[2338] | 1 | !> @file model_1d_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1961] | 22 | ! |
---|
[2299] | 23 | ! |
---|
[1961] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: model_1d_mod.f90 2965 2018-04-13 07:37:25Z schwenkel $ |
---|
[2965] | 27 | ! adjusted format string for 1D run control output |
---|
| 28 | ! |
---|
| 29 | ! 2918 2018-03-21 15:52:14Z gronemeier |
---|
[2918] | 30 | ! - rename l_black into l1d_init |
---|
| 31 | ! - calculate l_grid within init_1d_model and save it as l1d_init |
---|
| 32 | ! |
---|
| 33 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 34 | ! Corrected "Former revisions" section |
---|
| 35 | ! |
---|
| 36 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 37 | ! Change in file header (GPL part) |
---|
[2696] | 38 | ! implement TKE-e closure |
---|
| 39 | ! modification of dissipation production according to Detering and Etling |
---|
| 40 | ! reduced factor for timestep criterion to 0.125 and first dt to 1s (TG) |
---|
| 41 | ! |
---|
| 42 | ! 2339 2017-08-07 13:55:26Z gronemeier |
---|
[2339] | 43 | ! corrected timestamp in header |
---|
| 44 | ! |
---|
| 45 | ! 2338 2017-08-07 12:15:38Z gronemeier |
---|
[2338] | 46 | ! renamed init_1d_model to model_1d_mod and and formatted it as a module; |
---|
| 47 | ! reformatted output of profiles |
---|
| 48 | ! |
---|
[2339] | 49 | ! 2337 2017-08-07 08:59:53Z gronemeier |
---|
[2337] | 50 | ! revised calculation of mixing length |
---|
| 51 | ! removed rounding of time step |
---|
| 52 | ! corrected calculation of virtual potential temperature |
---|
| 53 | ! |
---|
| 54 | ! 2334 2017-08-04 11:57:04Z gronemeier |
---|
[2334] | 55 | ! set c_m = 0.4 according to Detering and Etling (1985) |
---|
| 56 | ! |
---|
| 57 | ! 2299 2017-06-29 10:14:38Z maronga |
---|
[2299] | 58 | ! Removed german text |
---|
[1961] | 59 | ! |
---|
[2299] | 60 | ! 2101 2017-01-05 16:42:31Z suehring |
---|
| 61 | ! |
---|
[2060] | 62 | ! 2059 2016-11-10 14:20:40Z maronga |
---|
| 63 | ! Corrected min/max values of Rif. |
---|
| 64 | ! |
---|
[2001] | 65 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 66 | ! Forced header and separation lines into 80 columns |
---|
| 67 | ! |
---|
[1961] | 68 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
[1960] | 69 | ! Remove passive_scalar from IF-statements, as 1D-scalar profile is effectively |
---|
| 70 | ! not used. |
---|
| 71 | ! Formatting adjustment |
---|
[1809] | 72 | ! |
---|
| 73 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 74 | ! routine local_flush replaced by FORTRAN statement |
---|
| 75 | ! |
---|
[1710] | 76 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 77 | ! Set initial time step to 10 s to avoid instability of the 1d model for small |
---|
| 78 | ! grid spacings |
---|
| 79 | ! |
---|
[1698] | 80 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 81 | ! small E- and F-FORMAT changes to avoid informative compiler messages about |
---|
| 82 | ! insufficient field width |
---|
| 83 | ! |
---|
[1692] | 84 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 85 | ! Renamed prandtl_layer to constant_flux_layer. rif is replaced by ol and zeta. |
---|
| 86 | ! |
---|
[1683] | 87 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 88 | ! Code annotations made doxygen readable |
---|
| 89 | ! |
---|
[1354] | 90 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 91 | ! REAL constants provided with KIND-attribute |
---|
| 92 | ! |
---|
[1347] | 93 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 94 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 95 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 96 | ! |
---|
[1323] | 97 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 98 | ! REAL functions provided with KIND-attribute |
---|
| 99 | ! |
---|
[1321] | 100 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 101 | ! ONLY-attribute added to USE-statements, |
---|
| 102 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 103 | ! kinds are defined in new module kinds, |
---|
| 104 | ! revision history before 2012 removed, |
---|
| 105 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 106 | ! all variable declaration statements |
---|
[1321] | 107 | ! |
---|
[1037] | 108 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 109 | ! code put under GPL (PALM 3.9) |
---|
| 110 | ! |
---|
[1017] | 111 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 112 | ! adjustment of mixing length to the Prandtl mixing length at first grid point |
---|
| 113 | ! above ground removed |
---|
| 114 | ! |
---|
[1002] | 115 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 116 | ! all actions concerning leapfrog scheme removed |
---|
| 117 | ! |
---|
[997] | 118 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 119 | ! little reformatting |
---|
| 120 | ! |
---|
[979] | 121 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 122 | ! roughness length for scalar quantities z0h1d added |
---|
| 123 | ! |
---|
[1] | 124 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 125 | ! Initial revision |
---|
| 126 | ! |
---|
| 127 | ! |
---|
| 128 | ! Description: |
---|
| 129 | ! ------------ |
---|
[1682] | 130 | !> 1D-model to initialize the 3D-arrays. |
---|
| 131 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
| 132 | !> of the wind profile is being computed. |
---|
| 133 | !> All subroutines required can be found within this file. |
---|
[1691] | 134 | !> |
---|
| 135 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
[1709] | 136 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
[2965] | 137 | !> @fixme option "as_in_3d_model" seems to be an inappropriate option because |
---|
[2918] | 138 | !> the 1D model uses different turbulence closure approaches at least if |
---|
| 139 | !> the 3D model is set to LES-mode. |
---|
[1] | 140 | !------------------------------------------------------------------------------! |
---|
[2338] | 141 | MODULE model_1d_mod |
---|
[1] | 142 | |
---|
[1320] | 143 | USE arrays_3d, & |
