[2338] | 1 | !> @file model_1d_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1961] | 22 | ! |
---|
[2299] | 23 | ! |
---|
[1961] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: model_1d_mod.f90 2696 2017-12-14 17:12:51Z maronga $ |
---|
[2696] | 27 | ! implement TKE-e closure |
---|
| 28 | ! modification of dissipation production according to Detering and Etling |
---|
| 29 | ! reduced factor for timestep criterion to 0.125 and first dt to 1s (TG) |
---|
| 30 | ! |
---|
| 31 | ! 2339 2017-08-07 13:55:26Z gronemeier |
---|
[2339] | 32 | ! corrected timestamp in header |
---|
| 33 | ! |
---|
| 34 | ! 2338 2017-08-07 12:15:38Z gronemeier |
---|
[2338] | 35 | ! renamed init_1d_model to model_1d_mod and and formatted it as a module; |
---|
| 36 | ! reformatted output of profiles |
---|
| 37 | ! |
---|
[2339] | 38 | ! 2337 2017-08-07 08:59:53Z gronemeier |
---|
[2337] | 39 | ! revised calculation of mixing length |
---|
| 40 | ! removed rounding of time step |
---|
| 41 | ! corrected calculation of virtual potential temperature |
---|
| 42 | ! |
---|
| 43 | ! 2334 2017-08-04 11:57:04Z gronemeier |
---|
[2334] | 44 | ! set c_m = 0.4 according to Detering and Etling (1985) |
---|
| 45 | ! |
---|
| 46 | ! 2299 2017-06-29 10:14:38Z maronga |
---|
[2299] | 47 | ! Removed german text |
---|
[1961] | 48 | ! |
---|
[2299] | 49 | ! 2101 2017-01-05 16:42:31Z suehring |
---|
| 50 | ! |
---|
[2060] | 51 | ! 2059 2016-11-10 14:20:40Z maronga |
---|
| 52 | ! Corrected min/max values of Rif. |
---|
| 53 | ! |
---|
[2001] | 54 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 55 | ! Forced header and separation lines into 80 columns |
---|
| 56 | ! |
---|
[1961] | 57 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
[1960] | 58 | ! Remove passive_scalar from IF-statements, as 1D-scalar profile is effectively |
---|
| 59 | ! not used. |
---|
| 60 | ! Formatting adjustment |
---|
[1809] | 61 | ! |
---|
| 62 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 63 | ! routine local_flush replaced by FORTRAN statement |
---|
| 64 | ! |
---|
[1710] | 65 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 66 | ! Set initial time step to 10 s to avoid instability of the 1d model for small |
---|
| 67 | ! grid spacings |
---|
| 68 | ! |
---|
[1698] | 69 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 70 | ! small E- and F-FORMAT changes to avoid informative compiler messages about |
---|
| 71 | ! insufficient field width |
---|
| 72 | ! |
---|
[1692] | 73 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 74 | ! Renamed prandtl_layer to constant_flux_layer. rif is replaced by ol and zeta. |
---|
| 75 | ! |
---|
[1683] | 76 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 77 | ! Code annotations made doxygen readable |
---|
| 78 | ! |
---|
[1354] | 79 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 80 | ! REAL constants provided with KIND-attribute |
---|
| 81 | ! |
---|
[1347] | 82 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 83 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 84 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 85 | ! |
---|
[1323] | 86 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 87 | ! REAL functions provided with KIND-attribute |
---|
| 88 | ! |
---|
[1321] | 89 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 90 | ! ONLY-attribute added to USE-statements, |
---|
| 91 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 92 | ! kinds are defined in new module kinds, |
---|
| 93 | ! revision history before 2012 removed, |
---|
| 94 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 95 | ! all variable declaration statements |
---|
[1321] | 96 | ! |
---|
[1037] | 97 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 98 | ! code put under GPL (PALM 3.9) |
---|
| 99 | ! |
---|
