[2338] | 1 | !> @file model_1d_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1961] | 22 | ! |
---|
[3049] | 23 | ! |
---|
[1961] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: model_1d_mod.f90 4182 2019-08-22 15:20:23Z knoop $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3274] | 30 | ! Modularization of all bulk cloud physics code components |
---|
[1961] | 31 | ! |
---|
[4182] | 32 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 33 | ! Initial revision |
---|
| 34 | ! |
---|
| 35 | ! |
---|
[1] | 36 | ! Description: |
---|
| 37 | ! ------------ |
---|
[1682] | 38 | !> 1D-model to initialize the 3D-arrays. |
---|
| 39 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
| 40 | !> of the wind profile is being computed. |
---|
| 41 | !> All subroutines required can be found within this file. |
---|
[1691] | 42 | !> |
---|
| 43 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
[1709] | 44 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
[2965] | 45 | !> @fixme option "as_in_3d_model" seems to be an inappropriate option because |
---|
[2918] | 46 | !> the 1D model uses different turbulence closure approaches at least if |
---|
| 47 | !> the 3D model is set to LES-mode. |
---|
[1] | 48 | !------------------------------------------------------------------------------! |
---|
[2338] | 49 | MODULE model_1d_mod |
---|
[1] | 50 | |
---|
[1320] | 51 | USE arrays_3d, & |
---|
[2918] | 52 | ONLY: dd2zu, ddzu, ddzw, dzu, dzw, pt_init, q_init, ug, u_init, & |
---|
[2338] | 53 | vg, v_init, zu |
---|
[3274] | 54 | |
---|
| 55 | USE basic_constants_and_equations_mod, & |
---|
| 56 | ONLY: g, kappa, pi |
---|
[1320] | 57 | |
---|
[2338] | 58 | USE control_parameters, & |
---|
[3274] | 59 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, f, & |
---|
[2338] | 60 | humidity, ibc_e_b, intermediate_timestep_count, & |
---|
[3274] | 61 | intermediate_timestep_count_max, km_constant, & |
---|
[2338] | 62 | message_string, mixing_length_1d, prandtl_number, & |
---|
[2696] | 63 | roughness_length, run_description_header, simulated_time_chr, & |
---|
| 64 | timestep_scheme, tsc, z0h_factor |
---|
[2338] | 65 | |
---|
[1320] | 66 | USE indices, & |
---|
[2338] | 67 | ONLY: nzb, nzb_diff, nzt |
---|
[1320] | 68 | |
---|
| 69 | USE kinds |
---|
[1] | 70 | |
---|
[3083] | 71 | USE pegrid, & |
---|
| 72 | ONLY: myid |
---|
[2338] | 73 | |
---|
| 74 | |
---|
[1] | 75 | IMPLICIT NONE |
---|
| 76 | |
---|
[2338] | 77 | INTEGER(iwp) :: current_timestep_number_1d = 0 !< current timestep number (1d-model) |
---|
[2696] | 78 | INTEGER(iwp) :: damp_level_ind_1d !< lower grid index of damping layer (1d-model) |
---|
[2338] | 79 | |
---|
| 80 | LOGICAL :: run_control_header_1d = .FALSE. !< flag for output of run control header (1d-model) |
---|
| 81 | LOGICAL :: stop_dt_1d = .FALSE. !< termination flag, used in case of too small timestep (1d-model) |
---|
| 82 | |
---|
[3083] | 83 | REAL(wp) :: alpha_buoyancy !< model constant according to Koblitz (2013) |
---|
[3126] | 84 | REAL(wp) :: c_0 = 0.416179145_wp !< = 0.03^0.25; model constant according to Koblitz (2013) |
---|
[3083] | 85 | REAL(wp) :: c_1 = 1.52_wp !< model constant according to Koblitz (2013) |
---|
| 86 | REAL(wp) :: c_2 = 1.83_wp !< model constant according to Koblitz (2013) |
---|
| 87 | REAL(wp) :: c_3 !< model constant |
---|
| 88 | REAL(wp) :: c_mu !< model constant |
---|
[2696] | 89 | REAL(wp) :: damp_level_1d = -1.0_wp !< namelist parameter |
---|
[2338] | 90 | REAL(wp) :: dt_1d = 60.0_wp !< dynamic timestep (1d-model) |
---|
| 91 | REAL(wp) :: dt_max_1d = 300.0_wp !< timestep limit (1d-model) |
---|
[2696] | 92 | REAL(wp) :: dt_pr_1d = 9999999.9_wp !< namelist parameter |
---|
| 93 | REAL(wp) :: dt_run_control_1d = 60.0_wp !< namelist parameter |
---|
| 94 | REAL(wp) :: end_time_1d = 864000.0_wp !< namelist parameter |
---|
[3083] | 95 | REAL(wp) :: lambda !< maximum mixing length |
---|
[2338] | 96 | REAL(wp) :: qs1d !< characteristic humidity scale (1d-model) |
---|
| 97 | REAL(wp) :: simulated_time_1d = 0.0_wp !< updated simulated time (1d-model) |
---|
[3083] | 98 | REAL(wp) :: sig_diss = 2.95_wp !< model constant according to Koblitz (2013) |
---|
| 99 | REAL(wp) :: sig_e = 2.95_wp !< model constant according to Koblitz (2013) |
---|
[2338] | 100 | REAL(wp) :: time_pr_1d = 0.0_wp !< updated simulated time for profile output (1d-model) |
---|
| 101 | REAL(wp) :: time_run_control_1d = 0.0_wp !< updated simulated time for run-control output (1d-model) |
---|
| 102 | REAL(wp) :: ts1d !< characteristic temperature scale (1d-model) |
---|
[2696] | 103 | REAL(wp) :: us1d !< friction velocity (1d-model) |
---|
| 104 | REAL(wp) :: usws1d !< u-component of the momentum flux (1d-model) |
---|
| 105 | REAL(wp) :: vsws1d !< v-component of the momentum flux (1d-model) |
---|
[2338] | 106 | REAL(wp) :: z01d !< roughness length for momentum (1d-model) |
---|
| 107 | REAL(wp) :: z0h1d !< roughness length for scalars (1d-model) |
---|
| 108 | |
---|
[2696] | 109 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d !< tke dissipation rate (1d-model) |
---|
| 110 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d_p !< prognostic value of tke dissipation rate (1d-model) |
---|
| 111 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d !< tke (1d-model) |
---|
[2338] | 112 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d_p !< prognostic value of tke (1d-model) |
---|
[2696] | 113 | REAL(wp), DIMENSION(:), ALLOCATABLE :: kh1d !< turbulent diffusion coefficient for heat (1d-model) |
---|
| 114 | REAL(wp), DIMENSION(:), ALLOCATABLE :: km1d !< turbulent diffusion coefficient for momentum (1d-model) |