---|
[2918] | 144 | ONLY: dd2zu, ddzu, ddzw, dzu, dzw, pt_init, q_init, ug, u_init, & |
---|
[2338] | 145 | vg, v_init, zu |
---|
[1320] | 146 | |
---|
[2338] | 147 | USE control_parameters, & |
---|
| 148 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, f, g, & |
---|
| 149 | humidity, ibc_e_b, intermediate_timestep_count, & |
---|
| 150 | intermediate_timestep_count_max, kappa, km_constant, & |
---|
| 151 | message_string, mixing_length_1d, prandtl_number, & |
---|
[2696] | 152 | roughness_length, run_description_header, simulated_time_chr, & |
---|
| 153 | timestep_scheme, tsc, z0h_factor |
---|
[2338] | 154 | |
---|
[1320] | 155 | USE indices, & |
---|
[2338] | 156 | ONLY: nzb, nzb_diff, nzt |
---|
[1320] | 157 | |
---|
| 158 | USE kinds |
---|
[1] | 159 | |
---|
[2338] | 160 | USE pegrid |
---|
| 161 | |
---|
| 162 | |
---|
[1] | 163 | IMPLICIT NONE |
---|
| 164 | |
---|
[2338] | 165 | INTEGER(iwp) :: current_timestep_number_1d = 0 !< current timestep number (1d-model) |
---|
[2696] | 166 | INTEGER(iwp) :: damp_level_ind_1d !< lower grid index of damping layer (1d-model) |
---|
[2338] | 167 | |
---|
| 168 | LOGICAL :: run_control_header_1d = .FALSE. !< flag for output of run control header (1d-model) |
---|
| 169 | LOGICAL :: stop_dt_1d = .FALSE. !< termination flag, used in case of too small timestep (1d-model) |
---|
| 170 | |
---|
[2696] | 171 | REAL(wp) :: c_1 = 1.44_wp !< model constant |
---|
| 172 | REAL(wp) :: c_2 = 1.92_wp !< model constant |
---|
| 173 | REAL(wp) :: c_3 = 1.44_wp !< model constant |
---|
| 174 | REAL(wp) :: c_h = 0.0015_wp !< model constant according to Detering and Etling (1985) |
---|
[2338] | 175 | REAL(wp) :: c_m = 0.4_wp !< model constant, 0.4 according to Detering and Etling (1985) |
---|
[2696] | 176 | REAL(wp) :: c_mu = 0.09_wp !< model constant |
---|
| 177 | REAL(wp) :: damp_level_1d = -1.0_wp !< namelist parameter |
---|
[2338] | 178 | REAL(wp) :: dt_1d = 60.0_wp !< dynamic timestep (1d-model) |
---|
| 179 | REAL(wp) :: dt_max_1d = 300.0_wp !< timestep limit (1d-model) |
---|
[2696] | 180 | REAL(wp) :: dt_pr_1d = 9999999.9_wp !< namelist parameter |
---|
| 181 | REAL(wp) :: dt_run_control_1d = 60.0_wp !< namelist parameter |
---|
| 182 | REAL(wp) :: end_time_1d = 864000.0_wp !< namelist parameter |
---|
[2338] | 183 | REAL(wp) :: qs1d !< characteristic humidity scale (1d-model) |
---|
| 184 | REAL(wp) :: simulated_time_1d = 0.0_wp !< updated simulated time (1d-model) |
---|
[2696] | 185 | REAL(wp) :: sig_diss = 1.3_wp !< model constant |
---|
[2338] | 186 | REAL(wp) :: time_pr_1d = 0.0_wp !< updated simulated time for profile output (1d-model) |
---|
| 187 | REAL(wp) :: time_run_control_1d = 0.0_wp !< updated simulated time for run-control output (1d-model) |
---|
| 188 | REAL(wp) :: ts1d !< characteristic temperature scale (1d-model) |
---|
[2696] | 189 | REAL(wp) :: us1d !< friction velocity (1d-model) |
---|
| 190 | REAL(wp) :: usws1d !< u-component of the momentum flux (1d-model) |
---|
| 191 | REAL(wp) :: vsws1d !< v-component of the momentum flux (1d-model) |
---|
[2338] | 192 | REAL(wp) :: z01d !< roughness length for momentum (1d-model) |
---|
| 193 | REAL(wp) :: z0h1d !< roughness length for scalars (1d-model) |
---|
| 194 | |
---|
| 195 | |
---|
[2696] | 196 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d !< tke dissipation rate (1d-model) |
---|
| 197 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d_p !< prognostic value of tke dissipation rate (1d-model) |
---|
| 198 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d !< tke (1d-model) |
---|
[2338] | 199 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d_p !< prognostic value of tke (1d-model) |
---|
[2696] | 200 | REAL(wp), DIMENSION(:), ALLOCATABLE :: kh1d !< turbulent diffusion coefficient for heat (1d-model) |
---|
| 201 | REAL(wp), DIMENSION(:), ALLOCATABLE :: km1d !< turbulent diffusion coefficient for momentum (1d-model) |
---|
| 202 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d !< mixing length for turbulent diffusion coefficients (1d-model) |
---|
[2918] | 203 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_init !< initial mixing length (1d-model) |
---|
[2338] | 204 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_diss !< mixing length for dissipation (1d-model) |
---|
[2696] | 205 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rif1d !< Richardson flux number (1d-model) |
---|
| 206 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_diss !< tendency of diss (1d-model) |
---|
| 207 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_dissm !< weighted tendency of diss for previous sub-timestep (1d-model) |
---|
[2338] | 208 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_e !< tendency of e (1d-model) |
---|
| 209 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_em !< weighted tendency of e for previous sub-timestep (1d-model) |
---|
| 210 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_u !< tendency of u (1d-model) |
---|
| 211 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_um !< weighted tendency of u for previous sub-timestep (1d-model) |
---|
| 212 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_v !< tendency of v (1d-model) |
---|
| 213 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_vm !< weighted tendency of v for previous sub-timestep (1d-model) |
---|
[2696] | 214 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d !< u-velocity component (1d-model) |
---|
[2338] | 215 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d_p !< prognostic value of u-velocity component (1d-model) |
---|
[2696] | 216 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d !< v-velocity component (1d-model) |
---|
[2338] | 217 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d_p !< prognostic value of v-velocity component (1d-model) |
---|
| 218 | |
---|
| 219 | ! |
---|
| 220 | !-- Initialize 1D model |
---|
| 221 | INTERFACE init_1d_model |
---|
| 222 | MODULE PROCEDURE init_1d_model |
---|