[1017] | 100 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 101 | ! adjustment of mixing length to the Prandtl mixing length at first grid point |
---|
| 102 | ! above ground removed |
---|
| 103 | ! |
---|
[1002] | 104 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 105 | ! all actions concerning leapfrog scheme removed |
---|
| 106 | ! |
---|
[997] | 107 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 108 | ! little reformatting |
---|
| 109 | ! |
---|
[979] | 110 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 111 | ! roughness length for scalar quantities z0h1d added |
---|
| 112 | ! |
---|
[1] | 113 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 114 | ! Initial revision |
---|
| 115 | ! |
---|
| 116 | ! |
---|
| 117 | ! Description: |
---|
| 118 | ! ------------ |
---|
[1682] | 119 | !> 1D-model to initialize the 3D-arrays. |
---|
| 120 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
| 121 | !> of the wind profile is being computed. |
---|
| 122 | !> All subroutines required can be found within this file. |
---|
[1691] | 123 | !> |
---|
| 124 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
[1709] | 125 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
[1] | 126 | !------------------------------------------------------------------------------! |
---|
[2338] | 127 | MODULE model_1d_mod |
---|
[1] | 128 | |
---|
[1320] | 129 | USE arrays_3d, & |
---|
[2338] | 130 | ONLY: dd2zu, ddzu, ddzw, dzu, l_grid, pt_init, q_init, ug, u_init, & |
---|
| 131 | vg, v_init, zu |
---|
[1320] | 132 | |
---|
[2338] | 133 | USE control_parameters, & |
---|
| 134 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, f, g, & |
---|
| 135 | humidity, ibc_e_b, intermediate_timestep_count, & |
---|
| 136 | intermediate_timestep_count_max, kappa, km_constant, & |
---|
| 137 | message_string, mixing_length_1d, prandtl_number, & |
---|
[2696] | 138 | roughness_length, run_description_header, simulated_time_chr, & |
---|
| 139 | timestep_scheme, tsc, z0h_factor |
---|
[2338] | 140 | |
---|
[1320] | 141 | USE indices, & |
---|
[2338] | 142 | ONLY: nzb, nzb_diff, nzt |
---|
[1320] | 143 | |
---|
| 144 | USE kinds |
---|
[1] | 145 | |
---|
[2338] | 146 | USE pegrid |
---|
| 147 | |
---|
| 148 | |
---|
[1] | 149 | IMPLICIT NONE |
---|
| 150 | |
---|
[2338] | 151 | INTEGER(iwp) :: current_timestep_number_1d = 0 !< current timestep number (1d-model) |
---|
[2696] | 152 | INTEGER(iwp) :: damp_level_ind_1d !< lower grid index of damping layer (1d-model) |
---|
[2338] | 153 | |
---|
| 154 | LOGICAL :: run_control_header_1d = .FALSE. !< flag for output of run control header (1d-model) |
---|
| 155 | LOGICAL :: stop_dt_1d = .FALSE. !< termination flag, used in case of too small timestep (1d-model) |
---|
| 156 | |
---|
[2696] | 157 | REAL(wp) :: c_1 = 1.44_wp !< model constant |
---|
| 158 | REAL(wp) :: c_2 = 1.92_wp !< model constant |
---|
| 159 | REAL(wp) :: c_3 = 1.44_wp !< model constant |
---|
| 160 | REAL(wp) :: c_h = 0.0015_wp !< model constant according to Detering and Etling (1985) |
---|
[2338] | 161 | REAL(wp) :: c_m = 0.4_wp !< model constant, 0.4 according to Detering and Etling (1985) |
---|
[2696] | 162 | REAL(wp) :: c_mu = 0.09_wp !< model constant |
---|
| 163 | REAL(wp) :: damp_level_1d = -1.0_wp !< namelist parameter |
---|
[2338] | 164 | REAL(wp) :: dt_1d = 60.0_wp !< dynamic timestep (1d-model) |
---|
| 165 | REAL(wp) :: dt_max_1d = 300.0_wp !< timestep limit (1d-model) |
---|
[2696] | 166 | REAL(wp) :: dt_pr_1d = 9999999.9_wp !< namelist parameter |
---|
| 167 | REAL(wp) :: dt_run_control_1d = 60.0_wp !< namelist parameter |
---|
| 168 | REAL(wp) :: end_time_1d = 864000.0_wp !< namelist parameter |
---|
[2338] | 169 | REAL(wp) :: qs1d !< characteristic humidity scale (1d-model) |
---|
| 170 | REAL(wp) :: simulated_time_1d = 0.0_wp !< updated simulated time (1d-model) |
---|
[2696] | 171 | REAL(wp) :: sig_diss = 1.3_wp !< model constant |
