_check_data_output |
---|
| 378 | |
---|
| 379 | |
---|
[1826] | 380 | !------------------------------------------------------------------------------! |
---|
| 381 | ! Description: |
---|
| 382 | ! ------------ |
---|
| 383 | !> Check parameters routine for plant canopy model |
---|
| 384 | !------------------------------------------------------------------------------! |
---|
| 385 | SUBROUTINE pcm_check_parameters |
---|
[138] | 386 | |
---|
[1826] | 387 | USE control_parameters, & |
---|
[3274] | 388 | ONLY: coupling_char, message_string |
---|
[2696] | 389 | |
---|
[3274] | 390 | USE bulk_cloud_model_mod, & |
---|
| 391 | ONLY: bulk_cloud_model, microphysics_seifert |
---|
| 392 | |
---|
[2696] | 393 | USE netcdf_data_input_mod, & |
---|
| 394 | ONLY: input_file_static, input_pids_static |
---|
[1826] | 395 | |
---|
| 396 | |
---|
| 397 | IMPLICIT NONE |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | IF ( canopy_drag_coeff == 0.0_wp ) THEN |
---|
| 401 | message_string = 'plant_canopy = .TRUE. requires a non-zero drag '// & |
---|
[3046] | 402 | 'coefficient & given value is canopy_drag_coeff = 0.0' |
---|
[2768] | 403 | CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) |
---|
[1826] | 404 | ENDIF |
---|
| 405 | |
---|
[3045] | 406 | IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR.& |
---|
[1826] | 407 | beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN |
---|
| 408 | message_string = 'using the beta function for the construction ' // & |
---|
| 409 | 'of the leaf area density profile requires ' // & |
---|
| 410 | 'both alpha_lad and beta_lad to be /= 9999999.9' |
---|
[2768] | 411 | CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) |
---|
[1826] | 412 | ENDIF |
---|
| 413 | |
---|
| 414 | IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN |
---|
| 415 | message_string = 'using the beta function for the construction ' // & |
---|
| 416 | 'of the leaf area density profile requires ' // & |
---|
| 417 | 'a non-zero lai_beta, but given value is ' // & |
---|
| 418 | 'lai_beta = 0.0' |
---|
[2768] | 419 | CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) |
---|
[1826] | 420 | ENDIF |
---|
| 421 | |
---|
| 422 | IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN |
---|
[2274] | 423 | message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & |
---|
| 424 | 'combined with beta_lad /= 9999999.9 ' // & |
---|
[1826] | 425 | 'and lad_surface /= 0.0 is not possible, ' // & |
---|
| 426 | 'use either vertical gradients or the beta ' // & |
---|
| 427 | 'function for the construction of the leaf area '// & |
---|
| 428 | 'density profile' |
---|
[2768] | 429 | CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) |
---|
[1826] | 430 | ENDIF |
---|
| 431 | |
---|
[3274] | 432 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1826] | 433 | message_string = 'plant_canopy = .TRUE. requires cloud_scheme /=' // & |
---|
| 434 | ' seifert_beheng' |
---|
[2768] | 435 | CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) |
---|
[1826] | 436 | ENDIF |
---|
[2696] | 437 | ! |
---|
| 438 | !-- If dynamic input file is used, canopy need to be read from file |
---|
| 439 | IF ( input_pids_static .AND. & |
---|
| 440 | TRIM( canopy_mode ) /= 'read_from_file_3d' ) THEN |
---|
| 441 | message_string = 'Usage of dynamic input file ' // & |
---|
| 442 | TRIM( input_file_static ) // & |
---|
| 443 | TRIM( coupling_char ) // ' requires ' // & |
---|
| 444 | 'canopy_mode = read_from_file_3d' |
---|
[4188] | 445 | CALL message( 'pcm_check_parameters', 'PA0672', 1, 2, 0, 6, 0 ) |
---|
[2696] | 446 | ENDIF |
---|
[1826] | 447 | |
---|
| 448 | |
---|
| 449 | END SUBROUTINE pcm_check_parameters |
---|
| 450 | |
---|
| 451 | |
---|
[138] | 452 | !------------------------------------------------------------------------------! |
---|
[2209] | 453 | ! |
---|
[1484] | 454 | ! Description: |
---|
| 455 | ! ------------ |
---|
[4127] | 456 | !> Subroutine for averaging 3D data |
---|
[2209] | 457 | !------------------------------------------------------------------------------! |
---|
[4216] | 458 | SUBROUTINE pcm_3d_data_averaging( mode, variable ) |
---|
[4127] | 459 | |
---|
| 460 | |
---|
| 461 | USE control_parameters |
---|
| 462 | |
---|
| 463 | USE indices |
---|
| 464 | |
---|
| 465 | USE kinds |
---|
| 466 | |
---|
| 467 | IMPLICIT NONE |
---|
| 468 | |
---|
| 469 | CHARACTER (LEN=*) :: mode !< |
---|
| 470 | CHARACTER (LEN=*) :: variable !< |
---|
| 471 | |
---|
| 472 | INTEGER(iwp) :: i !< |
---|
| 473 | INTEGER(iwp) :: j !< |
---|
| 474 | INTEGER(iwp) :: k !< |
---|
| 475 | |
---|
| 476 | |
---|
| 477 | IF ( mode == 'allocate' ) THEN |
---|
| 478 | |
---|
| 479 | SELECT CASE ( TRIM( variable ) ) |
---|
| 480 | |
---|
| 481 | CASE ( 'pcm_heatrate' ) |
---|
| 482 | IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 483 | ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 484 | ENDIF |
---|
| 485 | pcm_heatrate_av = 0.0_wp |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | CASE ( 'pcm_latentrate' ) |
---|
| 489 | IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 490 | ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 491 | ENDIF |
---|
| 492 | pcm_latentrate_av = 0.0_wp |
---|
| 493 | |
---|
| 494 | |
---|
| 495 | CASE ( 'pcm_transpirationrate' ) |
---|
| 496 | IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 497 | ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 498 | ENDIF |
---|
| 499 | pcm_transpirationrate_av = 0.0_wp |
---|
| 500 | |
---|
| 501 | CASE DEFAULT |
---|
| 502 | CONTINUE |
---|
| 503 | |
---|
| 504 | END SELECT |
---|
| 505 | |
---|
| 506 | ELSEIF ( mode == 'sum' ) THEN |
---|
| 507 | |
---|
| 508 | SELECT CASE ( TRIM( variable ) ) |
---|
| 509 | |
---|
| 510 | CASE ( 'pcm_heatrate' ) |
---|
| 511 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 512 | DO i = nxl, nxr |
---|
| 513 | DO j = nys, nyn |
---|
| 514 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 515 | DO k = 0, pch_index_ji(j,i) |
---|
| 516 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + pc_heating_rate(k,j,i) |
---|
| 517 | ENDDO |
---|
| 518 | ENDIF |
---|
| 519 | ENDDO |
---|
| 520 | ENDDO |
---|
| 521 | ENDIF |
---|
| 522 | |
---|
| 523 | |
---|
| 524 | CASE ( 'pcm_latentrate' ) |
---|
| 525 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 526 | DO i = nxl, nxr |
---|
| 527 | DO j = nys, nyn |
---|
| 528 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 529 | DO k = 0, pch_index_ji(j,i) |
---|
| 530 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + pc_latent_rate(k,j,i) |
---|
| 531 | ENDDO |
---|
| 532 | ENDIF |
---|
| 533 | ENDDO |
---|
| 534 | ENDDO |
---|
| 535 | ENDIF |
---|
| 536 | |
---|
| 537 | |
---|
| 538 | CASE ( 'pcm_transpirationrate' ) |
---|
| 539 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 540 | DO i = nxl, nxr |
---|
| 541 | DO j = nys, nyn |
---|
| 542 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 543 | DO k = 0, pch_index_ji(j,i) |
---|
| 544 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + pc_transpiration_rate(k,j,i) |
---|
| 545 | ENDDO |
---|
| 546 | ENDIF |
---|
| 547 | ENDDO |
---|
| 548 | ENDDO |
---|
| 549 | ENDIF |
---|
| 550 | |
---|
| 551 | CASE DEFAULT |
---|
| 552 | CONTINUE |
---|
| 553 | |
---|
| 554 | END SELECT |
---|
| 555 | |
---|
| 556 | ELSEIF ( mode == 'average' ) THEN |
---|
| 557 | |
---|
| 558 | SELECT CASE ( TRIM( variable ) ) |
---|
| 559 | |
---|
| 560 | CASE ( 'pcm_heatrate' ) |
---|
| 561 | IF ( ALLOCATED( pcm_heatrate_av ) ) THEN |
---|
| 562 | DO i = nxlg, nxrg |
---|
| 563 | DO j = nysg, nyng |
---|
| 564 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 565 | DO k = 0, pch_index_ji(j,i) |
---|
| 566 | pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & |
---|
| 567 | / REAL( average_count_3d, KIND=wp ) |
---|
| 568 | ENDDO |
---|
| 569 | ENDIF |
---|
| 570 | ENDDO |
---|
| 571 | ENDDO |
---|
| 572 | ENDIF |
---|
| 573 | |
---|
| 574 | |
---|
| 575 | CASE ( 'pcm_latentrate' ) |
---|
| 576 | IF ( ALLOCATED( pcm_latentrate_av ) ) THEN |
---|
| 577 | DO i = nxlg, nxrg |
---|
| 578 | DO j = nysg, nyng |
---|
| 579 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 580 | DO k = 0, pch_index_ji(j,i) |
---|
| 581 | pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & |
---|
| 582 | / REAL( average_count_3d, KIND=wp ) |
---|
| 583 | ENDDO |
---|
| 584 | ENDIF |
---|
| 585 | ENDDO |
---|
| 586 | ENDDO |
---|
| 587 | ENDIF |
---|
| 588 | |
---|
| 589 | |
---|
| 590 | CASE ( 'pcm_transpirationrate' ) |
---|
| 591 | IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN |
---|
| 592 | DO i = nxlg, nxrg |
---|
| 593 | DO j = nysg, nyng |
---|
| 594 | IF ( pch_index_ji(j,i) /= 0 ) THEN |
---|
| 595 | DO k = 0, pch_index_ji(j,i) |
---|
| 596 | pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & |
---|
| 597 | / REAL( average_count_3d, KIND=wp ) |
---|
| 598 | ENDDO |
---|
| 599 | ENDIF |
---|
| 600 | ENDDO |
---|
| 601 | ENDDO |
---|
| 602 | ENDIF |
---|
| 603 | |
---|
| 604 | END SELECT |
---|
| 605 | |
---|
| 606 | ENDIF |
---|
| 607 | |
---|
[4216] | 608 | END SUBROUTINE pcm_3d_data_averaging |
---|
[4127] | 609 | |
---|
| 610 | !------------------------------------------------------------------------------! |
---|
| 611 | ! |
---|
| 612 | ! Description: |
---|
| 613 | ! ------------ |
---|