| 223 | END INTERFACE init_1d_model |
---|
| 224 | |
---|
| 225 | ! |
---|
| 226 | !-- Print profiles |
---|
| 227 | INTERFACE print_1d_model |
---|
| 228 | MODULE PROCEDURE print_1d_model |
---|
| 229 | END INTERFACE print_1d_model |
---|
| 230 | |
---|
| 231 | ! |
---|
| 232 | !-- Print run control information |
---|
| 233 | INTERFACE run_control_1d |
---|
| 234 | MODULE PROCEDURE run_control_1d |
---|
| 235 | END INTERFACE run_control_1d |
---|
| 236 | |
---|
| 237 | ! |
---|
| 238 | !-- Main procedure |
---|
| 239 | INTERFACE time_integration_1d |
---|
| 240 | MODULE PROCEDURE time_integration_1d |
---|
| 241 | END INTERFACE time_integration_1d |
---|
| 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Calculate time step |
---|
| 245 | INTERFACE timestep_1d |
---|
| 246 | MODULE PROCEDURE timestep_1d |
---|
| 247 | END INTERFACE timestep_1d |
---|
| 248 | |
---|
| 249 | SAVE |
---|
| 250 | |
---|
| 251 | PRIVATE |
---|
| 252 | ! |
---|
| 253 | !-- Public interfaces |
---|
| 254 | PUBLIC init_1d_model |
---|
| 255 | |
---|
| 256 | ! |
---|
| 257 | !-- Public variables |
---|
[2696] | 258 | PUBLIC damp_level_1d, damp_level_ind_1d, diss1d, dt_pr_1d, & |
---|
| 259 | dt_run_control_1d, e1d, end_time_1d, kh1d, km1d, l1d, rif1d, u1d, & |
---|
| 260 | us1d, usws1d, v1d, vsws1d |
---|
[2338] | 261 | |
---|
| 262 | |
---|
| 263 | CONTAINS |
---|
| 264 | |
---|
| 265 | SUBROUTINE init_1d_model |
---|
| 266 | |
---|
[2918] | 267 | USE grid_variables, & |
---|
| 268 | ONLY: dx, dy |
---|
| 269 | |
---|
[2338] | 270 | IMPLICIT NONE |
---|
| 271 | |
---|
[2696] | 272 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 273 | |
---|
| 274 | INTEGER(iwp) :: k !< loop index |
---|
[1320] | 275 | |
---|
[2696] | 276 | REAL(wp) :: lambda !< maximum mixing length |
---|
[1] | 277 | |
---|
| 278 | ! |
---|
| 279 | !-- Allocate required 1D-arrays |
---|
[2696] | 280 | ALLOCATE( diss1d(nzb:nzt+1), diss1d_p(nzb:nzt+1), & |
---|
| 281 | e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), kh1d(nzb:nzt+1), & |
---|
[2918] | 282 | km1d(nzb:nzt+1), l1d(nzb:nzt+1), l1d_init(nzb:nzt+1), & |
---|
[2696] | 283 | l1d_diss(nzb:nzt+1), rif1d(nzb:nzt+1), te_diss(nzb:nzt+1), & |
---|
| 284 | te_dissm(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
[2338] | 285 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 286 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 287 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
[1] | 288 | |
---|
| 289 | ! |
---|
| 290 | !-- Initialize arrays |
---|
| 291 | IF ( constant_diffusion ) THEN |
---|
[1001] | 292 | km1d = km_constant |
---|
| 293 | kh1d = km_constant / prandtl_number |
---|
[1] | 294 | ELSE |
---|
[2696] | 295 | diss1d = 0.0_wp; diss1d_p = 0.0_wp |
---|
[1353] | 296 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 297 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
| 298 | rif1d = 0.0_wp |
---|
[1] | 299 | ! |
---|
| 300 | !-- Compute the mixing length |
---|
[2918] | 301 | l1d_init(nzb) = 0.0_wp |
---|
[1] | 302 | |
---|
| 303 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 304 | ! |
---|
| 305 | !-- Blackadar mixing length |
---|
[1353] | 306 | IF ( f /= 0.0_wp ) THEN |
---|
| 307 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
| 308 | ABS( f ) + 1E-10_wp |
---|
[1] | 309 | ELSE |
---|
[1353] | 310 | lambda = 30.0_wp |
---|
[1] | 311 | ENDIF |
---|
| 312 | |
---|
| 313 | DO k = nzb+1, nzt+1 |
---|
[2918] | 314 | l1d_init(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 315 | ENDDO |
---|
| 316 | |
---|
| 317 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 318 | ! |
---|
[2918] | 319 | !-- Use the same mixing length as in 3D model (LES-mode) |
---|
[2965] | 320 | !@todo: rename (delete?) this option |
---|
| 321 | ! As the mixing length is different between RANS and LES mode, it |
---|
| 322 | ! must be distinguished here between these modes. For RANS mode, |
---|
| 323 | ! the mixing length is calculated accoding to Blackadar, which is |
---|
| 324 | ! the other option at this point. |
---|
| 325 | ! Maybe delete this option entirely (not appropriate in LES case) |
---|
| 326 | ! 2018-03-20, gronemeier |
---|
[2918] | 327 | DO k = nzb+1, nzt |
---|
| 328 | l1d_init(k) = ( dx * dy * dzw(k) )**0.33333333333333_wp |
---|
| 329 | ENDDO |
---|
| 330 | l1d_init(nzt+1) = l1d_init(nzt) |
---|
[1] | 331 | |
---|
| 332 | ENDIF |
---|
| 333 | ENDIF |
---|
[2918] | 334 | l1d = l1d_init |
---|
| 335 | l1d_diss = l1d_init |
---|
[2337] | 336 | u1d = u_init |
---|
| 337 | u1d_p = u_init |
---|
| 338 | v1d = v_init |
---|
| 339 | v1d_p = v_init |
---|
[1] | 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 343 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 344 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
[1353] | 345 | u1d(0:1) = 0.1_wp |
---|
| 346 | u1d_p(0:1) = 0.1_wp |
---|
| 347 | v1d(0:1) = 0.1_wp |
---|
| 348 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 349 | |
---|
| 350 | ! |
---|
| 351 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
[1691] | 352 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 353 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 354 | ELSE |
---|
[2696] | 355 | diss1d(nzb+1) = 1.0_wp |
---|
[1353] | 356 | e1d(nzb+1) = 1.0_wp |
---|
| 357 | km1d(nzb+1) = 1.0_wp |
---|
| 358 | us1d = 0.0_wp |
---|
[1] | 359 | ENDIF |
---|
[1353] | 360 | ts1d = 0.0_wp |
---|
| 361 | usws1d = 0.0_wp |
---|
| 362 | vsws1d = 0.0_wp |
---|
[996] | 363 | z01d = roughness_length |
---|
[978] | 364 | z0h1d = z0h_factor * z01d |
---|
[1960] | 365 | IF ( humidity ) qs1d = 0.0_wp |
---|
[1] | 366 | |
---|
| 367 | ! |
---|
[46] | 368 | !-- Tendencies must be preset in order to avoid runtime errors within the |
---|
| 369 | !-- first Runge-Kutta step |
---|
[2696] | 370 | te_dissm = 0.0_wp |
---|
[1353] | 371 | te_em = 0.0_wp |
---|
| 372 | te_um = 0.0_wp |
---|
| 373 | te_vm = 0.0_wp |
---|
[46] | 374 | |
---|
| 375 | ! |
---|
[2338] | 376 | !-- Set model constant |
---|
| 377 | IF ( dissipation_1d == 'as_in_3d_model' ) c_m = 0.1_wp |