---|
[2338] | 172 | REAL(wp) :: time_pr_1d = 0.0_wp !< updated simulated time for profile output (1d-model) |
---|
| 173 | REAL(wp) :: time_run_control_1d = 0.0_wp !< updated simulated time for run-control output (1d-model) |
---|
| 174 | REAL(wp) :: ts1d !< characteristic temperature scale (1d-model) |
---|
[2696] | 175 | REAL(wp) :: us1d !< friction velocity (1d-model) |
---|
| 176 | REAL(wp) :: usws1d !< u-component of the momentum flux (1d-model) |
---|
| 177 | REAL(wp) :: vsws1d !< v-component of the momentum flux (1d-model) |
---|
[2338] | 178 | REAL(wp) :: z01d !< roughness length for momentum (1d-model) |
---|
| 179 | REAL(wp) :: z0h1d !< roughness length for scalars (1d-model) |
---|
| 180 | |
---|
| 181 | |
---|
[2696] | 182 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d !< tke dissipation rate (1d-model) |
---|
| 183 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d_p !< prognostic value of tke dissipation rate (1d-model) |
---|
| 184 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d !< tke (1d-model) |
---|
[2338] | 185 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d_p !< prognostic value of tke (1d-model) |
---|
[2696] | 186 | REAL(wp), DIMENSION(:), ALLOCATABLE :: kh1d !< turbulent diffusion coefficient for heat (1d-model) |
---|
| 187 | REAL(wp), DIMENSION(:), ALLOCATABLE :: km1d !< turbulent diffusion coefficient for momentum (1d-model) |
---|
[2338] | 188 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l_black !< mixing length Blackadar (1d-model) |
---|
[2696] | 189 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d !< mixing length for turbulent diffusion coefficients (1d-model) |
---|
[2338] | 190 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_diss !< mixing length for dissipation (1d-model) |
---|
[2696] | 191 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rif1d !< Richardson flux number (1d-model) |
---|
| 192 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_diss !< tendency of diss (1d-model) |
---|
| 193 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_dissm !< weighted tendency of diss for previous sub-timestep (1d-model) |
---|
[2338] | 194 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_e !< tendency of e (1d-model) |
---|
| 195 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_em !< weighted tendency of e for previous sub-timestep (1d-model) |
---|
| 196 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_u !< tendency of u (1d-model) |
---|
| 197 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_um !< weighted tendency of u for previous sub-timestep (1d-model) |
---|
| 198 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_v !< tendency of v (1d-model) |
---|
| 199 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_vm !< weighted tendency of v for previous sub-timestep (1d-model) |
---|
[2696] | 200 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d !< u-velocity component (1d-model) |
---|
[2338] | 201 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d_p !< prognostic value of u-velocity component (1d-model) |
---|
[2696] | 202 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d !< v-velocity component (1d-model) |
---|
[2338] | 203 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d_p !< prognostic value of v-velocity component (1d-model) |
---|
| 204 | |
---|
| 205 | ! |
---|
| 206 | !-- Initialize 1D model |
---|
| 207 | INTERFACE init_1d_model |
---|
| 208 | MODULE PROCEDURE init_1d_model |
---|
| 209 | END INTERFACE init_1d_model |
---|
| 210 | |
---|
| 211 | ! |
---|
| 212 | !-- Print profiles |
---|
| 213 | INTERFACE print_1d_model |
---|
| 214 | MODULE PROCEDURE print_1d_model |
---|
| 215 | END INTERFACE print_1d_model |
---|
| 216 | |
---|
| 217 | ! |
---|
| 218 | !-- Print run control information |
---|
| 219 | INTERFACE run_control_1d |
---|
| 220 | MODULE PROCEDURE run_control_1d |