| 614 | !> Subroutine defining 3D output variables. |
---|
| 615 | !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning |
---|
| 616 | !> that 3D output is relative to the model surface now rather than at the actual |
---|
| 617 | !> grid point where the plant canopy is located. |
---|
| 618 | !------------------------------------------------------------------------------! |
---|
[3014] | 619 | SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, & |
---|
| 620 | nzb_do, nzt_do ) |
---|
| 621 | |
---|
[2209] | 622 | USE indices |
---|
| 623 | |
---|
| 624 | USE kinds |
---|
| 625 | |
---|
| 626 | |
---|
| 627 | IMPLICIT NONE |
---|
| 628 | |
---|
[4216] | 629 | CHARACTER (LEN=*) :: variable !< treated variable |
---|
[2209] | 630 | |
---|
[4216] | 631 | INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output |
---|
| 632 | INTEGER(iwp) :: i !< grid index x-direction |
---|
| 633 | INTEGER(iwp) :: j !< grid index y-direction |
---|
| 634 | INTEGER(iwp) :: k !< grid index z-direction |
---|
| 635 | INTEGER(iwp) :: kk !< grid index z-direction relative to canopy arrays |
---|
[3014] | 636 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
| 637 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
[2209] | 638 | |
---|
[4216] | 639 | LOGICAL :: found !< flag indicating if variable is found |
---|
[2209] | 640 | |
---|
[4216] | 641 | REAL(wp) :: fill_value !< fill value |
---|
| 642 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array |
---|
[2209] | 643 | |
---|
| 644 | |
---|
| 645 | found = .TRUE. |
---|
| 646 | |
---|
[2696] | 647 | local_pf = REAL( fill_value, KIND = 4 ) |
---|
[2209] | 648 | |
---|
| 649 | SELECT CASE ( TRIM( variable ) ) |
---|
[4216] | 650 | ! |
---|
| 651 | !-- Note, to save memory arrays for heating are allocated from 0:pch_index. |
---|
| 652 | !-- Thus, output must be relative to these array indices. Further, check |
---|
| 653 | !-- whether the output is within the vertical output range, |
---|
| 654 | !-- i.e. nzb_do:nzt_do. |
---|
[4127] | 655 | CASE ( 'pcm_heatrate' ) |
---|
| 656 | IF ( av == 0 ) THEN |
---|
| 657 | DO i = nxl, nxr |
---|
| 658 | DO j = nys, nyn |
---|
[4216] | 659 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 660 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 661 | kk = k - topo_top_ind(j,i,0) |
---|
| 662 | local_pf(i,j,k) = pc_heating_rate(kk,j,i) |
---|
| 663 | ENDDO |
---|
[4127] | 664 | ENDDO |
---|
| 665 | ENDDO |
---|
| 666 | ELSE |
---|
| 667 | DO i = nxl, nxr |
---|
| 668 | DO j = nys, nyn |
---|
[4216] | 669 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 670 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 671 | kk = k - topo_top_ind(j,i,0) |
---|
| 672 | local_pf(i,j,k) = pcm_heatrate_av(kk,j,i) |
---|
[4127] | 673 | ENDDO |
---|
| 674 | ENDDO |
---|
| 675 | ENDDO |
---|
| 676 | ENDIF |
---|
[3449] | 677 | |
---|
| 678 | CASE ( 'pcm_latentrate' ) |
---|
[4127] | 679 | IF ( av == 0 ) THEN |
---|
| 680 | DO i = nxl, nxr |
---|
| 681 | DO j = nys, nyn |
---|
[4216] | 682 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 683 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 684 | kk = k - topo_top_ind(j,i,0) |
---|
| 685 | local_pf(i,j,k) = pc_latent_rate(kk,j,i) |
---|
| 686 | ENDDO |
---|
[4127] | 687 | ENDDO |
---|
| 688 | ENDDO |
---|
| 689 | ELSE |
---|
| 690 | DO i = nxl, nxr |
---|
| 691 | DO j = nys, nyn |
---|
[4216] | 692 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 693 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 694 | kk = k - topo_top_ind(j,i,0) |
---|
| 695 | local_pf(i,j,k) = pcm_latentrate_av(kk,j,i) |
---|
[4127] | 696 | ENDDO |
---|
| 697 | ENDDO |
---|
| 698 | ENDDO |
---|
| 699 | ENDIF |
---|
[3449] | 700 | |
---|
[4127] | 701 | CASE ( 'pcm_transpirationrate' ) |
---|
| 702 | IF ( av == 0 ) THEN |
---|
| 703 | DO i = nxl, nxr |
---|
| 704 | DO j = nys, nyn |
---|
[4216] | 705 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 706 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 707 | kk = k - topo_top_ind(j,i,0) |
---|
| 708 | local_pf(i,j,k) = pc_transpiration_rate(kk,j,i) |
---|
| 709 | ENDDO |
---|
[4127] | 710 | ENDDO |
---|
| 711 | ENDDO |
---|
| 712 | ELSE |
---|
| 713 | DO i = nxl, nxr |
---|
| 714 | DO j = nys, nyn |
---|
[4216] | 715 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 716 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 717 | kk = k - topo_top_ind(j,i,0) |
---|
| 718 | local_pf(i,j,k) = pcm_transpirationrate_av(kk,j,i) |
---|
[4127] | 719 | ENDDO |
---|
| 720 | ENDDO |
---|
| 721 | ENDDO |
---|
| 722 | ENDIF |
---|
| 723 | |
---|
[3449] | 724 | CASE ( 'pcm_bowenratio' ) |
---|
[4127] | 725 | IF ( av == 0 ) THEN |
---|
| 726 | DO i = nxl, nxr |
---|
| 727 | DO j = nys, nyn |
---|
[4216] | 728 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 729 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 730 | kk = k - topo_top_ind(j,i,0) |
---|
| 731 | IF ( pc_latent_rate(kk,j,i) /= 0.0_wp ) THEN |
---|
| 732 | local_pf(i,j,k) = pc_heating_rate(kk,j,i) / & |
---|
| 733 | pc_latent_rate(kk,j,i) |
---|
| 734 | ENDIF |
---|
| 735 | ENDDO |
---|
[4127] | 736 | ENDDO |
---|
| 737 | ENDDO |
---|
[4216] | 738 | ELSE |
---|
| 739 | DO i = nxl, nxr |
---|
| 740 | DO j = nys, nyn |
---|
| 741 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 742 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 743 | kk = k - topo_top_ind(j,i,0) |
---|
| 744 | IF ( pcm_latentrate_av(kk,j,i) /= 0.0_wp ) THEN |
---|
| 745 | local_pf(i,j,k) = pcm_heatrate_av(kk,j,i) / & |
---|
| 746 | pcm_latentrate_av(kk,j,i) |
---|
| 747 | ENDIF |
---|
| 748 | ENDDO |
---|
| 749 | ENDDO |
---|
| 750 | ENDDO |
---|
[4127] | 751 | ENDIF |
---|
[3449] | 752 | |
---|
[4127] | 753 | CASE ( 'pcm_lad' ) |
---|
| 754 | IF ( av == 0 ) THEN |
---|
| 755 | DO i = nxl, nxr |
---|
| 756 | DO j = nys, nyn |
---|
[4216] | 757 | DO k = MAX( topo_top_ind(j,i,0)+1, nzb_do ), & |
---|
| 758 | MIN( topo_top_ind(j,i,0) + pch_index_ji(j,i), nzt_do ) |
---|
| 759 | kk = k - topo_top_ind(j,i,0) |
---|
| 760 | local_pf(i,j,k) = lad_s(kk,j,i) |
---|
| 761 | ENDDO |
---|
[4127] | 762 | ENDDO |
---|
| 763 | ENDDO |
---|
| 764 | ENDIF |
---|
| 765 | |
---|
[2209] | 766 | CASE DEFAULT |
---|
| 767 | found = .FALSE. |
---|
| 768 | |
---|
| 769 | END SELECT |
---|
| 770 | |
---|
| 771 | |
---|
| 772 | END SUBROUTINE pcm_data_output_3d |
---|
| 773 | |
---|
| 774 | !------------------------------------------------------------------------------! |
---|
| 775 | ! |
---|
| 776 | ! Description: |
---|
| 777 | ! ------------ |
---|
| 778 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 779 | !> It is called from subroutine netcdf. |
---|
| 780 | !------------------------------------------------------------------------------! |
---|
| 781 | SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 782 | |
---|
| 783 | IMPLICIT NONE |
---|
| 784 | |
---|
| 785 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 786 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 787 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 788 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 789 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
| 790 | |
---|
| 791 | found = .TRUE. |
---|
| 792 | |
---|
| 793 | ! |
---|
| 794 | !-- Check for the grid |
---|
| 795 | SELECT CASE ( TRIM( var ) ) |
---|
| 796 | |
---|
[3449] | 797 | CASE ( 'pcm_heatrate', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate', 'pcm_bowenratio') |
---|
[2209] | 798 | grid_x = 'x' |
---|
| 799 | grid_y = 'y' |
---|
[4127] | 800 | grid_z = 'zpc' |
---|
[2209] | 801 | |
---|
| 802 | CASE DEFAULT |
---|
| 803 | found = .FALSE. |
---|
| 804 | grid_x = 'none' |
---|
| 805 | grid_y = 'none' |
---|
| 806 | grid_z = 'none' |
---|
| 807 | END SELECT |
---|
| 808 | |
---|
| 809 | END SUBROUTINE pcm_define_netcdf_grid |
---|
| 810 | |
---|
| 811 | |
---|
| 812 | !------------------------------------------------------------------------------! |
---|
| 813 | ! Description: |
---|
| 814 | ! ------------ |
---|
[1826] | 815 | !> Header output for plant canopy model |
---|
| 816 | !------------------------------------------------------------------------------! |
---|
| 817 | SUBROUTINE pcm_header ( io ) |
---|
| 818 | |
---|
| 819 | USE control_parameters, & |
---|
[3065] | 820 | ONLY: passive_scalar |
---|
[1826] | 821 | |
---|
| 822 | |
---|
| 823 | IMPLICIT NONE |
---|
| 824 | |
---|
| 825 | CHARACTER (LEN=10) :: coor_chr !< |
---|
| 826 | |
---|
| 827 | CHARACTER (LEN=86) :: coordinates !< |
---|
| 828 | CHARACTER (LEN=86) :: gradients !< |
---|
| 829 | CHARACTER (LEN=86) :: leaf_area_density !< |
---|
| 830 | CHARACTER (LEN=86) :: slices !< |
---|
| 831 | |
---|
| 832 | INTEGER(iwp) :: i !< |
---|
| 833 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 834 | INTEGER(iwp) :: k !< |
---|
| 835 | |
---|
| 836 | REAL(wp) :: canopy_height !< canopy height (in m) |
---|
| 837 | |
---|
[3065] | 838 | canopy_height = zw(pch_index) |
---|
[1826] | 839 | |
---|
| 840 | WRITE ( io, 1 ) canopy_mode, canopy_height, pch_index, & |
---|
| 841 | canopy_drag_coeff |
---|
| 842 | IF ( passive_scalar ) THEN |
---|
| 843 | WRITE ( io, 2 ) leaf_scalar_exch_coeff, & |
---|
| 844 | leaf_surface_conc |
---|
| 845 | ENDIF |
---|
| 846 | |
---|
| 847 | ! |
---|
| 848 | !-- Heat flux at the top of vegetation |
---|