---|
| 378 | |
---|
| 379 | ! |
---|
[1] | 380 | !-- Set start time in hh:mm:ss - format |
---|
| 381 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 382 | |
---|
| 383 | ! |
---|
[2337] | 384 | !-- Integrate the 1D-model equations using the Runge-Kutta scheme |
---|
[1] | 385 | CALL time_integration_1d |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | END SUBROUTINE init_1d_model |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | !------------------------------------------------------------------------------! |
---|
| 393 | ! Description: |
---|
| 394 | ! ------------ |
---|
[2338] | 395 | !> Runge-Kutta time differencing scheme for the 1D-model. |
---|
[1] | 396 | !------------------------------------------------------------------------------! |
---|
[1682] | 397 | |
---|
| 398 | SUBROUTINE time_integration_1d |
---|
[1] | 399 | |
---|
| 400 | IMPLICIT NONE |
---|
| 401 | |
---|
[2696] | 402 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 403 | |
---|
[2338] | 404 | INTEGER(iwp) :: k !< loop index |
---|
[2696] | 405 | |
---|
[2338] | 406 | REAL(wp) :: a !< auxiliary variable |
---|
| 407 | REAL(wp) :: b !< auxiliary variable |
---|
| 408 | REAL(wp) :: dpt_dz !< vertical temperature gradient |
---|
| 409 | REAL(wp) :: flux !< vertical temperature gradient |
---|
| 410 | REAL(wp) :: kmzm !< Km(z-dz/2) |
---|
| 411 | REAL(wp) :: kmzp !< Km(z+dz/2) |
---|
| 412 | REAL(wp) :: l_stable !< mixing length for stable case |
---|
| 413 | REAL(wp) :: pt_0 !< reference temperature |
---|
| 414 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
[1] | 415 | |
---|
| 416 | ! |
---|
| 417 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 418 | !-- determine and printout quantities used for run control |
---|
[2696] | 419 | dt_1d = 1.0_wp |
---|
[1] | 420 | CALL run_control_1d |
---|
| 421 | |
---|
| 422 | ! |
---|
| 423 | !-- Start of time loop |
---|
| 424 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 425 | |
---|
| 426 | ! |
---|
| 427 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 428 | !-- timesteps |
---|
| 429 | |
---|
| 430 | intermediate_timestep_count = 0 |
---|
| 431 | DO WHILE ( intermediate_timestep_count < & |
---|
| 432 | intermediate_timestep_count_max ) |
---|
| 433 | |
---|
| 434 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 435 | |
---|
| 436 | CALL timestep_scheme_steering |
---|
| 437 | |
---|
| 438 | ! |
---|
[2696] | 439 | !-- Compute all tendency terms. If a constant-flux layer is simulated, |
---|
| 440 | !-- k starts at nzb+2. |
---|
[1] | 441 | DO k = nzb_diff, nzt |
---|
| 442 | |
---|
[1353] | 443 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 444 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 445 | ! |
---|
| 446 | !-- u-component |
---|
| 447 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
[1001] | 448 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 449 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
| 450 | ) * ddzw(k) |
---|
[1] | 451 | ! |
---|
| 452 | !-- v-component |
---|
[1001] | 453 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 454 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 455 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
| 456 | ) * ddzw(k) |
---|
[1] | 457 | ENDDO |
---|
| 458 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 459 | DO k = nzb_diff, nzt |
---|
| 460 | ! |
---|
[2696] | 461 | !-- TKE and dissipation rate |
---|
[1353] | 462 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 463 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 464 | IF ( .NOT. humidity ) THEN |
---|
[1] | 465 | pt_0 = pt_init(k) |
---|
| 466 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 467 | ELSE |
---|
[1353] | 468 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 469 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 470 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 471 | pt_init(k-1) * q_init(k-1) ) & |
---|
| 472 | ) * dd2zu(k) |
---|
[1] | 473 | ENDIF |
---|
| 474 | |
---|
[2696] | 475 | ! |
---|
| 476 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 477 | !-- dissipation rate |
---|
[1] | 478 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[2696] | 479 | diss1d(k) = c_m**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 480 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2918] | 481 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) & |
---|
[2696] | 482 | ) * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 483 | ENDIF |
---|
[2696] | 484 | ! |
---|
| 485 | !-- TKE |
---|
[1] | 486 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 487 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 488 | ) & |
---|
| 489 | - g / pt_0 * kh1d(k) * flux & |
---|
| 490 | + ( & |
---|
[1001] | 491 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 492 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 493 | ) * ddzw(k) & |
---|
[2696] | 494 | - diss1d(k) |
---|
| 495 | |
---|
| 496 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 497 | ! |
---|
| 498 | !-- dissipation rate |
---|
| 499 | te_diss(k) = km1d(k) * & |
---|
| 500 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 501 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 502 | ) * c_1 * c_mu**0.75 / c_h * f / us1d & |
---|
| 503 | * SQRT(e1d(k)) & |
---|
| 504 | - g / pt_0 * kh1d(k) * flux * c_3 & |
---|
| 505 | * diss1d(k) / ( e1d(k) + 1.0E-20_wp ) & |
---|
| 506 | + ( kmzp * ( diss1d(k+1) - diss1d(k) ) & |
---|
| 507 | * ddzu(k+1) & |
---|
| 508 | - kmzm * ( diss1d(k) - diss1d(k-1) ) & |
---|
| 509 | * ddzu(k) & |
---|
| 510 | ) * ddzw(k) / sig_diss & |
---|
| 511 | - c_2 * diss1d(k)**2 / ( e1d(k) + 1.0E-20_wp ) |
---|
| 512 | |
---|
| 513 | ENDIF |
---|
| 514 | |
---|
[1] | 515 | ENDDO |
---|
| 516 | ENDIF |
---|
| 517 | |
---|
| 518 | ! |
---|
[2696] | 519 | !-- Tendency terms at the top of the constant-flux layer. |
---|
[1] | 520 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 521 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