---|
| 221 | END INTERFACE run_control_1d |
---|
| 222 | |
---|
| 223 | ! |
---|
| 224 | !-- Main procedure |
---|
| 225 | INTERFACE time_integration_1d |
---|
| 226 | MODULE PROCEDURE time_integration_1d |
---|
| 227 | END INTERFACE time_integration_1d |
---|
| 228 | |
---|
| 229 | ! |
---|
| 230 | !-- Calculate time step |
---|
| 231 | INTERFACE timestep_1d |
---|
| 232 | MODULE PROCEDURE timestep_1d |
---|
| 233 | END INTERFACE timestep_1d |
---|
| 234 | |
---|
| 235 | SAVE |
---|
| 236 | |
---|
| 237 | PRIVATE |
---|
| 238 | ! |
---|
| 239 | !-- Public interfaces |
---|
| 240 | PUBLIC init_1d_model |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | !-- Public variables |
---|
[2696] | 244 | PUBLIC damp_level_1d, damp_level_ind_1d, diss1d, dt_pr_1d, & |
---|
| 245 | dt_run_control_1d, e1d, end_time_1d, kh1d, km1d, l1d, rif1d, u1d, & |
---|
| 246 | us1d, usws1d, v1d, vsws1d |
---|
[2338] | 247 | |
---|
| 248 | |
---|
| 249 | CONTAINS |
---|
| 250 | |
---|
| 251 | SUBROUTINE init_1d_model |
---|
| 252 | |
---|
| 253 | IMPLICIT NONE |
---|
| 254 | |
---|
[2696] | 255 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 256 | |
---|
| 257 | INTEGER(iwp) :: k !< loop index |
---|
[1320] | 258 | |
---|
[2696] | 259 | REAL(wp) :: lambda !< maximum mixing length |
---|
[1] | 260 | |
---|
| 261 | ! |
---|
| 262 | !-- Allocate required 1D-arrays |
---|
[2696] | 263 | ALLOCATE( diss1d(nzb:nzt+1), diss1d_p(nzb:nzt+1), & |
---|
| 264 | e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), kh1d(nzb:nzt+1), & |
---|
[2338] | 265 | km1d(nzb:nzt+1), l_black(nzb:nzt+1), l1d(nzb:nzt+1), & |
---|
[2696] | 266 | l1d_diss(nzb:nzt+1), rif1d(nzb:nzt+1), te_diss(nzb:nzt+1), & |
---|
| 267 | te_dissm(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
[2338] | 268 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 269 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
| 270 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
[1] | 271 | |
---|
| 272 | ! |
---|
| 273 | !-- Initialize arrays |
---|
| 274 | IF ( constant_diffusion ) THEN |
---|
[1001] | 275 | km1d = km_constant |
---|
| 276 | kh1d = km_constant / prandtl_number |
---|
[1] | 277 | ELSE |
---|
[2696] | 278 | diss1d = 0.0_wp; diss1d_p = 0.0_wp |
---|
[1353] | 279 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 280 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
| 281 | rif1d = 0.0_wp |
---|
[1] | 282 | ! |
---|
| 283 | !-- Compute the mixing length |
---|
[1353] | 284 | l_black(nzb) = 0.0_wp |
---|
[1] | 285 | |
---|
| 286 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 287 | ! |
---|
| 288 | !-- Blackadar mixing length |
---|
[1353] | 289 | IF ( f /= 0.0_wp ) THEN |
---|
| 290 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
| 291 | ABS( f ) + 1E-10_wp |
---|
[1] | 292 | ELSE |
---|
[1353] | 293 | lambda = 30.0_wp |
---|
[1] | 294 | ENDIF |
---|
| 295 | |
---|
| 296 | DO k = nzb+1, nzt+1 |
---|
[1353] | 297 | l_black(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 298 | ENDDO |
---|
| 299 | |
---|
| 300 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 301 | ! |
---|
| 302 | !-- Use the same mixing length as in 3D model |
---|
| 303 | l_black(1:nzt) = l_grid |
---|
| 304 | l_black(nzt+1) = l_black(nzt) |
---|
| 305 | |
---|
| 306 | ENDIF |
---|
| 307 | ENDIF |
---|
[2337] | 308 | l1d = l_black |
---|
| 309 | l1d_diss = l_black |
---|
| 310 | u1d = u_init |
---|
| 311 | u1d_p = u_init |
---|
| 312 | v1d = v_init |
---|
| 313 | v1d_p = v_init |
---|
[1] | 314 | |
---|
| 315 | ! |
---|
| 316 | !-- Set initial horizontal velocities at the lowest grid levels to a very small |
---|
| 317 | !-- value in order to avoid too small time steps caused by the diffusion limit |
---|
| 318 | !-- in the initial phase of a run (at k=1, dz/2 occurs in the limiting formula!) |
---|
[1353] | 319 | u1d(0:1) = 0.1_wp |
---|