---|
| 115 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d !< mixing length for turbulent diffusion coefficients (1d-model) |
---|
[2918] | 116 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_init !< initial mixing length (1d-model) |
---|
[2338] | 117 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_diss !< mixing length for dissipation (1d-model) |
---|
[2696] | 118 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rif1d !< Richardson flux number (1d-model) |
---|
| 119 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_diss !< tendency of diss (1d-model) |
---|
| 120 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_dissm !< weighted tendency of diss for previous sub-timestep (1d-model) |
---|
[2338] | 121 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_e !< tendency of e (1d-model) |
---|
| 122 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_em !< weighted tendency of e for previous sub-timestep (1d-model) |
---|
| 123 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_u !< tendency of u (1d-model) |
---|
| 124 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_um !< weighted tendency of u for previous sub-timestep (1d-model) |
---|
| 125 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_v !< tendency of v (1d-model) |
---|
| 126 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_vm !< weighted tendency of v for previous sub-timestep (1d-model) |
---|
[2696] | 127 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d !< u-velocity component (1d-model) |
---|
[2338] | 128 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d_p !< prognostic value of u-velocity component (1d-model) |
---|
[2696] | 129 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d !< v-velocity component (1d-model) |
---|
[2338] | 130 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d_p !< prognostic value of v-velocity component (1d-model) |
---|
| 131 | |
---|
| 132 | ! |
---|
| 133 | !-- Initialize 1D model |
---|
| 134 | INTERFACE init_1d_model |
---|
| 135 | MODULE PROCEDURE init_1d_model |
---|
| 136 | END INTERFACE init_1d_model |
---|
| 137 | |
---|
| 138 | ! |
---|
| 139 | !-- Print profiles |
---|
| 140 | INTERFACE print_1d_model |
---|
| 141 | MODULE PROCEDURE print_1d_model |
---|
| 142 | END INTERFACE print_1d_model |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Print run control information |
---|
| 146 | INTERFACE run_control_1d |
---|
| 147 | MODULE PROCEDURE run_control_1d |
---|
| 148 | END INTERFACE run_control_1d |
---|
| 149 | |
---|
| 150 | ! |
---|
| 151 | !-- Main procedure |
---|
| 152 | INTERFACE time_integration_1d |
---|
| 153 | MODULE PROCEDURE time_integration_1d |
---|
| 154 | END INTERFACE time_integration_1d |
---|
| 155 | |
---|
| 156 | ! |
---|
| 157 | !-- Calculate time step |
---|
| 158 | INTERFACE timestep_1d |
---|
| 159 | MODULE PROCEDURE timestep_1d |
---|
| 160 | END INTERFACE timestep_1d |
---|
| 161 | |
---|
| 162 | SAVE |
---|
| 163 | |
---|
| 164 | PRIVATE |
---|
| 165 | ! |
---|
| 166 | !-- Public interfaces |
---|
| 167 | PUBLIC init_1d_model |
---|
| 168 | |
---|
| 169 | ! |
---|
| 170 | !-- Public variables |
---|
[2696] | 171 | PUBLIC damp_level_1d, damp_level_ind_1d, diss1d, dt_pr_1d, & |
---|
| 172 | dt_run_control_1d, e1d, end_time_1d, kh1d, km1d, l1d, rif1d, u1d, & |
---|
| 173 | us1d, usws1d, v1d, vsws1d |
---|
[2338] | 174 | |
---|
| 175 | |
---|
| 176 | CONTAINS |
---|
| 177 | |
---|
| 178 | SUBROUTINE init_1d_model |
---|
| 179 | |
---|
[2918] | 180 | USE grid_variables, & |
---|
| 181 | ONLY: dx, dy |
---|
| 182 | |
---|
[2338] | 183 | IMPLICIT NONE |
---|
| 184 | |
---|
[2696] | 185 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 186 | |
---|
| 187 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Allocate required 1D-arrays |
---|
[2696] | 191 | ALLOCATE( diss1d(nzb:nzt+1), diss1d_p(nzb:nzt+1), & |
---|
| 192 | e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), kh1d(nzb:nzt+1), & |
---|
[2918] | 193 | km1d(nzb:nzt+1), l1d(nzb:nzt+1), l1d_init(nzb:nzt+1), & |
---|
[2696] | 194 | l1d_diss(nzb:nzt+1), rif1d(nzb:nzt+1), te_diss(nzb:nzt+1), & |
---|
| 195 | te_dissm(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
[2338] | 196 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 197 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 198 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
[1] | 199 | |
---|
| 200 | ! |
---|
| 201 | !-- Initialize arrays |
---|
| 202 | IF ( constant_diffusion ) THEN |
---|
[1001] | 203 | km1d = km_constant |
---|
| 204 | kh1d = km_constant / prandtl_number |
---|
[1] | 205 | ELSE |
---|
[2696] | 206 | diss1d = 0.0_wp; diss1d_p = 0.0_wp |
---|
[1353] | 207 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 208 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
| 209 | rif1d = 0.0_wp |
---|
[1] | 210 | ! |
---|
| 211 | !-- Compute the mixing length |
---|
[2918] | 212 | l1d_init(nzb) = 0.0_wp |
---|
[1] | 213 | |
---|
| 214 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 215 | ! |
---|
| 216 | !-- Blackadar mixing length |
---|
[1353] | 217 | IF ( f /= 0.0_wp ) THEN |
---|
| 218 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
| 219 | ABS( f ) + 1E-10_wp |
---|
[1] | 220 | ELSE |
---|
[1353] | 221 | lambda = 30.0_wp |
---|
[1] | 222 | ENDIF |
---|
| 223 | |
---|
| 224 | DO k = nzb+1, nzt+1 |
---|
[2918] | 225 | l1d_init(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 226 | ENDDO |
---|
| 227 | |
---|
| 228 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 229 | ! |
---|
[2918] | 230 | !-- Use the same mixing length as in 3D model (LES-mode) |
---|