[1691] | 522 | IF ( constant_flux_layer ) THEN |
---|
[1] | 523 | |
---|
| 524 | k = nzb+1 |
---|
[1353] | 525 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 526 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 527 | IF ( .NOT. humidity ) THEN |
---|
[1] | 528 | pt_0 = pt_init(k) |
---|
| 529 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 530 | ELSE |
---|
[1353] | 531 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 532 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 533 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 534 | pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 535 | ) * dd2zu(k) |
---|
| 536 | ENDIF |
---|
| 537 | |
---|
[2696] | 538 | ! |
---|
| 539 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 540 | !-- dissipation rate |
---|
[1] | 541 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[2696] | 542 | diss1d(k) = c_m**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 543 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2918] | 544 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) ) & |
---|
[2696] | 545 | * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 546 | ENDIF |
---|
| 547 | |
---|
| 548 | ! |
---|
| 549 | !-- u-component |
---|
[1001] | 550 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 551 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 552 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 553 | ! |
---|
| 554 | !-- v-component |
---|
[1001] | 555 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 556 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 557 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 558 | ! |
---|
| 559 | !-- TKE |
---|
[2696] | 560 | IF ( .NOT. dissipation_1d == 'prognostic' ) THEN |
---|
| 561 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 562 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 563 | ) & |
---|
| 564 | - g / pt_0 * kh1d(k) * flux & |
---|
| 565 | + ( & |
---|
| 566 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 567 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
| 568 | ) * ddzw(k) & |
---|
| 569 | - diss1d(k) |
---|
| 570 | ENDIF |
---|
| 571 | |
---|
[1] | 572 | ENDIF |
---|
| 573 | |
---|
| 574 | ! |
---|
| 575 | !-- Prognostic equations for all 1D variables |
---|
| 576 | DO k = nzb+1, nzt |
---|
| 577 | |
---|
[1001] | 578 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 579 | tsc(3) * te_um(k) ) |
---|
| 580 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 581 | tsc(3) * te_vm(k) ) |
---|
[1] | 582 | |
---|
| 583 | ENDDO |
---|
| 584 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2696] | 585 | |
---|
[1] | 586 | DO k = nzb+1, nzt |
---|
[1001] | 587 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 588 | tsc(3) * te_em(k) ) |
---|
[2696] | 589 | ENDDO |
---|
[1] | 590 | |
---|
[2696] | 591 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 592 | DO k = nzb_diff, nzt |
---|
| 593 | diss1d_p(k) = diss1d(k) + dt_1d * ( tsc(2) * te_diss(k) + & |
---|
| 594 | tsc(3) * te_dissm(k) ) |
---|
| 595 | ENDDO |
---|
| 596 | ENDIF |
---|
[1] | 597 | ! |
---|
| 598 | !-- Eliminate negative TKE values, which can result from the |
---|
| 599 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 600 | !-- value is reduced to 10 percent of its old value. |
---|
[1353] | 601 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[1] | 602 | ENDIF |
---|
| 603 | |
---|
| 604 | ! |
---|
| 605 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 606 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 607 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 608 | |
---|
| 609 | DO k = nzb+1, nzt |
---|
| 610 | te_um(k) = te_u(k) |
---|
| 611 | te_vm(k) = te_v(k) |
---|
| 612 | ENDDO |
---|
| 613 | |
---|
| 614 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 615 | DO k = nzb+1, nzt |
---|
| 616 | te_em(k) = te_e(k) |
---|
| 617 | ENDDO |
---|
[2696] | 618 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 619 | DO k = nzb+1, nzt |
---|
| 620 | te_dissm(k) = te_diss(k) |
---|
| 621 | ENDDO |
---|
| 622 | ENDIF |
---|
[1] | 623 | ENDIF |
---|
| 624 | |
---|
| 625 | ELSEIF ( intermediate_timestep_count < & |
---|
| 626 | intermediate_timestep_count_max ) THEN |
---|
| 627 | |
---|
| 628 | DO k = nzb+1, nzt |
---|
[1353] | 629 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 630 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 631 | ENDDO |
---|
| 632 | |
---|
| 633 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 634 | DO k = nzb+1, nzt |
---|
[1353] | 635 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 636 | ENDDO |
---|
[2696] | 637 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 638 | DO k = nzb+1, nzt |
---|
| 639 | te_dissm(k) = -9.5625_wp * te_diss(k) + 5.3125_wp * te_dissm(k) |
---|
| 640 | ENDDO |
---|
| 641 | ENDIF |
---|
[1] | 642 | ENDIF |
---|
| 643 | |
---|
| 644 | ENDIF |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | |
---|
| 648 | ! |
---|
| 649 | !-- Boundary conditions for the prognostic variables. |
---|
[2696] | 650 | !-- At the top boundary (nzt+1) u, v, e, and diss keep their initial |
---|
| 651 | !-- values (ug(nzt+1), vg(nzt+1), 0, 0). |
---|
[2334] | 652 | !-- At the bottom boundary, Dirichlet condition is used for u and v (0) |
---|
[2696] | 653 | !-- and Neumann condition for e and diss (e(nzb)=e(nzb+1)). |
---|
[1353] | 654 | u1d_p(nzb) = 0.0_wp |
---|
| 655 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 656 | |
---|
[1] | 657 | ! |
---|
| 658 | !-- Swap the time levels in preparation for the next time step. |
---|
| 659 | u1d = u1d_p |
---|
| 660 | v1d = v1d_p |
---|
| 661 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 662 | e1d = e1d_p |
---|
[2696] | 663 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 664 | diss1d = diss1d_p |
---|
| 665 | ENDIF |
---|
[1] | 666 | ENDIF |
---|
| 667 | |
---|
| 668 | ! |
---|
| 669 | !-- Compute diffusion quantities |
---|
| 670 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 671 | |