| 849 | WRITE ( io, 3 ) cthf |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- Leaf area density profile, calculated either from given vertical |
---|
| 853 | !-- gradients or from beta probability density function. |
---|
| 854 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 855 | |
---|
| 856 | !-- Building output strings, starting with surface value |
---|
| 857 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 858 | gradients = '------' |
---|
| 859 | slices = ' 0' |
---|
| 860 | coordinates = ' 0.0' |
---|
| 861 | i = 1 |
---|
| 862 | DO WHILE ( i < 11 .AND. lad_vertical_gradient_level_ind(i) & |
---|
| 863 | /= -9999 ) |
---|
| 864 | |
---|
| 865 | WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) |
---|
| 866 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 867 | TRIM( coor_chr ) |
---|
| 868 | |
---|
| 869 | WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) |
---|
| 870 | gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) |
---|
| 871 | |
---|
| 872 | WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) |
---|
| 873 | slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) |
---|
| 874 | |
---|
| 875 | WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) |
---|
| 876 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 877 | |
---|
| 878 | i = i + 1 |
---|
| 879 | ENDDO |
---|
| 880 | |
---|
| 881 | WRITE ( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 882 | TRIM( gradients ), TRIM( slices ) |
---|
| 883 | |
---|
| 884 | ELSE |
---|
| 885 | |
---|
| 886 | WRITE ( leaf_area_density, '(F7.4)' ) lad_surface |
---|
| 887 | coordinates = ' 0.0' |
---|
| 888 | |
---|
| 889 | DO k = 1, pch_index |
---|
| 890 | |
---|
| 891 | WRITE (coor_chr,'(F7.2)') lad(k) |
---|
| 892 | leaf_area_density = TRIM( leaf_area_density ) // ' ' // & |
---|
| 893 | TRIM( coor_chr ) |
---|
| 894 | |
---|
| 895 | WRITE (coor_chr,'(F7.1)') zu(k) |
---|
| 896 | coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) |
---|
| 897 | |
---|
| 898 | ENDDO |
---|
| 899 | |
---|
| 900 | WRITE ( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), & |
---|
| 901 | alpha_lad, beta_lad, lai_beta |
---|
| 902 | |
---|
| 903 | ENDIF |
---|
| 904 | |
---|
| 905 | 1 FORMAT (//' Vegetation canopy (drag) model:'/ & |
---|
| 906 | ' ------------------------------'// & |
---|
| 907 | ' Canopy mode: ', A / & |
---|
| 908 | ' Canopy height: ',F6.2,'m (',I4,' grid points)' / & |
---|
| 909 | ' Leaf drag coefficient: ',F6.2 /) |
---|
| 910 | 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & |
---|
| 911 | ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) |
---|
| 912 | 3 FORMAT (' Predefined constant heatflux at the top of the vegetation: ',F6.2, & |
---|
| 913 | ' K m/s') |
---|
| 914 | 4 FORMAT (/ ' Characteristic levels of the leaf area density:'// & |
---|
| 915 | ' Height: ',A,' m'/ & |
---|
| 916 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 917 | ' Gradient: ',A,' m**2/m**4'/ & |
---|
| 918 | ' Gridpoint: ',A) |
---|
| 919 | 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:'& |
---|
| 920 | // ' Height: ',A,' m'/ & |
---|
| 921 | ' Leaf area density: ',A,' m**2/m**3'/ & |
---|
| 922 | ' Coefficient alpha: ',F6.2 / & |
---|
| 923 | ' Coefficient beta: ',F6.2 / & |
---|
| 924 | ' Leaf area index: ',F6.2,' m**2/m**2' /) |
---|
| 925 | |
---|
| 926 | END SUBROUTINE pcm_header |
---|
| 927 | |
---|
| 928 | |
---|
| 929 | !------------------------------------------------------------------------------! |
---|
| 930 | ! Description: |
---|
| 931 | ! ------------ |
---|
[1682] | 932 | !> Initialization of the plant canopy model |
---|
[138] | 933 | !------------------------------------------------------------------------------! |
---|
[1826] | 934 | SUBROUTINE pcm_init |
---|
[1484] | 935 | |
---|
| 936 | |
---|
| 937 | USE control_parameters, & |
---|
[3614] | 938 | ONLY: message_string, ocean_mode |
---|
[1484] | 939 | |
---|
[2696] | 940 | USE netcdf_data_input_mod, & |
---|
| 941 | ONLY: leaf_area_density_f |
---|
| 942 | |
---|
[2232] | 943 | USE surface_mod, & |
---|
| 944 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
[1484] | 945 | |
---|
| 946 | IMPLICIT NONE |
---|
| 947 | |
---|
[2007] | 948 | INTEGER(iwp) :: i !< running index |
---|
| 949 | INTEGER(iwp) :: j !< running index |
---|
| 950 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 951 | INTEGER(iwp) :: m !< running index |
---|
[1484] | 952 | |
---|
[2007] | 953 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
| 954 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
| 955 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
[3241] | 956 | |
---|
[3885] | 957 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) |
---|
[1484] | 958 | ! |
---|
| 959 | !-- Allocate one-dimensional arrays for the computation of the |
---|
| 960 | !-- leaf area density (lad) profile |
---|
| 961 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 962 | lad = 0.0_wp |
---|
| 963 | pre_lad = 0.0_wp |
---|
| 964 | |
---|
| 965 | ! |
---|
[1826] | 966 | !-- Set flag that indicates that the lad-profile shall be calculated by using |
---|
| 967 | !-- a beta probability density function |
---|
| 968 | IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN |
---|
| 969 | calc_beta_lad_profile = .TRUE. |
---|
| 970 | ENDIF |
---|
| 971 | |
---|
| 972 | |
---|
| 973 | ! |
---|
[1484] | 974 | !-- Compute the profile of leaf area density used in the plant |
---|
| 975 | !-- canopy model. The profile can either be constructed from |
---|
| 976 | !-- prescribed vertical gradients of the leaf area density or by |
---|
| 977 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
| 978 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
| 979 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 980 | |
---|
| 981 | ! |
---|
| 982 | !-- Use vertical gradients for lad-profile construction |
---|
| 983 | i = 1 |
---|
| 984 | gradient = 0.0_wp |
---|
| 985 | |
---|
[3294] | 986 | IF ( .NOT. ocean_mode ) THEN |
---|
[1484] | 987 | |
---|
| 988 | lad(0) = lad_surface |
---|
| 989 | lad_vertical_gradient_level_ind(1) = 0 |
---|
| 990 | |
---|
| 991 | DO k = 1, pch_index |
---|
| 992 | IF ( i < 11 ) THEN |
---|
| 993 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
| 994 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 995 | gradient = lad_vertical_gradient(i) |
---|
| 996 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 997 | i = i + 1 |
---|
| 998 | ENDIF |
---|
| 999 | ENDIF |
---|
| 1000 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 1001 | IF ( k /= 1 ) THEN |
---|
| 1002 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
| 1003 | ELSE |
---|
| 1004 | lad(k) = lad_surface + dzu(k) * gradient |
---|
| 1005 | ENDIF |
---|
| 1006 | ELSE |
---|
| 1007 | lad(k) = lad(k-1) |
---|
| 1008 | ENDIF |
---|
| 1009 | ENDDO |
---|
| 1010 | |
---|
| 1011 | ENDIF |
---|
| 1012 | |
---|
| 1013 | ! |
---|
| 1014 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
| 1015 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
| 1016 | !-- file. |
---|
| 1017 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 1018 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 1019 | ENDIF |
---|
| 1020 | |
---|
| 1021 | ELSE |
---|
| 1022 | |
---|
| 1023 | ! |
---|
| 1024 | !-- Use beta function for lad-profile construction |
---|
| 1025 | int_bpdf = 0.0_wp |
---|
[3065] | 1026 | canopy_height = zw(pch_index) |
---|
[1484] | 1027 | |
---|
[2232] | 1028 | DO k = 0, pch_index |
---|
[1484] | 1029 | int_bpdf = int_bpdf + & |
---|
[1826] | 1030 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 1031 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1032 | beta_lad-1.0_wp ) ) & |
---|
| 1033 | * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
[1484] | 1034 | ENDDO |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Preliminary lad profile (defined on w-grid) |
---|
[2232] | 1038 | DO k = 0, pch_index |
---|
[1826] | 1039 | pre_lad(k) = lai_beta * & |
---|
| 1040 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & |
---|
| 1041 | * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & |
---|
| 1042 | beta_lad-1.0_wp ) ) / int_bpdf & |
---|
| 1043 | ) / canopy_height |
---|
[1484] | 1044 | ENDDO |
---|
| 1045 | |
---|
| 1046 | ! |
---|
| 1047 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
| 1048 | !-- quantities are defined there, hence, less interpolation is required |
---|
| 1049 | !-- when calculating the canopy tendencies) |
---|
| 1050 | lad(0) = pre_lad(0) |
---|
[2232] | 1051 | DO k = 1, pch_index |
---|
[1484] | 1052 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
| 1053 | ENDDO |
---|
| 1054 | |
---|
| 1055 | ENDIF |
---|
| 1056 | |
---|
| 1057 | ! |
---|
[2213] | 1058 | !-- Allocate 3D-array for the leaf area density (lad_s). |
---|
[1484] | 1059 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 1063 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 1064 | !-- with the prescribed values |
---|
| 1065 | cdc = canopy_drag_coeff |
---|
| 1066 | lsec = leaf_scalar_exch_coeff |
---|
| 1067 | lsc = leaf_surface_conc |
---|
| 1068 | |
---|
| 1069 | ! |
---|
| 1070 | !-- Initialization of the canopy coverage in the model domain: |
---|
| 1071 | !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which |
---|
| 1072 | !-- fully covers the domain surface |