[3083] | 231 | !> @todo rename (delete?) this option |
---|
| 232 | !> As the mixing length is different between RANS and LES mode, it |
---|
| 233 | !> must be distinguished here between these modes. For RANS mode, |
---|
| 234 | !> the mixing length is calculated accoding to Blackadar, which is |
---|
| 235 | !> the other option at this point. |
---|
| 236 | !> Maybe delete this option entirely (not appropriate in LES case) |
---|
| 237 | !> 2018-03-20, gronemeier |
---|
[2918] | 238 | DO k = nzb+1, nzt |
---|
| 239 | l1d_init(k) = ( dx * dy * dzw(k) )**0.33333333333333_wp |
---|
| 240 | ENDDO |
---|
| 241 | l1d_init(nzt+1) = l1d_init(nzt) |
---|
[1] | 242 | |
---|
| 243 | ENDIF |
---|
| 244 | ENDIF |
---|
[2918] | 245 | l1d = l1d_init |
---|
| 246 | l1d_diss = l1d_init |
---|
[2337] | 247 | u1d = u_init |
---|
| 248 | u1d_p = u_init |
---|
| 249 | v1d = v_init |
---|
| 250 | v1d_p = v_init |
---|
[1] | 251 | |
---|
| 252 | ! |
---|
| 253 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 254 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 255 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
[1353] | 256 | u1d(0:1) = 0.1_wp |
---|
| 257 | u1d_p(0:1) = 0.1_wp |
---|
| 258 | v1d(0:1) = 0.1_wp |
---|
| 259 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 260 | |
---|
| 261 | ! |
---|
| 262 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
[1691] | 263 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 264 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 265 | ELSE |
---|
[3083] | 266 | diss1d(nzb+1) = 0.001_wp |
---|
[1353] | 267 | e1d(nzb+1) = 1.0_wp |
---|
| 268 | km1d(nzb+1) = 1.0_wp |
---|
| 269 | us1d = 0.0_wp |
---|
[1] | 270 | ENDIF |
---|
[1353] | 271 | ts1d = 0.0_wp |
---|
| 272 | usws1d = 0.0_wp |
---|
| 273 | vsws1d = 0.0_wp |
---|
[996] | 274 | z01d = roughness_length |
---|
[978] | 275 | z0h1d = z0h_factor * z01d |
---|
[1960] | 276 | IF ( humidity ) qs1d = 0.0_wp |
---|
[1] | 277 | |
---|
| 278 | ! |
---|
[3083] | 279 | !-- Tendencies must be preset in order to avoid runtime errors |
---|
| 280 | te_diss = 0.0_wp |
---|
[2696] | 281 | te_dissm = 0.0_wp |
---|
[3083] | 282 | te_e = 0.0_wp |
---|
[1353] | 283 | te_em = 0.0_wp |
---|
| 284 | te_um = 0.0_wp |
---|
| 285 | te_vm = 0.0_wp |
---|
[46] | 286 | |
---|
| 287 | ! |
---|
[2338] | 288 | !-- Set model constant |
---|
[3083] | 289 | IF ( dissipation_1d == 'as_in_3d_model' ) c_0 = 0.1_wp |
---|
| 290 | c_mu = c_0**4 |
---|
[2338] | 291 | |
---|
| 292 | ! |
---|
[1] | 293 | !-- Set start time in hh:mm:ss - format |
---|
| 294 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 295 | |
---|
| 296 | ! |
---|
[2337] | 297 | !-- Integrate the 1D-model equations using the Runge-Kutta scheme |
---|
[1] | 298 | CALL time_integration_1d |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | END SUBROUTINE init_1d_model |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | !------------------------------------------------------------------------------! |
---|
| 306 | ! Description: |
---|
| 307 | ! ------------ |
---|
[2338] | 308 | !> Runge-Kutta time differencing scheme for the 1D-model. |
---|
[1] | 309 | !------------------------------------------------------------------------------! |
---|
[1682] | 310 | |
---|
| 311 | SUBROUTINE time_integration_1d |
---|
[1] | 312 | |
---|
| 313 | IMPLICIT NONE |
---|
| 314 | |
---|
[2696] | 315 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 316 | |
---|
[2338] | 317 | INTEGER(iwp) :: k !< loop index |
---|
[2696] | 318 | |
---|
[2338] | 319 | REAL(wp) :: a !< auxiliary variable |
---|
| 320 | REAL(wp) :: b !< auxiliary variable |
---|
| 321 | REAL(wp) :: dpt_dz !< vertical temperature gradient |
---|
| 322 | REAL(wp) :: flux !< vertical temperature gradient |
---|
| 323 | REAL(wp) :: kmzm !< Km(z-dz/2) |
---|
| 324 | REAL(wp) :: kmzp !< Km(z+dz/2) |
---|
| 325 | REAL(wp) :: l_stable !< mixing length for stable case |
---|
| 326 | REAL(wp) :: pt_0 !< reference temperature |
---|
| 327 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
[1] | 328 | |
---|
| 329 | ! |
---|
| 330 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 331 | !-- determine and printout quantities used for run control |
---|
[3083] | 332 | dt_1d = 0.01_wp |
---|
[1] | 333 | CALL run_control_1d |
---|
| 334 | |
---|
| 335 | ! |
---|
| 336 | !-- Start of time loop |
---|
| 337 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 338 | |
---|
| 339 | ! |
---|
| 340 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 341 | !-- timesteps |
---|
| 342 | |
---|
| 343 | intermediate_timestep_count = 0 |
---|
| 344 | DO WHILE ( intermediate_timestep_count < & |
---|
| 345 | intermediate_timestep_count_max ) |
---|
| 346 | |
---|
| 347 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 348 | |
---|
| 349 | CALL timestep_scheme_steering |
---|
| 350 | |
---|
| 351 | ! |
---|
[2696] | 352 | !-- Compute all tendency terms. If a constant-flux layer is simulated, |
---|
| 353 | !-- k starts at nzb+2. |
---|
[1] | 354 | DO k = nzb_diff, nzt |
---|
| 355 | |
---|
[1353] | 356 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 357 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 358 | ! |
---|
| 359 | !-- u-component |
---|
| 360 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
[1001] | 361 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 362 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
| 363 | ) * ddzw(k) |
---|
[1] | 364 | ! |
---|
| 365 | !-- v-component |
---|
[1001] | 366 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 367 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 368 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