---|
| 672 | ! |
---|
[2696] | 673 | !-- First compute the vertical fluxes in the constant-flux layer |
---|
[1691] | 674 | IF ( constant_flux_layer ) THEN |
---|
[1] | 675 | ! |
---|
| 676 | !-- Compute theta* using Rif numbers of the previous time step |
---|
[2334] | 677 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 678 | ! |
---|
| 679 | !-- Stable stratification |
---|
[1353] | 680 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 681 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 682 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 683 | ) |
---|
| 684 | ELSE |
---|
| 685 | ! |
---|
| 686 | !-- Unstable stratification |
---|
[1353] | 687 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 688 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 689 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 690 | |
---|
| 691 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 692 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 693 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 694 | ENDIF |
---|
| 695 | |
---|
[1691] | 696 | ENDIF ! constant_flux_layer |
---|
[1] | 697 | |
---|
| 698 | ! |
---|
| 699 | !-- Compute the Richardson-flux numbers, |
---|
[2696] | 700 | !-- first at the top of the constant-flux layer using u* of the |
---|
| 701 | !-- previous time step (+1E-30, if u* = 0), then in the remaining area. |
---|
| 702 | !-- There the rif-numbers of the previous time step are used. |
---|
[1] | 703 | |
---|
[1691] | 704 | IF ( constant_flux_layer ) THEN |
---|
[75] | 705 | IF ( .NOT. humidity ) THEN |
---|
[1] | 706 | pt_0 = pt_init(nzb+1) |
---|
| 707 | flux = ts1d |
---|
| 708 | ELSE |
---|
[1353] | 709 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 710 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 711 | ENDIF |
---|
| 712 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
[1353] | 713 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 714 | ENDIF |
---|
| 715 | |
---|
| 716 | DO k = nzb_diff, nzt |
---|
[75] | 717 | IF ( .NOT. humidity ) THEN |
---|
[1] | 718 | pt_0 = pt_init(k) |
---|
| 719 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 720 | ELSE |
---|
[1353] | 721 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[1] | 722 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
[2337] | 723 | + 0.61_wp & |
---|
| 724 | * ( pt_init(k+1) * q_init(k+1) & |
---|
| 725 | - pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 726 | ) * dd2zu(k) |
---|
| 727 | ENDIF |
---|
[1353] | 728 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 729 | rif1d(k) = g / pt_0 * flux / & |
---|
| 730 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 731 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 732 | + 1E-30_wp & |
---|
[1] | 733 | ) |
---|
| 734 | ELSE |
---|
[1353] | 735 | rif1d(k) = g / pt_0 * flux / & |
---|
| 736 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 737 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 738 | + 1E-30_wp & |
---|
| 739 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 740 | ENDIF |
---|
| 741 | ENDDO |
---|
| 742 | ! |
---|
| 743 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 744 | !-- range. It is exceeded excessively for very small velocities |
---|
| 745 | !-- (u,v --> 0). |
---|
[2059] | 746 | WHERE ( rif1d < -5.0_wp ) rif1d = -5.0_wp |
---|
| 747 | WHERE ( rif1d > 1.0_wp ) rif1d = 1.0_wp |
---|
[1] | 748 | |
---|
| 749 | ! |
---|
| 750 | !-- Compute u* from the absolute velocity value |
---|
[1691] | 751 | IF ( constant_flux_layer ) THEN |
---|
[1] | 752 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 753 | |
---|
[1353] | 754 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 755 | ! |
---|
| 756 | !-- Stable stratification |
---|
| 757 | us1d = kappa * uv_total / ( & |
---|
[1353] | 758 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
[1] | 759 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 760 | ) |
---|
| 761 | ELSE |
---|
| 762 | ! |
---|
| 763 | !-- Unstable stratification |
---|
[1353] | 764 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
| 765 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 766 | zu(nzb+1) * z01d ) ) |
---|
[2337] | 767 | us1d = kappa * uv_total / ( & |
---|
| 768 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 769 | (1.0_wp+a) ) + & |
---|
| 770 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 771 | ) |
---|
[1] | 772 | ENDIF |
---|
| 773 | |
---|
| 774 | ! |
---|
| 775 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 776 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 777 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 778 | |
---|
| 779 | ! |
---|
[2696] | 780 | !-- Boundary condition for the turbulent kinetic energy and |
---|
| 781 | !-- dissipation rate at the top of the constant-flux layer. |
---|
[1] | 782 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 783 | !-- compatibility with the 3D model. |
---|
| 784 | IF ( ibc_e_b == 2 ) THEN |
---|
[2334] | 785 | e1d(nzb+1) = ( us1d / c_m )**2 |
---|
[1] | 786 | ENDIF |
---|
[2696] | 787 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 788 | e1d(nzb+1) = us1d**2 / SQRT( c_mu ) |
---|
| 789 | diss1d(nzb+1) = us1d**3 / ( kappa * zu(nzb+1) ) |
---|
| 790 | diss1d(nzb) = diss1d(nzb+1) |
---|
| 791 | ENDIF |
---|
[1] | 792 | e1d(nzb) = e1d(nzb+1) |
---|
| 793 | |
---|
[1960] | 794 | IF ( humidity ) THEN |
---|
[1] | 795 | ! |
---|
| 796 | !-- Compute q* |
---|
[2334] | 797 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 798 | ! |
---|
[1960] | 799 | !-- Stable stratification |
---|
| 800 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
[1353] | 801 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 802 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 803 | ) |
---|
[1960] | 804 | ELSE |
---|
[1] | 805 | ! |
---|
[1960] | 806 | !-- Unstable stratification |
---|