---|
| 1073 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 1074 | |
---|
| 1075 | CASE( 'block' ) |
---|
| 1076 | |
---|
| 1077 | DO i = nxlg, nxrg |
---|
| 1078 | DO j = nysg, nyng |
---|
| 1079 | lad_s(:,j,i) = lad(:) |
---|
| 1080 | ENDDO |
---|
| 1081 | ENDDO |
---|
| 1082 | |
---|
[2007] | 1083 | CASE ( 'read_from_file_3d' ) |
---|
| 1084 | ! |
---|
[2696] | 1085 | !-- Initialize LAD with data from file. If LAD is given in NetCDF file, |
---|
| 1086 | !-- use these values, else take LAD profiles from ASCII file. |
---|
| 1087 | !-- Please note, in NetCDF file LAD is only given up to the maximum |
---|
| 1088 | !-- canopy top, indicated by leaf_area_density_f%nz. |
---|
| 1089 | lad_s = 0.0_wp |
---|
| 1090 | IF ( leaf_area_density_f%from_file ) THEN |
---|
| 1091 | ! |
---|
| 1092 | !-- Set also pch_index, used to be the upper bound of the vertical |
---|
| 1093 | !-- loops. Therefore, use the global top of the canopy layer. |
---|
| 1094 | pch_index = leaf_area_density_f%nz - 1 |
---|
| 1095 | |
---|
| 1096 | DO i = nxl, nxr |
---|
| 1097 | DO j = nys, nyn |
---|
| 1098 | DO k = 0, leaf_area_density_f%nz - 1 |
---|
[3864] | 1099 | IF ( leaf_area_density_f%var(k,j,i) /= & |
---|
| 1100 | leaf_area_density_f%fill ) & |
---|
[2696] | 1101 | lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) |
---|
| 1102 | ENDDO |
---|
| 1103 | ENDDO |
---|
| 1104 | ENDDO |
---|
[4187] | 1105 | |
---|
[2696] | 1106 | CALL exchange_horiz( lad_s, nbgp ) |
---|
| 1107 | ! |
---|
| 1108 | ! ASCII file |
---|
[2007] | 1109 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 1110 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 1111 | !-- from file which contains complete 3D data (separate vertical profiles for |
---|
| 1112 | !-- each location). |
---|
[2696] | 1113 | ELSE |
---|
| 1114 | CALL pcm_read_plant_canopy_3d |
---|
| 1115 | ENDIF |
---|
[2007] | 1116 | |
---|
[1484] | 1117 | CASE DEFAULT |
---|
| 1118 | ! |
---|
[2007] | 1119 | !-- The DEFAULT case is reached either if the parameter |
---|
| 1120 | !-- canopy mode contains a wrong character string or if the |
---|
| 1121 | !-- user has coded a special case in the user interface. |
---|
| 1122 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 1123 | !-- which of these two conditions applies. |
---|
| 1124 | CALL user_init_plant_canopy |
---|
[1484] | 1125 | |
---|
| 1126 | END SELECT |
---|
[2696] | 1127 | ! |
---|
| 1128 | !-- Initialize 2D index array indicating canopy top index. |
---|
| 1129 | ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) |
---|
| 1130 | pch_index_ji = 0 |
---|
[4187] | 1131 | |
---|
[2696] | 1132 | DO i = nxl, nxr |
---|
| 1133 | DO j = nys, nyn |
---|
| 1134 | DO k = 0, pch_index |
---|
| 1135 | IF ( lad_s(k,j,i) /= 0 ) pch_index_ji(j,i) = k |
---|
| 1136 | ENDDO |
---|
[1484] | 1137 | ! |
---|
[2696] | 1138 | !-- Check whether topography and local vegetation on top exceed |
---|
| 1139 | !-- height of the model domain. |
---|
[4168] | 1140 | k = topo_top_ind(j,i,0) |
---|
[2696] | 1141 | IF ( k + pch_index_ji(j,i) >= nzt + 1 ) THEN |
---|
| 1142 | message_string = 'Local vegetation height on top of ' // & |
---|
| 1143 | 'topography exceeds height of model domain.' |
---|
[4187] | 1144 | CALL message( 'pcm_init', 'PA0674', 2, 2, 0, 6, 0 ) |
---|
[2696] | 1145 | ENDIF |
---|
| 1146 | |
---|
| 1147 | ENDDO |
---|
| 1148 | ENDDO |
---|
| 1149 | |
---|
| 1150 | CALL exchange_horiz_2d_int( pch_index_ji, nys, nyn, nxl, nxr, nbgp ) |
---|
[3497] | 1151 | ! |
---|
[3449] | 1152 | !-- Calculate global pch_index value (index of top of plant canopy from ground) |
---|
[3497] | 1153 | pch_index = MAXVAL( pch_index_ji ) |
---|
[4187] | 1154 | |
---|
| 1155 | |
---|
[3497] | 1156 | ! |
---|
[3449] | 1157 | !-- Exchange pch_index from all processors |
---|
| 1158 | #if defined( __parallel ) |
---|
[3497] | 1159 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, & |
---|
| 1160 | MPI_MAX, comm2d, ierr) |
---|
[3449] | 1161 | #endif |
---|
| 1162 | |
---|
| 1163 | !-- Allocation of arrays pc_heating_rate, pc_transpiration_rate and pc_latent_rate |
---|
| 1164 | ALLOCATE( pc_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1165 | IF ( humidity ) THEN |
---|
| 1166 | ALLOCATE( pc_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1167 | pc_transpiration_rate = 0.0_wp |
---|
| 1168 | ALLOCATE( pc_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) |
---|
| 1169 | pc_latent_rate = 0.0_wp |
---|
| 1170 | ENDIF |
---|
[2696] | 1171 | ! |
---|
[2011] | 1172 | !-- Initialization of the canopy heat source distribution due to heating |
---|
| 1173 | !-- of the canopy layers by incoming solar radiation, in case that a non-zero |
---|
| 1174 | !-- value is set for the canopy top heat flux (cthf), which equals the |
---|
| 1175 | !-- available net radiation at canopy top. |
---|
| 1176 | !-- The heat source distribution is calculated by a decaying exponential |
---|
| 1177 | !-- function of the downward cumulative leaf area index (cum_lai_hf), |
---|
| 1178 | !-- assuming that the foliage inside the plant canopy is heated by solar |
---|
| 1179 | !-- radiation penetrating the canopy layers according to the distribution |
---|
| 1180 | !-- of net radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, |
---|
| 1181 | !-- 73â96). This approach has been applied e.g. by Shaw & Schumann (1992; |
---|
[2213] | 1182 | !-- Bound.-Layer Meteorol. 61, 47â64). |
---|
[3449] | 1183 | !-- When using the radiation_interactions, canopy heating (pc_heating_rate) |
---|
| 1184 | !-- and plant canopy transpiration (pc_transpiration_rate, pc_latent_rate) |
---|
| 1185 | !-- are calculated in the RTM after the calculation of radiation. |
---|
| 1186 | !-- We cannot use variable radiation_interactions here to determine the situation |
---|
| 1187 | !-- as it is assigned in init_3d_model after the call of pcm_init. |
---|
| 1188 | IF ( cthf /= 0.0_wp ) THEN |
---|
[2213] | 1189 | |
---|
[3449] | 1190 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1484] | 1191 | ! |
---|
[2011] | 1192 | !-- Piecewise calculation of the cumulative leaf area index by vertical |
---|
[1484] | 1193 | !-- integration of the leaf area density |
---|
| 1194 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 1195 | DO i = nxlg, nxrg |
---|
| 1196 | DO j = nysg, nyng |
---|
[2696] | 1197 | DO k = pch_index_ji(j,i)-1, 0, -1 |
---|
| 1198 | IF ( k == pch_index_ji(j,i)-1 ) THEN |
---|
[1484] | 1199 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1200 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 1201 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1202 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1203 | lad_s(k,j,i) ) + & |
---|
| 1204 | lad_s(k+1,j,i) ) * & |
---|
| 1205 | ( zu(k+1) - zw(k) ) ) |
---|
| 1206 | ELSE |
---|
| 1207 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 1208 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 1209 | lad_s(k+1,j,i) ) + & |
---|
| 1210 | lad_s(k+1,j,i) ) * & |
---|
| 1211 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 1212 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 1213 | lad_s(k,j,i) ) + & |
---|
| 1214 | lad_s(k+1,j,i) ) * & |
---|
| 1215 | ( zu(k+1) - zw(k) ) ) |
---|
| 1216 | ENDIF |
---|
| 1217 | ENDDO |
---|
| 1218 | ENDDO |
---|
| 1219 | ENDDO |
---|
| 1220 | |
---|
[2232] | 1221 | ! |
---|
| 1222 | !-- In areas with canopy the surface value of the canopy heat |
---|
| 1223 | !-- flux distribution overrides the surface heat flux (shf) |
---|
| 1224 | !-- Start with default surface type |
---|
| 1225 | DO m = 1, surf_def_h(0)%ns |
---|
| 1226 | k = surf_def_h(0)%k(m) |
---|
| 1227 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1228 | surf_def_h(0)%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1229 | ENDDO |
---|
[1484] | 1230 | ! |
---|
[2232] | 1231 | !-- Natural surfaces |
---|
| 1232 | DO m = 1, surf_lsm_h%ns |
---|
| 1233 | k = surf_lsm_h%k(m) |
---|
| 1234 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1235 | surf_lsm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1236 | ENDDO |
---|
| 1237 | ! |
---|
| 1238 | !-- Urban surfaces |
---|
| 1239 | DO m = 1, surf_usm_h%ns |
---|
| 1240 | k = surf_usm_h%k(m) |
---|
| 1241 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & |
---|
| 1242 | surf_usm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) |
---|
| 1243 | ENDDO |
---|
| 1244 | ! |
---|
| 1245 | ! |
---|
[2011] | 1246 | !-- Calculation of the heating rate (K/s) within the different layers of |
---|
[2232] | 1247 | !-- the plant canopy. Calculation is only necessary in areas covered with |
---|
| 1248 | !-- canopy. |
---|
| 1249 | !-- Within the different canopy layers the plant-canopy heating |
---|
| 1250 | !-- rate (pc_heating_rate) is calculated as the vertical |
---|
| 1251 | !-- divergence of the canopy heat fluxes at the top and bottom |
---|
| 1252 | !-- of the respective layer |
---|
[1484] | 1253 | DO i = nxlg, nxrg |
---|
| 1254 | DO j = nysg, nyng |
---|
[2696] | 1255 | DO k = 1, pch_index_ji(j,i) |
---|
[2232] | 1256 | IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN |
---|
[3022] | 1257 | pc_heating_rate(k,j,i) = cthf * & |
---|
| 1258 | ( exp(-ext_coef*cum_lai_hf(k,j,i)) - & |
---|
[2232] | 1259 | exp(-ext_coef*cum_lai_hf(k-1,j,i) ) ) / dzw(k) |
---|