| 320 | u1d_p(0:1) = 0.1_wp |
---|
| 321 | v1d(0:1) = 0.1_wp |
---|
| 322 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 323 | |
---|
| 324 | ! |
---|
| 325 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
[1691] | 326 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 327 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 328 | ELSE |
---|
[2696] | 329 | diss1d(nzb+1) = 1.0_wp |
---|
[1353] | 330 | e1d(nzb+1) = 1.0_wp |
---|
| 331 | km1d(nzb+1) = 1.0_wp |
---|
| 332 | us1d = 0.0_wp |
---|
[1] | 333 | ENDIF |
---|
[1353] | 334 | ts1d = 0.0_wp |
---|
| 335 | usws1d = 0.0_wp |
---|
| 336 | vsws1d = 0.0_wp |
---|
[996] | 337 | z01d = roughness_length |
---|
[978] | 338 | z0h1d = z0h_factor * z01d |
---|
[1960] | 339 | IF ( humidity ) qs1d = 0.0_wp |
---|
[1] | 340 | |
---|
| 341 | ! |
---|
[46] | 342 | !-- Tendencies must be preset in order to avoid runtime errors within the |
---|
| 343 | !-- first Runge-Kutta step |
---|
[2696] | 344 | te_dissm = 0.0_wp |
---|
[1353] | 345 | te_em = 0.0_wp |
---|
| 346 | te_um = 0.0_wp |
---|
| 347 | te_vm = 0.0_wp |
---|
[46] | 348 | |
---|
| 349 | ! |
---|
[2338] | 350 | !-- Set model constant |
---|
| 351 | IF ( dissipation_1d == 'as_in_3d_model' ) c_m = 0.1_wp |
---|
| 352 | |
---|
| 353 | ! |
---|
[1] | 354 | !-- Set start time in hh:mm:ss - format |
---|
| 355 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 356 | |
---|
| 357 | ! |
---|
[2337] | 358 | !-- Integrate the 1D-model equations using the Runge-Kutta scheme |
---|
[1] | 359 | CALL time_integration_1d |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | END SUBROUTINE init_1d_model |
---|
| 363 | |
---|
| 364 | |
---|
| 365 | |
---|
| 366 | !------------------------------------------------------------------------------! |
---|
| 367 | ! Description: |
---|
| 368 | ! ------------ |
---|
[2338] | 369 | !> Runge-Kutta time differencing scheme for the 1D-model. |
---|
[1] | 370 | !------------------------------------------------------------------------------! |
---|
[1682] | 371 | |
---|
| 372 | SUBROUTINE time_integration_1d |
---|
[1] | 373 | |
---|
| 374 | IMPLICIT NONE |
---|
| 375 | |
---|
[2696] | 376 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 377 | |
---|
[2338] | 378 | INTEGER(iwp) :: k !< loop index |
---|
[2696] | 379 | |
---|
[2338] | 380 | REAL(wp) :: a !< auxiliary variable |
---|
| 381 | REAL(wp) :: b !< auxiliary variable |
---|
| 382 | REAL(wp) :: dpt_dz !< vertical temperature gradient |
---|
| 383 | REAL(wp) :: flux !< vertical temperature gradient |
---|
| 384 | REAL(wp) :: kmzm !< Km(z-dz/2) |
---|
| 385 | REAL(wp) :: kmzp !< Km(z+dz/2) |
---|
| 386 | REAL(wp) :: l_stable !< mixing length for stable case |
---|
| 387 | REAL(wp) :: pt_0 !< reference temperature |
---|
| 388 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
[1] | 389 | |
---|
| 390 | ! |
---|
| 391 | !-- Determine the time step at the start of a 1D-simulation and |
---|
| 392 | !-- determine and printout quantities used for run control |
---|
[2696] | 393 | dt_1d = 1.0_wp |
---|
[1] | 394 | CALL run_control_1d |
---|
| 395 | |
---|
| 396 | ! |
---|
| 397 | !-- Start of time loop |
---|
| 398 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 399 | |
---|
| 400 | ! |
---|
| 401 | !-- Depending on the timestep scheme, carry out one or more intermediate |
---|
| 402 | !-- timesteps |
---|
| 403 | |
---|
| 404 | intermediate_timestep_count = 0 |
---|
| 405 | DO WHILE ( intermediate_timestep_count < & |
---|
| 406 | intermediate_timestep_count_max ) |
---|
| 407 | |
---|
| 408 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 409 | |
---|
| 410 | CALL timestep_scheme_steering |
---|
| 411 | |
---|
| 412 | ! |
---|
[2696] | 413 | !-- Compute all tendency terms. If a constant-flux layer is simulated, |
---|
| 414 | !-- k starts at nzb+2. |
---|
[1] | 415 | DO k = nzb_diff, nzt |
---|
| 416 | |
---|