| 807 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 808 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 809 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 810 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 811 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 812 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
| 813 | ENDIF |
---|
[1] | 814 | ELSE |
---|
[1353] | 815 | qs1d = 0.0_wp |
---|
[2337] | 816 | ENDIF |
---|
[1] | 817 | |
---|
[1691] | 818 | ENDIF ! constant_flux_layer |
---|
[1] | 819 | |
---|
| 820 | ! |
---|
[2337] | 821 | !-- Compute the diabatic mixing length. The unstable stratification |
---|
| 822 | !-- must not be considered for l1d (km1d) as it is already considered |
---|
| 823 | !-- in the dissipation of TKE via l1d_diss. Otherwise, km1d would be |
---|
| 824 | !-- too large. |
---|
[1] | 825 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 826 | DO k = nzb+1, nzt |
---|
[1353] | 827 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[2918] | 828 | l1d(k) = l1d_init(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
[2337] | 829 | l1d_diss(k) = l1d(k) |
---|
[1] | 830 | ELSE |
---|
[2918] | 831 | l1d(k) = l1d_init(k) |
---|
| 832 | l1d_diss(k) = l1d_init(k) * & |
---|
[2337] | 833 | SQRT( 1.0_wp - 16.0_wp * rif1d(k) ) |
---|
[1] | 834 | ENDIF |
---|
| 835 | ENDDO |
---|
| 836 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 837 | DO k = nzb+1, nzt |
---|
| 838 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
[1353] | 839 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
| 840 | l_stable = 0.76_wp * SQRT( e1d(k) ) / & |
---|
| 841 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
[1] | 842 | ELSE |
---|
[2918] | 843 | l_stable = l1d_init(k) |
---|
[1] | 844 | ENDIF |
---|
[2918] | 845 | l1d(k) = MIN( l1d_init(k), l_stable ) |
---|
[2337] | 846 | l1d_diss(k) = l1d(k) |
---|
[1] | 847 | ENDDO |
---|
| 848 | ENDIF |
---|
| 849 | |
---|
| 850 | ! |
---|
| 851 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 852 | !-- corresponding Prandtl-layer relationship and according to |
---|
[2337] | 853 | !-- Prandtl-Kolmogorov, respectively |
---|
[1691] | 854 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 855 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
| 856 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 857 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
[1] | 858 | ELSE |
---|
[1353] | 859 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 860 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
[1] | 861 | ENDIF |
---|
| 862 | ENDIF |
---|
[2696] | 863 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 864 | DO k = nzb_diff, nzt |
---|
| 865 | km1d(k) = c_mu * e1d(k)**2 / ( diss1d(k) + 1.0E-30_wp ) |
---|
| 866 | ENDDO |
---|
| 867 | ELSE |
---|
| 868 | DO k = nzb_diff, nzt |
---|
| 869 | km1d(k) = c_m * SQRT( e1d(k) ) * l1d(k) |
---|
| 870 | ENDDO |
---|
| 871 | ENDIF |
---|
[1] | 872 | |
---|
| 873 | ! |
---|
| 874 | !-- Add damping layer |
---|
| 875 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 876 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 877 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 878 | ENDDO |
---|
| 879 | |
---|
| 880 | ! |
---|
| 881 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 882 | !-- kh = phim / phih * km |
---|
| 883 | DO k = nzb+1, nzt |
---|
[1353] | 884 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 885 | kh1d(k) = km1d(k) |
---|
| 886 | ELSE |
---|
[1353] | 887 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 888 | ENDIF |
---|
| 889 | ENDDO |
---|
| 890 | |
---|
| 891 | ENDIF ! .NOT. constant_diffusion |
---|
| 892 | |
---|
| 893 | ENDDO ! intermediate step loop |
---|
| 894 | |
---|
| 895 | ! |
---|
| 896 | !-- Increment simulated time and output times |
---|
| 897 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 898 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 899 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 900 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 901 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 902 | |
---|
| 903 | ! |
---|
| 904 | !-- Determine and print out quantities for run control |
---|
| 905 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 906 | CALL run_control_1d |
---|
| 907 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 908 | ENDIF |
---|
| 909 | |
---|
| 910 | ! |
---|
| 911 | !-- Profile output on file |
---|
| 912 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 913 | CALL print_1d_model |
---|
| 914 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 915 | ENDIF |
---|
| 916 | |
---|
| 917 | ! |
---|
| 918 | !-- Determine size of next time step |
---|
| 919 | CALL timestep_1d |
---|
| 920 | |
---|
| 921 | ENDDO ! time loop |
---|
| 922 | |
---|
| 923 | |
---|
| 924 | END SUBROUTINE time_integration_1d |
---|
| 925 | |
---|
| 926 | |
---|
| 927 | !------------------------------------------------------------------------------! |
---|
| 928 | ! Description: |
---|
| 929 | ! ------------ |
---|
[1682] | 930 | !> Compute and print out quantities for run control of the 1D model. |
---|
[1] | 931 | !------------------------------------------------------------------------------! |
---|
[1682] | 932 | |
---|
| 933 | SUBROUTINE run_control_1d |
---|
[1] | 934 | |
---|
[1682] | 935 | |
---|
[1320] | 936 | USE constants, & |
---|
| 937 | ONLY: pi |
---|
[1] | 938 | |
---|
| 939 | IMPLICIT NONE |
---|
| 940 | |
---|
[2338] | 941 | INTEGER(iwp) :: k !< loop index |
---|
[1320] | 942 | |
---|
[2338] | 943 | REAL(wp) :: alpha !< angle of wind vector at top of constant-flux layer |
---|
| 944 | REAL(wp) :: energy !< kinetic energy |
---|
| 945 | REAL(wp) :: umax !< maximum of u |
---|
| 946 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
| 947 | REAL(wp) :: vmax !< maximum of v |
---|
[1] | 948 | |
---|
| 949 | ! |
---|
| 950 | !-- Output |
---|
| 951 | IF ( myid == 0 ) THEN |
---|
| 952 | ! |
---|
| 953 | !-- If necessary, write header |
---|
| 954 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 955 | CALL check_open( 15 ) |
---|
[1] | 956 | WRITE ( 15, 100 ) |
---|