| 1260 | ENDIF |
---|
| 1261 | ENDDO |
---|
[1721] | 1262 | ENDDO |
---|
| 1263 | ENDDO |
---|
[1484] | 1264 | |
---|
| 1265 | ENDIF |
---|
| 1266 | |
---|
[3885] | 1267 | IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) |
---|
[1484] | 1268 | |
---|
[3685] | 1269 | |
---|
[1826] | 1270 | END SUBROUTINE pcm_init |
---|
[1484] | 1271 | |
---|
| 1272 | |
---|
[2007] | 1273 | !------------------------------------------------------------------------------! |
---|
| 1274 | ! Description: |
---|
| 1275 | ! ------------ |
---|
[2932] | 1276 | !> Parin for &plant_canopy_parameters for plant canopy model |
---|
[2007] | 1277 | !------------------------------------------------------------------------------! |
---|
| 1278 | SUBROUTINE pcm_parin |
---|
[1484] | 1279 | |
---|
[2746] | 1280 | USE control_parameters, & |
---|
[2932] | 1281 | ONLY: message_string, plant_canopy |
---|
[2007] | 1282 | |
---|
| 1283 | IMPLICIT NONE |
---|
| 1284 | |
---|
| 1285 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 1286 | |
---|
[2932] | 1287 | NAMELIST /plant_canopy_parameters/ & |
---|
| 1288 | alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1289 | canopy_mode, cthf, & |
---|
[2977] | 1290 | lad_surface, lad_type_coef, & |
---|
[2932] | 1291 | lad_vertical_gradient, & |
---|
| 1292 | lad_vertical_gradient_level, & |
---|
| 1293 | lai_beta, & |
---|
| 1294 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1295 | leaf_surface_conc, pch_index, & |
---|
| 1296 | plant_canopy_transpiration |
---|
[2932] | 1297 | |
---|
[2007] | 1298 | NAMELIST /canopy_par/ alpha_lad, beta_lad, canopy_drag_coeff, & |
---|
| 1299 | canopy_mode, cthf, & |
---|
[2977] | 1300 | lad_surface, lad_type_coef, & |
---|
[2007] | 1301 | lad_vertical_gradient, & |
---|
| 1302 | lad_vertical_gradient_level, & |
---|
| 1303 | lai_beta, & |
---|
| 1304 | leaf_scalar_exch_coeff, & |
---|
[3449] | 1305 | leaf_surface_conc, pch_index, & |
---|
| 1306 | plant_canopy_transpiration |
---|
[3246] | 1307 | |
---|
[2007] | 1308 | line = ' ' |
---|
[3246] | 1309 | |
---|
[2007] | 1310 | ! |
---|
| 1311 | !-- Try to find radiation model package |
---|
| 1312 | REWIND ( 11 ) |
---|
| 1313 | line = ' ' |
---|
[3248] | 1314 | DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) |
---|
[3246] | 1315 | READ ( 11, '(A)', END=12 ) line |
---|
[2007] | 1316 | ENDDO |
---|
| 1317 | BACKSPACE ( 11 ) |
---|
| 1318 | |
---|
| 1319 | ! |
---|
| 1320 | !-- Read user-defined namelist |
---|
[3246] | 1321 | READ ( 11, plant_canopy_parameters, ERR = 10 ) |
---|
[2932] | 1322 | |
---|
| 1323 | ! |
---|
| 1324 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 1325 | plant_canopy = .TRUE. |
---|
[3246] | 1326 | |
---|
| 1327 | GOTO 14 |
---|
| 1328 | |
---|
| 1329 | 10 BACKSPACE( 11 ) |
---|
[3248] | 1330 | READ( 11 , '(A)') line |
---|
| 1331 | CALL parin_fail_message( 'plant_canopy_parameters', line ) |
---|
[2932] | 1332 | ! |
---|
| 1333 | !-- Try to find old namelist |
---|
[3246] | 1334 | 12 REWIND ( 11 ) |
---|
[2932] | 1335 | line = ' ' |
---|
[3248] | 1336 | DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) |
---|
[3246] | 1337 | READ ( 11, '(A)', END=14 ) line |
---|
[2932] | 1338 | ENDDO |
---|
| 1339 | BACKSPACE ( 11 ) |
---|
| 1340 | |
---|
| 1341 | ! |
---|
| 1342 | !-- Read user-defined namelist |
---|
[3246] | 1343 | READ ( 11, canopy_par, ERR = 13, END = 14 ) |
---|
[2007] | 1344 | |
---|
[2932] | 1345 | message_string = 'namelist canopy_par is deprecated and will be ' // & |
---|
[3046] | 1346 | 'removed in near future. Please use namelist ' // & |
---|
[2932] | 1347 | 'plant_canopy_parameters instead' |
---|
| 1348 | CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
[3246] | 1349 | |
---|
[2007] | 1350 | ! |
---|
| 1351 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 1352 | plant_canopy = .TRUE. |
---|
| 1353 | |
---|
[3246] | 1354 | GOTO 14 |
---|
[2007] | 1355 | |
---|
[3246] | 1356 | 13 BACKSPACE( 11 ) |
---|
[3248] | 1357 | READ( 11 , '(A)') line |
---|
| 1358 | CALL parin_fail_message( 'canopy_par', line ) |
---|
[3246] | 1359 | |
---|
| 1360 | 14 CONTINUE |
---|
| 1361 | |
---|
| 1362 | |
---|
[2007] | 1363 | END SUBROUTINE pcm_parin |
---|
| 1364 | |
---|
| 1365 | |
---|
| 1366 | |
---|
[1484] | 1367 | !------------------------------------------------------------------------------! |
---|
| 1368 | ! Description: |
---|
| 1369 | ! ------------ |
---|
[2007] | 1370 | ! |
---|
| 1371 | !> Loads 3D plant canopy data from file. File format is as follows: |
---|
| 1372 | !> |
---|
| 1373 | !> num_levels |
---|
[2977] | 1374 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1375 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
| 1376 | !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) |
---|
[2007] | 1377 | !> ... |
---|
| 1378 | !> |
---|
| 1379 | !> i.e. first line determines number of levels and further lines represent plant |
---|
| 1380 | !> canopy data, one line per column and variable. In each data line, |
---|
| 1381 | !> dtype represents variable to be set: |
---|
| 1382 | !> |
---|
| 1383 | !> dtype=1: leaf area density (lad_s) |
---|
[2213] | 1384 | !> dtype=2....n: some additional plant canopy input data quantity |
---|
[2007] | 1385 | !> |
---|
| 1386 | !> Zeros are added automatically above num_levels until top of domain. Any |
---|
| 1387 | !> non-specified (x,y) columns have zero values as default. |
---|
| 1388 | !------------------------------------------------------------------------------! |
---|
| 1389 | SUBROUTINE pcm_read_plant_canopy_3d |
---|
[2213] | 1390 | |
---|
| 1391 | USE control_parameters, & |
---|
[3241] | 1392 | ONLY: coupling_char, message_string |
---|
[2007] | 1393 | |
---|
[2213] | 1394 | USE indices, & |
---|
| 1395 | ONLY: nbgp |
---|
| 1396 | |
---|
| 1397 | IMPLICIT NONE |
---|
[2007] | 1398 | |
---|
[2213] | 1399 | INTEGER(iwp) :: dtype !< type of input data (1=lad) |
---|
[2977] | 1400 | INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) |
---|
[2213] | 1401 | INTEGER(iwp) :: i, j !< running index |
---|
| 1402 | INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy |
---|
[3337] | 1403 | INTEGER(iwp) :: nzpltop !< |
---|
| 1404 | INTEGER(iwp) :: nzpl !< |
---|
| 1405 | INTEGER(iwp) :: kk !< |
---|
[2213] | 1406 | |
---|
| 1407 | REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data |
---|
[2007] | 1408 | |
---|
[2213] | 1409 | ! |
---|
| 1410 | !-- Initialize lad_s array |
---|
| 1411 | lad_s = 0.0_wp |
---|
| 1412 | |
---|
| 1413 | ! |
---|
| 1414 | !-- Open and read plant canopy input data |
---|
[2977] | 1415 | OPEN(152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), & |
---|
| 1416 | ACCESS='SEQUENTIAL', ACTION='READ', STATUS='OLD', & |
---|
| 1417 | FORM='FORMATTED', ERR=515) |
---|
| 1418 | READ(152, *, ERR=516, END=517) nzp !< read first line = number of vertical layers |
---|
[3337] | 1419 | nzpltop = MIN(nzt+1, nzb+nzp-1) |
---|
| 1420 | nzpl = nzpltop - nzb + 1 !< no. of layers to assign |
---|
[2977] | 1421 | ALLOCATE( col(0:nzp-1) ) |
---|
[2007] | 1422 | |
---|
[2213] | 1423 | DO |
---|
[2977] | 1424 | READ(152, *, ERR=516, END=517) dtype, i, j, pctype, col(:) |
---|
| 1425 | IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE |
---|
| 1426 | |
---|
| 1427 | SELECT CASE (dtype) |
---|
| 1428 | CASE( 1 ) !< leaf area density |
---|
[2213] | 1429 | ! |
---|
[2977] | 1430 | !-- This is just the pure canopy layer assumed to be grounded to |
---|
| 1431 | !-- a flat domain surface. At locations where plant canopy sits |
---|
| 1432 | !-- on top of any kind of topography, the vertical plant column |
---|
| 1433 | !-- must be "lifted", which is done in SUBROUTINE pcm_tendency. |
---|
| 1434 | IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type |
---|
| 1435 | WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & |
---|
| 1436 | 'Allowed values 0 <= pctype <= 10, ' // & |
---|
| 1437 | 'but pctype is ', pctype |
---|
| 1438 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) |
---|
| 1439 | ENDIF |
---|
[4168] | 1440 | kk = topo_top_ind(j,i,0) |
---|
[3337] | 1441 | lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) |
---|
[2977] | 1442 | CASE DEFAULT |
---|
| 1443 | WRITE(message_string, '(a,i2,a)') & |
---|
| 1444 | 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' |
---|
| 1445 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) |
---|
| 1446 | END SELECT |
---|
[2213] | 1447 | ENDDO |
---|
[2007] | 1448 | |
---|
[2213] | 1449 | 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' |
---|
| 1450 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) |
---|
[2007] | 1451 | |
---|
[2213] | 1452 | 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' |
---|
| 1453 | CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) |
---|
| 1454 | |
---|
| 1455 | 517 CLOSE(152) |
---|
[2977] | 1456 | DEALLOCATE( col ) |
---|
[2213] | 1457 | |
---|
| 1458 | CALL exchange_horiz( lad_s, nbgp ) |
---|
[2007] | 1459 | |
---|
| 1460 | END SUBROUTINE pcm_read_plant_canopy_3d |
---|
| 1461 | |
---|
| 1462 | |
---|
| 1463 | |
---|
| 1464 | !------------------------------------------------------------------------------! |
---|
| 1465 | ! Description: |
---|
| 1466 | ! ------------ |
---|
[1682] | 1467 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1468 | !> canopy on momentum and scalar quantities. |