[1353] | 417 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 418 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 419 | ! |
---|
| 420 | !-- u-component |
---|
| 421 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
[1001] | 422 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 423 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
| 424 | ) * ddzw(k) |
---|
[1] | 425 | ! |
---|
| 426 | !-- v-component |
---|
[1001] | 427 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 428 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 429 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
| 430 | ) * ddzw(k) |
---|
[1] | 431 | ENDDO |
---|
| 432 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 433 | DO k = nzb_diff, nzt |
---|
| 434 | ! |
---|
[2696] | 435 | !-- TKE and dissipation rate |
---|
[1353] | 436 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 437 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 438 | IF ( .NOT. humidity ) THEN |
---|
[1] | 439 | pt_0 = pt_init(k) |
---|
| 440 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 441 | ELSE |
---|
[1353] | 442 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 443 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 444 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 445 | pt_init(k-1) * q_init(k-1) ) & |
---|
| 446 | ) * dd2zu(k) |
---|
[1] | 447 | ENDIF |
---|
| 448 | |
---|
[2696] | 449 | ! |
---|
| 450 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 451 | !-- dissipation rate |
---|
[1] | 452 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[2696] | 453 | diss1d(k) = c_m**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 454 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2696] | 455 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l_grid(k) & |
---|
| 456 | ) * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 457 | ENDIF |
---|
[2696] | 458 | ! |
---|
| 459 | !-- TKE |
---|
[1] | 460 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 461 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 462 | ) & |
---|
| 463 | - g / pt_0 * kh1d(k) * flux & |
---|
| 464 | + ( & |
---|
[1001] | 465 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 466 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
[1] | 467 | ) * ddzw(k) & |
---|
[2696] | 468 | - diss1d(k) |
---|
| 469 | |
---|
| 470 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 471 | ! |
---|
| 472 | !-- dissipation rate |
---|
| 473 | te_diss(k) = km1d(k) * & |
---|
| 474 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 475 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 476 | ) * c_1 * c_mu**0.75 / c_h * f / us1d & |
---|
| 477 | * SQRT(e1d(k)) & |
---|
| 478 | - g / pt_0 * kh1d(k) * flux * c_3 & |
---|
| 479 | * diss1d(k) / ( e1d(k) + 1.0E-20_wp ) & |
---|
| 480 | + ( kmzp * ( diss1d(k+1) - diss1d(k) ) & |
---|
| 481 | * ddzu(k+1) & |
---|
| 482 | - kmzm * ( diss1d(k) - diss1d(k-1) ) & |
---|
| 483 | * ddzu(k) & |
---|
| 484 | ) * ddzw(k) / sig_diss & |
---|
| 485 | - c_2 * diss1d(k)**2 / ( e1d(k) + 1.0E-20_wp ) |
---|
| 486 | |
---|
| 487 | ENDIF |
---|
| 488 | |
---|
[1] | 489 | ENDDO |
---|
| 490 | ENDIF |
---|
| 491 | |
---|
| 492 | ! |
---|
[2696] | 493 | !-- Tendency terms at the top of the constant-flux layer. |
---|
[1] | 494 | !-- Finite differences of the momentum fluxes are computed using half the |
---|
| 495 | !-- normal grid length (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
[1691] | 496 | IF ( constant_flux_layer ) THEN |
---|
[1] | 497 | |
---|
| 498 | k = nzb+1 |
---|
[1353] | 499 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 500 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 501 | IF ( .NOT. humidity ) THEN |
---|
[1] | 502 | pt_0 = pt_init(k) |
---|
| 503 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 504 | ELSE |
---|
[1353] | 505 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