| 369 | ) * ddzw(k) |
---|
[1] | 370 | ENDDO |
---|
| 371 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 372 | DO k = nzb_diff, nzt |
---|
| 373 | ! |
---|
[2696] | 374 | !-- TKE and dissipation rate |
---|
[1353] | 375 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 376 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 377 | IF ( .NOT. humidity ) THEN |
---|
[1] | 378 | pt_0 = pt_init(k) |
---|
| 379 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 380 | ELSE |
---|
[1353] | 381 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 382 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 383 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 384 | pt_init(k-1) * q_init(k-1) ) & |
---|
| 385 | ) * dd2zu(k) |
---|
[1] | 386 | ENDIF |
---|
| 387 | |
---|
[2696] | 388 | ! |
---|
| 389 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 390 | !-- dissipation rate |
---|
[1] | 391 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[3083] | 392 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 393 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2918] | 394 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) & |
---|
[2696] | 395 | ) * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 396 | ENDIF |
---|
[2696] | 397 | ! |
---|
| 398 | !-- TKE |
---|
[1] | 399 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 400 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 401 | ) & |
---|
| 402 | - g / pt_0 * kh1d(k) * flux & |
---|
| 403 | + ( & |
---|
[1001] | 404 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 405 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[3083] | 406 | ) * ddzw(k) / sig_e & |
---|
[2696] | 407 | - diss1d(k) |
---|
| 408 | |
---|
| 409 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 410 | ! |
---|
| 411 | !-- dissipation rate |
---|
[3083] | 412 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 413 | alpha_buoyancy = 1.0_wp - l1d(k) / lambda |
---|
| 414 | ELSE |
---|
| 415 | alpha_buoyancy = 1.0_wp - ( 1.0_wp + ( c_2 - 1.0_wp ) & |
---|
| 416 | / ( c_2 - c_1 ) ) & |
---|
| 417 | * l1d(k) / lambda |
---|
| 418 | ENDIF |
---|
[3135] | 419 | c_3 = ( c_1 - c_2 ) * alpha_buoyancy + 1.0_wp |
---|
[3083] | 420 | te_diss(k) = ( km1d(k) * & |
---|
[2696] | 421 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 422 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
[3083] | 423 | ) * ( c_1 + (c_2 - c_1) * l1d(k) / lambda ) & |
---|
[2696] | 424 | - g / pt_0 * kh1d(k) * flux * c_3 & |
---|
[3083] | 425 | - c_2 * diss1d(k) & |
---|
| 426 | ) * diss1d(k) / ( e1d(k) + 1.0E-20_wp ) & |
---|
| 427 | + ( kmzp * ( diss1d(k+1) - diss1d(k) ) & |
---|
[2696] | 428 | * ddzu(k+1) & |
---|
| 429 | - kmzm * ( diss1d(k) - diss1d(k-1) ) & |
---|
| 430 | * ddzu(k) & |
---|
[3083] | 431 | ) * ddzw(k) / sig_diss |
---|
[2696] | 432 | |
---|
| 433 | ENDIF |
---|
| 434 | |
---|
[1] | 435 | ENDDO |
---|
| 436 | ENDIF |
---|
| 437 | |
---|
| 438 | ! |
---|
[2696] | 439 | !-- Tendency terms at the top of the constant-flux layer. |
---|
[1] | 440 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 441 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
[1691] | 442 | IF ( constant_flux_layer ) THEN |
---|
[1] | 443 | |
---|
| 444 | k = nzb+1 |
---|
[1353] | 445 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 446 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 447 | IF ( .NOT. humidity ) THEN |
---|
[1] | 448 | pt_0 = pt_init(k) |
---|
| 449 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 450 | ELSE |
---|
[1353] | 451 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 452 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 453 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 454 | pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 455 | ) * dd2zu(k) |
---|
| 456 | ENDIF |
---|
| 457 | |
---|
[2696] | 458 | ! |
---|
| 459 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 460 | !-- dissipation rate |
---|
[1] | 461 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[3083] | 462 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 463 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2918] | 464 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) ) & |
---|
[2696] | 465 | * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 466 | ENDIF |
---|
| 467 | |
---|
| 468 | ! |
---|
| 469 | !-- u-component |
---|
[1001] | 470 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 471 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 472 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 473 | ! |
---|
| 474 | !-- v-component |
---|
[1001] | 475 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 476 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 477 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 478 | ! |
---|
| 479 | !-- TKE |
---|
[2696] | 480 | IF ( .NOT. dissipation_1d == 'prognostic' ) THEN |
---|
[3083] | 481 | !> @query why integrate over 2dz |
---|
| 482 | !> Why is it allowed to integrate over two delta-z for e |
---|
| 483 | !> while for u and v it is not? |
---|
| 484 | !> 2018-04-23, gronemeier |
---|
[2696] | 485 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 486 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 487 | ) & |
---|
| 488 | - g / pt_0 * kh1d(k) * flux & |
---|
| 489 | + ( & |
---|
| 490 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 491 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[3083] | 492 | ) * ddzw(k) / sig_e & |
---|
[2696] | 493 | - diss1d(k) |
---|
| 494 | ENDIF |
---|
| 495 | |
---|
[1] | 496 | ENDIF |
---|
| 497 | |
---|
| 498 | ! |
---|