---|
| 1469 | !> |
---|
| 1470 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1471 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1472 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1473 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1474 | !> k = pch_index. Here, the lad is zero. |
---|
| 1475 | !> |
---|
| 1476 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1477 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1478 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1479 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1480 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1481 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1482 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1483 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1484 | !> |
---|
| 1485 | !> |
---|
| 1486 | !> Call for all grid points |
---|
[1484] | 1487 | !------------------------------------------------------------------------------! |
---|
[1826] | 1488 | SUBROUTINE pcm_tendency( component ) |
---|
[138] | 1489 | |
---|
| 1490 | |
---|
[1320] | 1491 | USE control_parameters, & |
---|
[1484] | 1492 | ONLY: dt_3d, message_string |
---|
[1320] | 1493 | |
---|
| 1494 | USE kinds |
---|
| 1495 | |
---|
[138] | 1496 | IMPLICIT NONE |
---|
| 1497 | |
---|
[1682] | 1498 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1499 | INTEGER(iwp) :: i !< running index |
---|
| 1500 | INTEGER(iwp) :: j !< running index |
---|
| 1501 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1502 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1503 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[1484] | 1504 | |
---|
[1682] | 1505 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1506 | REAL(wp) :: lad_local !< local lad value |
---|
| 1507 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1508 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1509 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1510 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1511 | |
---|
| 1512 | |
---|
| 1513 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1514 | |
---|
| 1515 | ! |
---|
[1484] | 1516 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 1517 | SELECT CASE ( component ) |
---|
| 1518 | |
---|
| 1519 | ! |
---|
| 1520 | !-- u-component |
---|
| 1521 | CASE ( 1 ) |
---|
| 1522 | DO i = nxlu, nxr |
---|
| 1523 | DO j = nys, nyn |
---|
[2232] | 1524 | ! |
---|
| 1525 | !-- Determine topography-top index on u-grid |
---|
[4168] | 1526 | k_wall = topo_top_ind(j,i,1) |
---|
[2696] | 1527 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1528 | |
---|
[2232] | 1529 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1530 | ! |
---|
| 1531 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1532 | !-- the lad on the u-grid at index (k,j,i) is equal to |
---|
| 1533 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1534 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1535 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1536 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 1537 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
[1721] | 1538 | lad_local = lad_s(kk,j,i) |
---|
| 1539 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp )& |
---|
| 1540 | THEN |
---|
| 1541 | lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1542 | ENDIF |
---|
| 1543 | |
---|
| 1544 | pre_tend = 0.0_wp |
---|
| 1545 | pre_u = 0.0_wp |
---|
| 1546 | ! |
---|
| 1547 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1548 | pre_tend = - cdc * & |
---|
| 1549 | lad_local * & |
---|
| 1550 | SQRT( u(k,j,i)**2 + & |
---|
| 1551 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1552 | v(k,j,i) + & |
---|
| 1553 | v(k,j+1,i) + & |
---|
| 1554 | v(k,j+1,i-1) ) & |
---|
| 1555 | )**2 + & |
---|
| 1556 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1557 | w(k-1,j,i) + & |
---|
| 1558 | w(k,j,i-1) + & |
---|
| 1559 | w(k,j,i) ) & |
---|
| 1560 | )**2 & |
---|
| 1561 | ) * & |
---|
| 1562 | u(k,j,i) |
---|
| 1563 | |
---|
| 1564 | ! |
---|
| 1565 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1566 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1567 | ! |
---|
| 1568 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1569 | !-- and in case the signs are different, limit the tendency |
---|
| 1570 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1571 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1572 | ELSE |
---|
| 1573 | pre_tend = pre_tend |
---|
| 1574 | ENDIF |
---|
| 1575 | ! |
---|
| 1576 | !-- Calculate final tendency |
---|
| 1577 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1578 | |
---|
[138] | 1579 | ENDDO |
---|
| 1580 | ENDDO |
---|
| 1581 | ENDDO |
---|
| 1582 | |
---|
| 1583 | ! |
---|
| 1584 | !-- v-component |
---|
| 1585 | CASE ( 2 ) |
---|
| 1586 | DO i = nxl, nxr |
---|
| 1587 | DO j = nysv, nyn |
---|
[2232] | 1588 | ! |
---|
| 1589 | !-- Determine topography-top index on v-grid |
---|
[4168] | 1590 | k_wall = topo_top_ind(j,i,2) |
---|
[2317] | 1591 | |
---|
[2696] | 1592 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[1484] | 1593 | |
---|
[2232] | 1594 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1595 | ! |
---|
| 1596 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1597 | !-- the lad on the v-grid at index (k,j,i) is equal to |
---|
| 1598 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 1599 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 1600 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 1601 | !-- For the same reason, the lad at the northmost(j+1) canopy |
---|
| 1602 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
[1721] | 1603 | lad_local = lad_s(kk,j,i) |
---|
| 1604 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp )& |
---|
| 1605 | THEN |
---|
| 1606 | lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1607 | ENDIF |
---|
| 1608 | |
---|
| 1609 | pre_tend = 0.0_wp |
---|
| 1610 | pre_v = 0.0_wp |
---|
| 1611 | ! |
---|
| 1612 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1613 | pre_tend = - cdc * & |
---|
| 1614 | lad_local * & |
---|
| 1615 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1616 | u(k,j-1,i+1) + & |
---|
| 1617 | u(k,j,i) + & |
---|
| 1618 | u(k,j,i+1) ) & |
---|
| 1619 | )**2 + & |
---|
| 1620 | v(k,j,i)**2 + & |
---|
| 1621 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1622 | w(k-1,j,i) + & |
---|
| 1623 | w(k,j-1,i) + & |
---|
| 1624 | w(k,j,i) ) & |
---|
| 1625 | )**2 & |
---|
| 1626 | ) * & |
---|
| 1627 | v(k,j,i) |
---|
| 1628 | |
---|
| 1629 | ! |
---|
| 1630 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1631 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1632 | ! |
---|
| 1633 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1634 | !-- and in case the signs are different, limit the tendency |
---|
| 1635 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 1636 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 1637 | ELSE |
---|
| 1638 | pre_tend = pre_tend |
---|
| 1639 | ENDIF |
---|
| 1640 | ! |
---|
| 1641 | !-- Calculate final tendency |
---|
| 1642 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1643 | |
---|
[138] | 1644 | ENDDO |
---|
| 1645 | ENDDO |
---|
| 1646 | ENDDO |
---|
| 1647 | |
---|
| 1648 | ! |
---|
| 1649 | !-- w-component |
---|
| 1650 | CASE ( 3 ) |
---|
| 1651 | DO i = nxl, nxr |
---|
| 1652 | DO j = nys, nyn |
---|
[2232] | 1653 | ! |
---|
| 1654 | !-- Determine topography-top index on w-grid |
---|
[4168] | 1655 | k_wall = topo_top_ind(j,i,3) |
---|
[2317] | 1656 | |
---|
[2696] | 1657 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) - 1 |
---|
[1484] | 1658 | |
---|
[2232] | 1659 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 1660 | |
---|
[1484] | 1661 | pre_tend = 0.0_wp |
---|
| 1662 | pre_w = 0.0_wp |
---|
| 1663 | ! |
---|
| 1664 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1665 | pre_tend = - cdc * & |
---|
| 1666 | (0.5_wp * & |
---|
[1721] | 1667 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 1668 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 1669 | u(k,j,i+1) + & |
---|
| 1670 | u(k+1,j,i) + & |
---|
| 1671 | u(k+1,j,i+1) ) & |
---|
| 1672 | )**2 + & |
---|
| 1673 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 1674 | v(k,j+1,i) + & |
---|
| 1675 | v(k+1,j,i) + & |
---|
| 1676 | v(k+1,j+1,i) ) & |
---|
| 1677 | )**2 + & |
---|
| 1678 | w(k,j,i)**2 & |
---|
| 1679 | ) * & |
---|
| 1680 | w(k,j,i) |
---|
| 1681 | ! |
---|
| 1682 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1683 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 1684 | ! |
---|
| 1685 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1686 | !-- and in case the signs are different, limit the tendency |
---|
| 1687 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 1688 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 1689 | ELSE |
---|
| 1690 | pre_tend = pre_tend |
---|
| 1691 | ENDIF |
---|
| 1692 | ! |
---|
| 1693 | !-- Calculate final tendency |
---|
| 1694 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1695 | |
---|
[138] | 1696 | ENDDO |
---|
| 1697 | ENDDO |
---|
| 1698 | ENDDO |
---|
| 1699 | |
---|
| 1700 | ! |
---|
[153] | 1701 | !-- potential temperature |
---|
[138] | 1702 | CASE ( 4 ) |
---|
[3449] | 1703 | IF ( humidity ) THEN |
---|
| 1704 | DO i = nxl, nxr |