| 957 | run_control_header_1d = .TRUE. |
---|
| 958 | ENDIF |
---|
| 959 | |
---|
| 960 | ! |
---|
| 961 | !-- Compute control quantities |
---|
| 962 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 963 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 964 | DO k = nzb+1, nzt+1 |
---|
| 965 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 966 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 967 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 968 | ENDDO |
---|
[1322] | 969 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 970 | |
---|
| 971 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1691] | 972 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
[1346] | 973 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 974 | ELSE |
---|
| 975 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 976 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 977 | ENDIF |
---|
[1353] | 978 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 979 | |
---|
| 980 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 981 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 982 | ! |
---|
| 983 | !-- Write buffer contents to disc immediately |
---|
[1808] | 984 | FLUSH( 15 ) |
---|
[1] | 985 | |
---|
| 986 | ENDIF |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- formats |
---|
[2299] | 990 | 100 FORMAT (///'1D run control output:'/ & |
---|
[1] | 991 | &'------------------------------'// & |
---|
[2965] | 992 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
[1] | 993 | &'-------------------------------------------------------------') |
---|
[2965] | 994 | 101 FORMAT (I7,1X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
[1] | 995 | |
---|
| 996 | |
---|
| 997 | END SUBROUTINE run_control_1d |
---|
| 998 | |
---|
| 999 | |
---|
| 1000 | |
---|
| 1001 | !------------------------------------------------------------------------------! |
---|
| 1002 | ! Description: |
---|
| 1003 | ! ------------ |
---|
[1682] | 1004 | !> Compute the time step w.r.t. the diffusion criterion |
---|
[1] | 1005 | !------------------------------------------------------------------------------! |
---|
[1682] | 1006 | |
---|
| 1007 | SUBROUTINE timestep_1d |
---|
[1] | 1008 | |
---|
| 1009 | IMPLICIT NONE |
---|
| 1010 | |
---|
[2338] | 1011 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 1012 | |
---|
[2338] | 1013 | REAL(wp) :: dt_diff !< time step accorind to diffusion criterion |
---|
| 1014 | REAL(wp) :: fac !< factor of criterion |
---|
| 1015 | REAL(wp) :: value !< auxiliary variable |
---|
[1] | 1016 | |
---|
| 1017 | ! |
---|
| 1018 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 1019 | !-- criterion. At nzb+1 the half grid length is used. |
---|
[2696] | 1020 | fac = 0.125 !0.35_wp !### changed from 0.35 |
---|
[1] | 1021 | dt_diff = dt_max_1d |
---|
| 1022 | DO k = nzb+2, nzt |
---|
[1353] | 1023 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 1024 | dt_diff = MIN( value, dt_diff ) |
---|
| 1025 | ENDDO |
---|
[1353] | 1026 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 1027 | dt_1d = MIN( value, dt_diff ) |
---|
| 1028 | |
---|
| 1029 | ! |
---|
| 1030 | !-- Set flag when the time step becomes too small |
---|
[1353] | 1031 | IF ( dt_1d < ( 0.00001_wp * dt_max_1d ) ) THEN |
---|
[1] | 1032 | stop_dt_1d = .TRUE. |
---|
[254] | 1033 | |
---|
| 1034 | WRITE( message_string, * ) 'timestep has exceeded the lower limit &', & |
---|
| 1035 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 1036 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
| 1037 | |
---|
[1] | 1038 | ENDIF |
---|
| 1039 | |
---|
| 1040 | END SUBROUTINE timestep_1d |
---|
| 1041 | |
---|
| 1042 | |
---|
| 1043 | |
---|
| 1044 | !------------------------------------------------------------------------------! |
---|
| 1045 | ! Description: |
---|
| 1046 | ! ------------ |
---|
[1682] | 1047 | !> List output of profiles from the 1D-model |
---|
[1] | 1048 | !------------------------------------------------------------------------------! |
---|
[1682] | 1049 | |
---|
| 1050 | SUBROUTINE print_1d_model |
---|
[1] | 1051 | |
---|
| 1052 | IMPLICIT NONE |
---|
| 1053 | |
---|
[2338] | 1054 | INTEGER(iwp) :: k !< loop parameter |
---|
[1] | 1055 | |
---|
[2338] | 1056 | LOGICAL, SAVE :: write_first = .TRUE. !< flag for writing header |
---|
[1] | 1057 | |
---|
| 1058 | |
---|
| 1059 | IF ( myid == 0 ) THEN |
---|
| 1060 | ! |
---|
| 1061 | !-- Open list output file for profiles from the 1D-model |
---|
| 1062 | CALL check_open( 17 ) |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- Write Header |
---|
[2338] | 1066 | IF ( write_first ) THEN |
---|
| 1067 | WRITE ( 17, 100 ) TRIM( run_description_header ) |
---|
| 1068 | write_first = .FALSE. |
---|
| 1069 | ENDIF |
---|
[1] | 1070 | |
---|
| 1071 | ! |
---|
| 1072 | !-- Write the values |
---|
[2338] | 1073 | WRITE ( 17, 104 ) TRIM( simulated_time_chr ) |
---|
| 1074 | WRITE ( 17, 101 ) |
---|
[1] | 1075 | WRITE ( 17, 102 ) |
---|
| 1076 | WRITE ( 17, 101 ) |
---|
| 1077 | DO k = nzt+1, nzb, -1 |
---|
| 1078 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
[2696] | 1079 | rif1d(k), km1d(k), kh1d(k), l1d(k), diss1d(k) |
---|
[1] | 1080 | ENDDO |
---|
| 1081 | WRITE ( 17, 101 ) |
---|
| 1082 | WRITE ( 17, 102 ) |
---|
| 1083 | WRITE ( 17, 101 ) |
---|
| 1084 | |
---|
| 1085 | ! |
---|
| 1086 | !-- Write buffer contents to disc immediately |
---|
[1808] | 1087 | FLUSH( 17 ) |
---|
[1] | 1088 | |
---|
| 1089 | ENDIF |
---|
| 1090 | |
---|
| 1091 | ! |
---|
| 1092 | !-- Formats |
---|
[2338] | 1093 | 100 FORMAT ('# ',A/'#',10('-')/'# 1d-model profiles') |
---|
| 1094 | 104 FORMAT (//'# Time: ',A) |
---|
[2696] | 1095 | 101 FORMAT ('#',111('-')) |
---|
| 1096 | 102 FORMAT ('# k zu u v pt e ', & |
---|
| 1097 | 'rif Km Kh l diss ') |
---|
| 1098 | 103 FORMAT (1X,I4,1X,F7.1,9(1X,E10.3)) |
---|
[1] | 1099 | |
---|
| 1100 | |
---|
| 1101 | END SUBROUTINE print_1d_model |
---|
[2338] | 1102 | |
---|
| 1103 | |
---|
| 1104 | END MODULE |
---|