| 499 | !-- Prognostic equations for all 1D variables |
---|
| 500 | DO k = nzb+1, nzt |
---|
| 501 | |
---|
[1001] | 502 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 503 | tsc(3) * te_um(k) ) |
---|
| 504 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 505 | tsc(3) * te_vm(k) ) |
---|
[1] | 506 | |
---|
| 507 | ENDDO |
---|
| 508 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2696] | 509 | |
---|
[1] | 510 | DO k = nzb+1, nzt |
---|
[1001] | 511 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 512 | tsc(3) * te_em(k) ) |
---|
[2696] | 513 | ENDDO |
---|
[1] | 514 | |
---|
| 515 | ! |
---|
| 516 | !-- Eliminate negative TKE values, which can result from the |
---|
| 517 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 518 | !-- value is reduced to 10 percent of its old value. |
---|
[1353] | 519 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[3083] | 520 | |
---|
| 521 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 522 | DO k = nzb+1, nzt |
---|
| 523 | diss1d_p(k) = diss1d(k) + dt_1d * ( tsc(2) * te_diss(k) + & |
---|
| 524 | tsc(3) * te_dissm(k) ) |
---|
| 525 | ENDDO |
---|
| 526 | WHERE ( diss1d_p < 0.0_wp ) diss1d_p = 0.1_wp * diss1d |
---|
| 527 | ENDIF |
---|
[1] | 528 | ENDIF |
---|
| 529 | |
---|
| 530 | ! |
---|
| 531 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 532 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 533 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 534 | |
---|
| 535 | DO k = nzb+1, nzt |
---|
| 536 | te_um(k) = te_u(k) |
---|
| 537 | te_vm(k) = te_v(k) |
---|
| 538 | ENDDO |
---|
| 539 | |
---|
| 540 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 541 | DO k = nzb+1, nzt |
---|
| 542 | te_em(k) = te_e(k) |
---|
| 543 | ENDDO |
---|
[2696] | 544 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 545 | DO k = nzb+1, nzt |
---|
| 546 | te_dissm(k) = te_diss(k) |
---|
| 547 | ENDDO |
---|
| 548 | ENDIF |
---|
[1] | 549 | ENDIF |
---|
| 550 | |
---|
| 551 | ELSEIF ( intermediate_timestep_count < & |
---|
| 552 | intermediate_timestep_count_max ) THEN |
---|
| 553 | |
---|
| 554 | DO k = nzb+1, nzt |
---|
[1353] | 555 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 556 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 557 | ENDDO |
---|
| 558 | |
---|
| 559 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 560 | DO k = nzb+1, nzt |
---|
[1353] | 561 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 562 | ENDDO |
---|
[2696] | 563 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 564 | DO k = nzb+1, nzt |
---|
[3083] | 565 | te_dissm(k) = -9.5625_wp * te_diss(k) & |
---|
| 566 | + 5.3125_wp * te_dissm(k) |
---|
[2696] | 567 | ENDDO |
---|
| 568 | ENDIF |
---|
[1] | 569 | ENDIF |
---|
| 570 | |
---|
| 571 | ENDIF |
---|
| 572 | ENDIF |
---|
| 573 | |
---|
| 574 | ! |
---|
| 575 | !-- Boundary conditions for the prognostic variables. |
---|
[2696] | 576 | !-- At the top boundary (nzt+1) u, v, e, and diss keep their initial |
---|
| 577 | !-- values (ug(nzt+1), vg(nzt+1), 0, 0). |
---|
[2334] | 578 | !-- At the bottom boundary, Dirichlet condition is used for u and v (0) |
---|
[2696] | 579 | !-- and Neumann condition for e and diss (e(nzb)=e(nzb+1)). |
---|
[1353] | 580 | u1d_p(nzb) = 0.0_wp |
---|
| 581 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 582 | |
---|
[1] | 583 | ! |
---|
| 584 | !-- Swap the time levels in preparation for the next time step. |
---|
| 585 | u1d = u1d_p |
---|
| 586 | v1d = v1d_p |
---|
| 587 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 588 | e1d = e1d_p |
---|
[2696] | 589 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 590 | diss1d = diss1d_p |
---|
| 591 | ENDIF |
---|
[1] | 592 | ENDIF |
---|
| 593 | |
---|
| 594 | ! |
---|
| 595 | !-- Compute diffusion quantities |
---|
| 596 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 597 | |
---|
| 598 | ! |
---|
[2696] | 599 | !-- First compute the vertical fluxes in the constant-flux layer |
---|
[1691] | 600 | IF ( constant_flux_layer ) THEN |
---|
[1] | 601 | ! |
---|
| 602 | !-- Compute theta* using Rif numbers of the previous time step |
---|
[2334] | 603 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 604 | ! |
---|
| 605 | !-- Stable stratification |
---|
[1353] | 606 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 607 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 608 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 609 | ) |
---|
| 610 | ELSE |
---|
| 611 | ! |
---|
| 612 | !-- Unstable stratification |
---|
[1353] | 613 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 614 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 615 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 616 | |
---|
| 617 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 618 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 619 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 620 | ENDIF |
---|
| 621 | |
---|
[1691] | 622 | ENDIF ! constant_flux_layer |
---|
[3083] | 623 | !> @todo combine if clauses |
---|
| 624 | !> The previous and following if clauses can be combined into a |
---|
| 625 | !> single clause |
---|
| 626 | !> 2018-04-23, gronemeier |
---|
[1] | 627 | ! |
---|
| 628 | !-- Compute the Richardson-flux numbers, |
---|
[2696] | 629 | !-- first at the top of the constant-flux layer using u* of the |
---|
| 630 | !-- previous time step (+1E-30, if u* = 0), then in the remaining area. |
---|
| 631 | !-- There the rif-numbers of the previous time step are used. |
---|
[1] | 632 | |
---|
[1691] | 633 | IF ( constant_flux_layer ) THEN |
---|
[75] | 634 | IF ( .NOT. humidity ) THEN |
---|
[1] | 635 | pt_0 = pt_init(nzb+1) |