---|
| 1705 | DO j = nys, nyn |
---|
| 1706 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1707 | k_wall = topo_top_ind(j,i,0) |
---|
[3449] | 1708 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1709 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1710 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - pc_latent_rate(kk,j,i) |
---|
| 1711 | ENDDO |
---|
[153] | 1712 | ENDDO |
---|
| 1713 | ENDDO |
---|
[3449] | 1714 | ELSE |
---|
| 1715 | DO i = nxl, nxr |
---|
| 1716 | DO j = nys, nyn |
---|
| 1717 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1718 | k_wall = topo_top_ind(j,i,0) |
---|
[3449] | 1719 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
| 1720 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 1721 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 1722 | ENDDO |
---|
| 1723 | ENDDO |
---|
| 1724 | ENDDO |
---|
| 1725 | ENDIF |
---|
[153] | 1726 | |
---|
| 1727 | ! |
---|
[1960] | 1728 | !-- humidity |
---|
[153] | 1729 | CASE ( 5 ) |
---|
| 1730 | DO i = nxl, nxr |
---|
| 1731 | DO j = nys, nyn |
---|
[2232] | 1732 | ! |
---|
| 1733 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1734 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1735 | |
---|
[2696] | 1736 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1737 | |
---|
| 1738 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3014] | 1739 | |
---|
[3449] | 1740 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 1741 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 1742 | ! in case of plant_canopy_transpiration = .T. |
---|
| 1743 | ! to include also the dependecy to the radiation |
---|
| 1744 | ! in the plant canopy box |
---|
[3582] | 1745 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 1746 | * lad_s(kk,j,i) * & |
---|
| 1747 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1748 | u(k,j,i+1) ) & |
---|
| 1749 | )**2 + & |
---|
| 1750 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1751 | v(k,j+1,i) ) & |
---|
| 1752 | )**2 + & |
---|
| 1753 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1754 | w(k,j,i) ) & |
---|
| 1755 | )**2 & |
---|
| 1756 | ) * & |
---|
[3449] | 1757 | ( q(k,j,i) - lsc ) |
---|
| 1758 | ENDIF |
---|
| 1759 | |
---|
[3014] | 1760 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
[153] | 1761 | ENDDO |
---|
| 1762 | ENDDO |
---|
| 1763 | ENDDO |
---|
| 1764 | |
---|
| 1765 | ! |
---|
| 1766 | !-- sgs-tke |
---|
| 1767 | CASE ( 6 ) |
---|
| 1768 | DO i = nxl, nxr |
---|
| 1769 | DO j = nys, nyn |
---|
[2232] | 1770 | ! |
---|
| 1771 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1772 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1773 | |
---|
[2696] | 1774 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1775 | |
---|
| 1776 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1484] | 1777 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1778 | 2.0_wp * cdc * & |
---|
[1721] | 1779 | lad_s(kk,j,i) * & |
---|
[1484] | 1780 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1781 | u(k,j,i+1) ) & |
---|
| 1782 | )**2 + & |
---|
| 1783 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1784 | v(k,j+1,i) ) & |
---|
| 1785 | )**2 + & |
---|
| 1786 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 1787 | w(k+1,j,i) ) & |
---|
| 1788 | )**2 & |
---|
| 1789 | ) * & |
---|
| 1790 | e(k,j,i) |
---|
[138] | 1791 | ENDDO |
---|
| 1792 | ENDDO |
---|
| 1793 | ENDDO |
---|
[1960] | 1794 | ! |
---|
| 1795 | !-- scalar concentration |
---|
| 1796 | CASE ( 7 ) |
---|
| 1797 | DO i = nxl, nxr |
---|
| 1798 | DO j = nys, nyn |
---|
[2232] | 1799 | ! |
---|
| 1800 | !-- Determine topography-top index on scalar-grid |
---|
[4168] | 1801 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 1802 | |
---|
[2696] | 1803 | DO k = k_wall+1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 1804 | |
---|
| 1805 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1960] | 1806 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1807 | lsec * & |
---|
| 1808 | lad_s(kk,j,i) * & |
---|
| 1809 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 1810 | u(k,j,i+1) ) & |
---|
| 1811 | )**2 + & |
---|
| 1812 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 1813 | v(k,j+1,i) ) & |
---|
| 1814 | )**2 + & |
---|
| 1815 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 1816 | w(k,j,i) ) & |
---|
| 1817 | )**2 & |
---|
| 1818 | ) * & |
---|
| 1819 | ( s(k,j,i) - lsc ) |
---|
| 1820 | ENDDO |
---|
| 1821 | ENDDO |
---|
| 1822 | ENDDO |
---|
[1484] | 1823 | |
---|
| 1824 | |
---|
[1960] | 1825 | |
---|
[138] | 1826 | CASE DEFAULT |
---|
| 1827 | |
---|
[257] | 1828 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 1829 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 1830 | |
---|
| 1831 | END SELECT |
---|
| 1832 | |
---|
[1826] | 1833 | END SUBROUTINE pcm_tendency |
---|
[138] | 1834 | |
---|
| 1835 | |
---|
| 1836 | !------------------------------------------------------------------------------! |
---|
[1484] | 1837 | ! Description: |
---|
| 1838 | ! ------------ |
---|
[1682] | 1839 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 1840 | !> canopy on momentum and scalar quantities. |
---|
| 1841 | !> |
---|
| 1842 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
[1826] | 1843 | !> (defined on scalar grid), as initialized in subroutine pcm_init. |
---|
[1682] | 1844 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 1845 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 1846 | !> k = pch_index. Here, the lad is zero. |
---|
| 1847 | !> |
---|
| 1848 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
| 1849 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 1850 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
| 1851 | !> drag alone can locally change the sign of a velocity component. This |
---|
| 1852 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 1853 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
| 1854 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 1855 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 1856 | !> |
---|
| 1857 | !> |
---|
| 1858 | !> Call for grid point i,j |
---|
[138] | 1859 | !------------------------------------------------------------------------------! |
---|
[1826] | 1860 | SUBROUTINE pcm_tendency_ij( i, j, component ) |
---|
[138] | 1861 | |
---|
| 1862 | |
---|
[1320] | 1863 | USE control_parameters, & |
---|
[1484] | 1864 | ONLY: dt_3d, message_string |
---|
[1320] | 1865 | |
---|
| 1866 | USE kinds |
---|
| 1867 | |
---|
[138] | 1868 | IMPLICIT NONE |
---|
| 1869 | |
---|
[1682] | 1870 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
| 1871 | INTEGER(iwp) :: i !< running index |
---|
| 1872 | INTEGER(iwp) :: j !< running index |
---|
| 1873 | INTEGER(iwp) :: k !< running index |
---|
[2232] | 1874 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1721] | 1875 | INTEGER(iwp) :: kk !< running index for flat lad arrays |
---|
[138] | 1876 | |
---|
[1682] | 1877 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
| 1878 | REAL(wp) :: lad_local !< local lad value |
---|
| 1879 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
| 1880 | REAL(wp) :: pre_u !< preliminary u-value |
---|
| 1881 | REAL(wp) :: pre_v !< preliminary v-value |
---|
| 1882 | REAL(wp) :: pre_w !< preliminary w-value |
---|
[1484] | 1883 | |
---|
| 1884 | |
---|
| 1885 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 1886 | ! |
---|
[1484] | 1887 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 1888 | SELECT CASE ( component ) |
---|
[138] | 1889 | |
---|
| 1890 | ! |
---|
[142] | 1891 | !-- u-component |
---|
[1484] | 1892 | CASE ( 1 ) |
---|
[2232] | 1893 | ! |
---|
| 1894 | !-- Determine topography-top index on u-grid |
---|
[4168] | 1895 | k_wall = topo_top_ind(j,i,1) |
---|
[2696] | 1896 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2317] | 1897 | |
---|
[2696] | 1898 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 1899 | |
---|
| 1900 | ! |
---|
[1484] | 1901 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1902 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1903 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1904 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1905 | !-- than inside of the canopy. |
---|
| 1906 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 1907 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
[1721] | 1908 | lad_local = lad_s(kk,j,i) |
---|
| 1909 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp ) THEN |
---|
| 1910 | lad_local = lad_s(kk,j,i-1) |
---|
[1484] | 1911 | ENDIF |
---|
| 1912 | |
---|
| 1913 | pre_tend = 0.0_wp |
---|
| 1914 | pre_u = 0.0_wp |
---|
| 1915 | ! |
---|
| 1916 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1917 | pre_tend = - cdc * & |
---|
| 1918 | lad_local * & |
---|
| 1919 | SQRT( u(k,j,i)**2 + & |
---|
| 1920 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 1921 | v(k,j,i) + & |
---|
| 1922 | v(k,j+1,i) + & |
---|
| 1923 | v(k,j+1,i-1) ) & |
---|
| 1924 | )**2 + & |
---|
| 1925 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 1926 | w(k-1,j,i) + & |
---|
| 1927 | w(k,j,i-1) + & |
---|
| 1928 | w(k,j,i) ) & |
---|
| 1929 | )**2 & |
---|
| 1930 | ) * & |
---|
| 1931 | u(k,j,i) |
---|
| 1932 | |
---|
| 1933 | ! |
---|