---|
| 636 | flux = ts1d |
---|
| 637 | ELSE |
---|
[1353] | 638 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 639 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 640 | ENDIF |
---|
| 641 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
[1353] | 642 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 643 | ENDIF |
---|
| 644 | |
---|
| 645 | DO k = nzb_diff, nzt |
---|
[75] | 646 | IF ( .NOT. humidity ) THEN |
---|
[1] | 647 | pt_0 = pt_init(k) |
---|
| 648 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 649 | ELSE |
---|
[1353] | 650 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[1] | 651 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
[2337] | 652 | + 0.61_wp & |
---|
| 653 | * ( pt_init(k+1) * q_init(k+1) & |
---|
| 654 | - pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 655 | ) * dd2zu(k) |
---|
| 656 | ENDIF |
---|
[1353] | 657 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 658 | rif1d(k) = g / pt_0 * flux / & |
---|
| 659 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 660 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 661 | + 1E-30_wp & |
---|
[1] | 662 | ) |
---|
| 663 | ELSE |
---|
[1353] | 664 | rif1d(k) = g / pt_0 * flux / & |
---|
| 665 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 666 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 667 | + 1E-30_wp & |
---|
| 668 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 669 | ENDIF |
---|
| 670 | ENDDO |
---|
| 671 | ! |
---|
| 672 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 673 | !-- range. It is exceeded excessively for very small velocities |
---|
| 674 | !-- (u,v --> 0). |
---|
[2059] | 675 | WHERE ( rif1d < -5.0_wp ) rif1d = -5.0_wp |
---|
| 676 | WHERE ( rif1d > 1.0_wp ) rif1d = 1.0_wp |
---|
[1] | 677 | |
---|
| 678 | ! |
---|
| 679 | !-- Compute u* from the absolute velocity value |
---|
[1691] | 680 | IF ( constant_flux_layer ) THEN |
---|
[1] | 681 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 682 | |
---|
[1353] | 683 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 684 | ! |
---|
| 685 | !-- Stable stratification |
---|
| 686 | us1d = kappa * uv_total / ( & |
---|
[1353] | 687 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
[1] | 688 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 689 | ) |
---|
| 690 | ELSE |
---|
| 691 | ! |
---|
| 692 | !-- Unstable stratification |
---|
[1353] | 693 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
| 694 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 695 | zu(nzb+1) * z01d ) ) |
---|
[2337] | 696 | us1d = kappa * uv_total / ( & |
---|
| 697 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 698 | (1.0_wp+a) ) + & |
---|
| 699 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 700 | ) |
---|
[1] | 701 | ENDIF |
---|
| 702 | |
---|
| 703 | ! |
---|
| 704 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 705 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 706 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 707 | |
---|
| 708 | ! |
---|
[2696] | 709 | !-- Boundary condition for the turbulent kinetic energy and |
---|
| 710 | !-- dissipation rate at the top of the constant-flux layer. |
---|
[1] | 711 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 712 | !-- compatibility with the 3D model. |
---|
| 713 | IF ( ibc_e_b == 2 ) THEN |
---|
[3083] | 714 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
[1] | 715 | ENDIF |
---|
[2696] | 716 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
[3083] | 717 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
[2696] | 718 | diss1d(nzb+1) = us1d**3 / ( kappa * zu(nzb+1) ) |
---|
| 719 | diss1d(nzb) = diss1d(nzb+1) |
---|
| 720 | ENDIF |
---|
[1] | 721 | e1d(nzb) = e1d(nzb+1) |
---|
| 722 | |
---|
[1960] | 723 | IF ( humidity ) THEN |
---|
[1] | 724 | ! |
---|
| 725 | !-- Compute q* |
---|
[2334] | 726 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 727 | ! |
---|
[1960] | 728 | !-- Stable stratification |
---|
| 729 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
[1353] | 730 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 731 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 732 | ) |
---|
[1960] | 733 | ELSE |
---|
[1] | 734 | ! |
---|
[1960] | 735 | !-- Unstable stratification |
---|
| 736 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 737 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 738 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 739 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 740 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 741 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
| 742 | ENDIF |
---|
[1] | 743 | ELSE |
---|
[1353] | 744 | qs1d = 0.0_wp |
---|
[2337] | 745 | ENDIF |
---|
[1] | 746 | |
---|
[1691] | 747 | ENDIF ! constant_flux_layer |
---|
[1] | 748 | |
---|
| 749 | ! |
---|
[2337] | 750 | !-- Compute the diabatic mixing length. The unstable stratification |
---|
| 751 | !-- must not be considered for l1d (km1d) as it is already considered |
---|
| 752 | !-- in the dissipation of TKE via l1d_diss. Otherwise, km1d would be |
---|
| 753 | !-- too large. |
---|
[3083] | 754 | IF ( dissipation_1d /= 'prognostic' ) THEN |
---|
| 755 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 756 | DO k = nzb+1, nzt |
---|
| 757 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 758 | l1d(k) = l1d_init(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
| 759 | l1d_diss(k) = l1d(k) |
---|
| 760 | ELSE |
---|
| 761 | l1d(k) = l1d_init(k) |
---|
| 762 | l1d_diss(k) = l1d_init(k) * & |
---|
| 763 | SQRT( 1.0_wp - 16.0_wp * rif1d(k) ) |
---|
| 764 | ENDIF |
---|