| 1934 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1935 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 1936 | ! |
---|
| 1937 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1938 | !-- and in case the signs are different, limit the tendency |
---|
| 1939 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 1940 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 1941 | ELSE |
---|
| 1942 | pre_tend = pre_tend |
---|
| 1943 | ENDIF |
---|
| 1944 | ! |
---|
| 1945 | !-- Calculate final tendency |
---|
| 1946 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 1947 | ENDDO |
---|
| 1948 | |
---|
| 1949 | |
---|
| 1950 | ! |
---|
[142] | 1951 | !-- v-component |
---|
[1484] | 1952 | CASE ( 2 ) |
---|
[2232] | 1953 | ! |
---|
| 1954 | !-- Determine topography-top index on v-grid |
---|
[4168] | 1955 | k_wall = topo_top_ind(j,i,2) |
---|
[2317] | 1956 | |
---|
[2696] | 1957 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[138] | 1958 | |
---|
[2232] | 1959 | kk = k - k_wall !- lad arrays are defined flat |
---|
[138] | 1960 | ! |
---|
[1484] | 1961 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 1962 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 1963 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 1964 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 1965 | !-- than inside of the canopy. |
---|
| 1966 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
| 1967 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
[1721] | 1968 | lad_local = lad_s(kk,j,i) |
---|
| 1969 | IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp ) THEN |
---|
| 1970 | lad_local = lad_s(kk,j-1,i) |
---|
[1484] | 1971 | ENDIF |
---|
| 1972 | |
---|
| 1973 | pre_tend = 0.0_wp |
---|
| 1974 | pre_v = 0.0_wp |
---|
| 1975 | ! |
---|
| 1976 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 1977 | pre_tend = - cdc * & |
---|
| 1978 | lad_local * & |
---|
| 1979 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 1980 | u(k,j-1,i+1) + & |
---|
| 1981 | u(k,j,i) + & |
---|
| 1982 | u(k,j,i+1) ) & |
---|
| 1983 | )**2 + & |
---|
| 1984 | v(k,j,i)**2 + & |
---|
| 1985 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 1986 | w(k-1,j,i) + & |
---|
| 1987 | w(k,j-1,i) + & |
---|
| 1988 | w(k,j,i) ) & |
---|
| 1989 | )**2 & |
---|
| 1990 | ) * & |
---|
| 1991 | v(k,j,i) |
---|
| 1992 | |
---|
| 1993 | ! |
---|
| 1994 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 1995 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 1996 | ! |
---|
| 1997 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 1998 | !-- and in case the signs are different, limit the tendency |
---|
| 1999 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 2000 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 2001 | ELSE |
---|
| 2002 | pre_tend = pre_tend |
---|
| 2003 | ENDIF |
---|
| 2004 | ! |
---|
| 2005 | !-- Calculate final tendency |
---|
| 2006 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2007 | ENDDO |
---|
| 2008 | |
---|
| 2009 | |
---|
| 2010 | ! |
---|
[142] | 2011 | !-- w-component |
---|
[1484] | 2012 | CASE ( 3 ) |
---|
[2232] | 2013 | ! |
---|
| 2014 | !-- Determine topography-top index on w-grid |
---|
[4168] | 2015 | k_wall = topo_top_ind(j,i,3) |
---|
[2317] | 2016 | |
---|
[2696] | 2017 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) - 1 |
---|
[138] | 2018 | |
---|
[2232] | 2019 | kk = k - k_wall !- lad arrays are defined flat |
---|
[1721] | 2020 | |
---|
[1484] | 2021 | pre_tend = 0.0_wp |
---|
| 2022 | pre_w = 0.0_wp |
---|
[138] | 2023 | ! |
---|
[1484] | 2024 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 2025 | pre_tend = - cdc * & |
---|
| 2026 | (0.5_wp * & |
---|
[1721] | 2027 | ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & |
---|
[1484] | 2028 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 2029 | u(k,j,i+1) + & |
---|
| 2030 | u(k+1,j,i) + & |
---|
| 2031 | u(k+1,j,i+1) ) & |
---|
| 2032 | )**2 + & |
---|
| 2033 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 2034 | v(k,j+1,i) + & |
---|
| 2035 | v(k+1,j,i) + & |
---|
| 2036 | v(k+1,j+1,i) ) & |
---|
| 2037 | )**2 + & |
---|
| 2038 | w(k,j,i)**2 & |
---|
| 2039 | ) * & |
---|
| 2040 | w(k,j,i) |
---|
| 2041 | ! |
---|
| 2042 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 2043 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 2044 | ! |
---|
| 2045 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 2046 | !-- and in case the signs are different, limit the tendency |
---|
| 2047 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 2048 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 2049 | ELSE |
---|
| 2050 | pre_tend = pre_tend |
---|
| 2051 | ENDIF |
---|
| 2052 | ! |
---|
| 2053 | !-- Calculate final tendency |
---|
| 2054 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 2055 | ENDDO |
---|
| 2056 | |
---|
| 2057 | ! |
---|
[153] | 2058 | !-- potential temperature |
---|
| 2059 | CASE ( 4 ) |
---|
[2232] | 2060 | ! |
---|
| 2061 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2062 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2063 | |
---|
[3449] | 2064 | IF ( humidity ) THEN |
---|
| 2065 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 2066 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3582] | 2067 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - & |
---|
| 2068 | pc_latent_rate(kk,j,i) |
---|
[3449] | 2069 | ENDDO |
---|
| 2070 | ELSE |
---|
| 2071 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
| 2072 | kk = k - k_wall !- lad arrays are defined flat |
---|
| 2073 | tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) |
---|
| 2074 | ENDDO |
---|
| 2075 | ENDIF |
---|
[153] | 2076 | |
---|
| 2077 | ! |
---|
[1960] | 2078 | !-- humidity |
---|
[153] | 2079 | CASE ( 5 ) |
---|
[2232] | 2080 | ! |
---|
| 2081 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2082 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2083 | |
---|
[2696] | 2084 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[3014] | 2085 | kk = k - k_wall !- lad arrays are defined flat |
---|
[3449] | 2086 | IF ( .NOT. plant_canopy_transpiration ) THEN |
---|
| 2087 | ! pc_transpiration_rate is calculated in radiation model |
---|
| 2088 | ! in case of plant_canopy_transpiration = .T. |
---|
| 2089 | ! to include also the dependecy to the radiation |
---|
| 2090 | ! in the plant canopy box |
---|
[3582] | 2091 | pc_transpiration_rate(kk,j,i) = - lsec & |
---|
| 2092 | * lad_s(kk,j,i) * & |
---|
| 2093 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2094 | u(k,j,i+1) ) & |
---|
| 2095 | )**2 + & |
---|
| 2096 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2097 | v(k,j+1,i) ) & |
---|
| 2098 | )**2 + & |
---|
| 2099 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2100 | w(k,j,i) ) & |
---|
| 2101 | )**2 & |
---|
| 2102 | ) * & |
---|
[3449] | 2103 | ( q(k,j,i) - lsc ) |
---|
| 2104 | ENDIF |
---|
[2232] | 2105 | |
---|
[3014] | 2106 | tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) |
---|
| 2107 | |
---|
[153] | 2108 | ENDDO |
---|
| 2109 | |
---|
| 2110 | ! |
---|
[142] | 2111 | !-- sgs-tke |
---|
[1484] | 2112 | CASE ( 6 ) |
---|
[2232] | 2113 | ! |
---|
| 2114 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2115 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2116 | |
---|
[2696] | 2117 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2118 | |
---|
| 2119 | kk = k - k_wall |
---|
[1484] | 2120 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2121 | 2.0_wp * cdc * & |
---|
[1721] | 2122 | lad_s(kk,j,i) * & |
---|
[1484] | 2123 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2124 | u(k,j,i+1) ) & |
---|
| 2125 | )**2 + & |
---|
| 2126 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2127 | v(k,j+1,i) ) & |
---|
| 2128 | )**2 + & |
---|
| 2129 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 2130 | w(k+1,j,i) ) & |
---|
| 2131 | )**2 & |
---|
| 2132 | ) * & |
---|
| 2133 | e(k,j,i) |
---|
| 2134 | ENDDO |
---|
[1960] | 2135 | |
---|
| 2136 | ! |
---|
| 2137 | !-- scalar concentration |
---|
| 2138 | CASE ( 7 ) |
---|
[2232] | 2139 | ! |
---|
| 2140 | !-- Determine topography-top index on scalar grid |
---|
[4168] | 2141 | k_wall = topo_top_ind(j,i,0) |
---|
[2317] | 2142 | |
---|
[2696] | 2143 | DO k = k_wall + 1, k_wall + pch_index_ji(j,i) |
---|
[2232] | 2144 | |
---|
| 2145 | kk = k - k_wall |
---|
[1960] | 2146 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 2147 | lsec * & |
---|
| 2148 | lad_s(kk,j,i) * & |
---|
| 2149 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 2150 | u(k,j,i+1) ) & |
---|
| 2151 | )**2 + & |
---|
| 2152 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 2153 | v(k,j+1,i) ) & |
---|
| 2154 | )**2 + & |
---|
| 2155 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 2156 | w(k,j,i) ) & |
---|
| 2157 | )**2 & |
---|
| 2158 | ) * & |
---|
| 2159 | ( s(k,j,i) - lsc ) |
---|
| 2160 | ENDDO |
---|
[138] | 2161 | |
---|
[142] | 2162 | CASE DEFAULT |
---|
[138] | 2163 | |
---|
[257] | 2164 | WRITE( message_string, * ) 'wrong component: ', component |
---|
[1826] | 2165 | CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 2166 | |
---|
[142] | 2167 | END SELECT |
---|
[138] | 2168 | |
---|
[1826] | 2169 | END SUBROUTINE pcm_tendency_ij |
---|
[138] | 2170 | |
---|
[2007] | 2171 | |
---|
| 2172 | |
---|
[138] | 2173 | END MODULE plant_canopy_model_mod |
---|