| 765 | ENDDO |
---|
| 766 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 767 | DO k = nzb+1, nzt |
---|
| 768 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 769 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
| 770 | l_stable = 0.76_wp * SQRT( e1d(k) ) & |
---|
| 771 | / SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
| 772 | ELSE |
---|
| 773 | l_stable = l1d_init(k) |
---|
| 774 | ENDIF |
---|
| 775 | l1d(k) = MIN( l1d_init(k), l_stable ) |
---|
[2337] | 776 | l1d_diss(k) = l1d(k) |
---|
[3083] | 777 | ENDDO |
---|
| 778 | ENDIF |
---|
| 779 | ELSE |
---|
[1] | 780 | DO k = nzb+1, nzt |
---|
[3083] | 781 | l1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) & |
---|
| 782 | / ( diss1d(k) + 1.0E-30_wp ) |
---|
[1] | 783 | ENDDO |
---|
| 784 | ENDIF |
---|
| 785 | |
---|
| 786 | ! |
---|
| 787 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 788 | !-- corresponding Prandtl-layer relationship and according to |
---|
[2337] | 789 | !-- Prandtl-Kolmogorov, respectively |
---|
[1691] | 790 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 791 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
| 792 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 793 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
[1] | 794 | ELSE |
---|
[1353] | 795 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 796 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
[1] | 797 | ENDIF |
---|
| 798 | ENDIF |
---|
[3083] | 799 | |
---|
[2696] | 800 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 801 | DO k = nzb_diff, nzt |
---|
| 802 | km1d(k) = c_mu * e1d(k)**2 / ( diss1d(k) + 1.0E-30_wp ) |
---|
| 803 | ENDDO |
---|
| 804 | ELSE |
---|
| 805 | DO k = nzb_diff, nzt |
---|
[3083] | 806 | km1d(k) = c_0 * SQRT( e1d(k) ) * l1d(k) |
---|
[2696] | 807 | ENDDO |
---|
| 808 | ENDIF |
---|
[1] | 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Add damping layer |
---|
| 812 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 813 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 814 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 815 | ENDDO |
---|
| 816 | |
---|
| 817 | ! |
---|
| 818 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 819 | !-- kh = phim / phih * km |
---|
| 820 | DO k = nzb+1, nzt |
---|
[1353] | 821 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 822 | kh1d(k) = km1d(k) |
---|
| 823 | ELSE |
---|
[1353] | 824 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 825 | ENDIF |
---|
| 826 | ENDDO |
---|
| 827 | |
---|
| 828 | ENDIF ! .NOT. constant_diffusion |
---|
| 829 | |
---|
| 830 | ENDDO ! intermediate step loop |
---|
| 831 | |
---|
| 832 | ! |
---|
| 833 | !-- Increment simulated time and output times |
---|
| 834 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 835 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 836 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 837 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 838 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 839 | |
---|
| 840 | ! |
---|
| 841 | !-- Determine and print out quantities for run control |
---|
| 842 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 843 | CALL run_control_1d |
---|
| 844 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 845 | ENDIF |
---|
| 846 | |
---|
| 847 | ! |
---|
| 848 | !-- Profile output on file |
---|
| 849 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 850 | CALL print_1d_model |
---|
| 851 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 852 | ENDIF |
---|
| 853 | |
---|
| 854 | ! |
---|
| 855 | !-- Determine size of next time step |
---|
| 856 | CALL timestep_1d |
---|
| 857 | |
---|
| 858 | ENDDO ! time loop |
---|
| 859 | |
---|
| 860 | |
---|
| 861 | END SUBROUTINE time_integration_1d |
---|
| 862 | |
---|
| 863 | |
---|
| 864 | !------------------------------------------------------------------------------! |
---|
| 865 | ! Description: |
---|
| 866 | ! ------------ |
---|
[1682] | 867 | !> Compute and print out quantities for run control of the 1D model. |
---|
[1] | 868 | !------------------------------------------------------------------------------! |
---|
[1682] | 869 | |
---|
| 870 | SUBROUTINE run_control_1d |
---|
[1] | 871 | |
---|
[1682] | 872 | |
---|
[1] | 873 | IMPLICIT NONE |
---|
| 874 | |
---|
[2338] | 875 | INTEGER(iwp) :: k !< loop index |
---|
[1320] | 876 | |
---|
[2338] | 877 | REAL(wp) :: alpha !< angle of wind vector at top of constant-flux layer |
---|
| 878 | REAL(wp) :: energy !< kinetic energy |
---|
| 879 | REAL(wp) :: umax !< maximum of u |
---|
| 880 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
| 881 | REAL(wp) :: vmax !< maximum of v |
---|
[1] | 882 | |
---|
| 883 | ! |
---|
| 884 | !-- Output |
---|
| 885 | IF ( myid == 0 ) THEN |
---|
| 886 | ! |
---|
| 887 | !-- If necessary, write header |
---|
| 888 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 889 | CALL check_open( 15 ) |
---|
[1] | 890 | WRITE ( 15, 100 ) |
---|
| 891 | run_control_header_1d = .TRUE. |
---|
| 892 | ENDIF |
---|
| 893 | |
---|
| 894 | ! |
---|
| 895 | !-- Compute control quantities |
---|
| 896 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 897 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 898 | DO k = nzb+1, nzt+1 |
---|
| 899 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 900 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 901 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 902 | ENDDO |
---|
[1322] | 903 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 904 | |
---|
| 905 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1691] | 906 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
[1346] | 907 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 908 | ELSE |
---|
| 909 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 910 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 911 | ENDIF |
---|
[1353] | 912 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 913 | |
---|
| 914 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 915 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 916 | ! |
---|
| 917 | !-- Write buffer contents to disc immediately |
---|
[1808] | 918 | FLUSH( 15 ) |
---|
[1] | 919 | |
---|
| 920 | ENDIF |
---|
| 921 | |
---|
| 922 | ! |
---|
| 923 | !-- formats |
---|
[2299] | 924 | 100 FORMAT (///'1D run control output:'/ & |
---|
[1] | 925 | &'------------------------------'// & |
---|
[2965] | 926 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
[1] | 927 | &'-------------------------------------------------------------') |
---|
[2965] | 928 | 101 FORMAT (I7,1X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
[1] | 929 | |
---|
| 930 | |
---|
| 931 | END SUBROUTINE run_control_1d |
---|
| 932 | |
---|
| 933 | |
---|
| 934 | |
---|
| 935 | !------------------------------------------------------------------------------! |
---|
| 936 | ! Description: |
---|
| 937 | ! ------------ |
---|
[1682] | 938 | !> Compute the time step w.r.t. the diffusion criterion |
---|
[1] | 939 | !------------------------------------------------------------------------------! |
---|
[1682] | 940 | |
---|
| 941 | SUBROUTINE timestep_1d |
---|
[1] | 942 | |
---|
| 943 | IMPLICIT NONE |
---|
| 944 | |
---|
[2338] | 945 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 946 | |
---|
[2338] | 947 | REAL(wp) :: dt_diff !< time step accorind to diffusion criterion |
---|
[3083] | 948 | REAL(wp) :: dt_old !< previous time step |
---|
[2338] | 949 | REAL(wp) :: fac !< factor of criterion |
---|
| 950 | REAL(wp) :: value !< auxiliary variable |
---|
[1] | 951 | |
---|
| 952 | ! |
---|
[3083] | 953 | !-- Save previous time step |
---|
| 954 | dt_old = dt_1d |
---|
| 955 | |
---|
| 956 | ! |
---|
[1] | 957 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 958 | !-- criterion. At nzb+1 the half grid length is used. |
---|
[3083] | 959 | fac = 0.125 |
---|
[1] | 960 | dt_diff = dt_max_1d |
---|
| 961 | DO k = nzb+2, nzt |
---|
[1353] | 962 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 963 | dt_diff = MIN( value, dt_diff ) |
---|
| 964 | ENDDO |
---|
[1353] | 965 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 966 | dt_1d = MIN( value, dt_diff ) |
---|
| 967 | |
---|
| 968 | ! |
---|
[3083] | 969 | !-- Limit the new time step to a maximum of 10 times the previous time step |
---|
| 970 | dt_1d = MIN( dt_old * 10.0_wp, dt_1d ) |
---|
| 971 | |
---|
| 972 | ! |
---|
[1] | 973 | !-- Set flag when the time step becomes too small |
---|
[3083] | 974 | IF ( dt_1d < ( 1.0E-15_wp * dt_max_1d ) ) THEN |
---|
[1] | 975 | stop_dt_1d = .TRUE. |
---|
[254] | 976 | |
---|
[3046] | 977 | WRITE( message_string, * ) 'timestep has exceeded the lower limit&', & |
---|
[254] | 978 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 979 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
| 980 | |
---|
[1] | 981 | ENDIF |
---|
| 982 | |
---|
| 983 | END SUBROUTINE timestep_1d |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | |
---|
| 987 | !------------------------------------------------------------------------------! |
---|
| 988 | ! Description: |
---|
| 989 | ! ------------ |
---|
[1682] | 990 | !> List output of profiles from the 1D-model |
---|
[1] | 991 | !------------------------------------------------------------------------------! |
---|
[1682] | 992 | |
---|
| 993 | SUBROUTINE print_1d_model |
---|
[1] | 994 | |
---|
| 995 | IMPLICIT NONE |
---|
| 996 | |
---|
[2338] | 997 | INTEGER(iwp) :: k !< loop parameter |
---|
[1] | 998 | |
---|
[2338] | 999 | LOGICAL, SAVE :: write_first = .TRUE. !< flag for writing header |
---|
[1] | 1000 | |
---|
| 1001 | |
---|
| 1002 | IF ( myid == 0 ) THEN |
---|
| 1003 | ! |
---|
| 1004 | !-- Open list output file for profiles from the 1D-model |
---|
| 1005 | CALL check_open( 17 ) |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Write Header |
---|
[2338] | 1009 | IF ( write_first ) THEN |
---|
| 1010 | WRITE ( 17, 100 ) TRIM( run_description_header ) |
---|
| 1011 | write_first = .FALSE. |
---|
| 1012 | ENDIF |
---|
[1] | 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Write the values |
---|
[2338] | 1016 | WRITE ( 17, 104 ) TRIM( simulated_time_chr ) |
---|
| 1017 | WRITE ( 17, 101 ) |
---|
[1] | 1018 | WRITE ( 17, 102 ) |
---|
| 1019 | WRITE ( 17, 101 ) |
---|
| 1020 | DO k = nzt+1, nzb, -1 |
---|
| 1021 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
[2696] | 1022 | rif1d(k), km1d(k), kh1d(k), l1d(k), diss1d(k) |
---|
[1] | 1023 | ENDDO |
---|
| 1024 | WRITE ( 17, 101 ) |
---|
| 1025 | WRITE ( 17, 102 ) |
---|
| 1026 | WRITE ( 17, 101 ) |
---|
| 1027 | |
---|
| 1028 | ! |
---|
| 1029 | !-- Write buffer contents to disc immediately |
---|
[1808] | 1030 | FLUSH( 17 ) |
---|
[1] | 1031 | |
---|
| 1032 | ENDIF |
---|
| 1033 | |
---|
| 1034 | ! |
---|
| 1035 | !-- Formats |
---|
[2338] | 1036 | 100 FORMAT ('# ',A/'#',10('-')/'# 1d-model profiles') |
---|
| 1037 | 104 FORMAT (//'# Time: ',A) |
---|
[2696] | 1038 | 101 FORMAT ('#',111('-')) |
---|
| 1039 | 102 FORMAT ('# k zu u v pt e ', & |
---|
| 1040 | 'rif Km Kh l diss ') |
---|
| 1041 | 103 FORMAT (1X,I4,1X,F7.1,9(1X,E10.3)) |
---|
[1] | 1042 | |
---|
| 1043 | |
---|
| 1044 | END SUBROUTINE print_1d_model |
---|
[2338] | 1045 | |
---|
| 1046 | |
---|
[3045] | 1047 | END MODULE |
---|