| 506 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
[2337] | 507 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 508 | pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 509 | ) * dd2zu(k) |
---|
| 510 | ENDIF |
---|
| 511 | |
---|
[2696] | 512 | ! |
---|
| 513 | !-- Calculate dissipation rate if no prognostic equation is used for |
---|
| 514 | !-- dissipation rate |
---|
[1] | 515 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[2696] | 516 | diss1d(k) = c_m**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 517 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[2696] | 518 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l_grid(k) ) & |
---|
| 519 | * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 520 | ENDIF |
---|
| 521 | |
---|
| 522 | ! |
---|
| 523 | !-- u-component |
---|
[1001] | 524 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 525 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 526 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 527 | ! |
---|
| 528 | !-- v-component |
---|
[1001] | 529 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 530 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 531 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 532 | ! |
---|
| 533 | !-- TKE |
---|
[2696] | 534 | IF ( .NOT. dissipation_1d == 'prognostic' ) THEN |
---|
| 535 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2& |
---|
| 536 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2& |
---|
| 537 | ) & |
---|
| 538 | - g / pt_0 * kh1d(k) * flux & |
---|
| 539 | + ( & |
---|
| 540 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 541 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
| 542 | ) * ddzw(k) & |
---|
| 543 | - diss1d(k) |
---|
| 544 | ENDIF |
---|
| 545 | |
---|
[1] | 546 | ENDIF |
---|
| 547 | |
---|
| 548 | ! |
---|
| 549 | !-- Prognostic equations for all 1D variables |
---|
| 550 | DO k = nzb+1, nzt |
---|
| 551 | |
---|
[1001] | 552 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + & |
---|
| 553 | tsc(3) * te_um(k) ) |
---|
| 554 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + & |
---|
| 555 | tsc(3) * te_vm(k) ) |
---|
[1] | 556 | |
---|
| 557 | ENDDO |
---|
| 558 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2696] | 559 | |
---|
[1] | 560 | DO k = nzb+1, nzt |
---|
[1001] | 561 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + & |
---|
| 562 | tsc(3) * te_em(k) ) |
---|
[2696] | 563 | ENDDO |
---|
[1] | 564 | |
---|
[2696] | 565 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 566 | DO k = nzb_diff, nzt |
---|
| 567 | diss1d_p(k) = diss1d(k) + dt_1d * ( tsc(2) * te_diss(k) + & |
---|
| 568 | tsc(3) * te_dissm(k) ) |
---|
| 569 | ENDDO |
---|
| 570 | ENDIF |
---|
[1] | 571 | ! |
---|
| 572 | !-- Eliminate negative TKE values, which can result from the |
---|
| 573 | !-- integration due to numerical inaccuracies. In such cases the TKE |
---|
| 574 | !-- value is reduced to 10 percent of its old value. |
---|
[1353] | 575 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[1] | 576 | ENDIF |
---|
| 577 | |
---|
| 578 | ! |
---|
| 579 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 580 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 581 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 582 | |
---|
| 583 | DO k = nzb+1, nzt |
---|
| 584 | te_um(k) = te_u(k) |
---|
| 585 | te_vm(k) = te_v(k) |
---|
| 586 | ENDDO |
---|
| 587 | |
---|
| 588 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 589 | DO k = nzb+1, nzt |
---|
| 590 | te_em(k) = te_e(k) |
---|
| 591 | ENDDO |
---|
[2696] | 592 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 593 | DO k = nzb+1, nzt |
---|
| 594 | te_dissm(k) = te_diss(k) |
---|
| 595 | ENDDO |
---|
| 596 | ENDIF |
---|
[1] | 597 | ENDIF |
---|
| 598 | |
---|
| 599 | ELSEIF ( intermediate_timestep_count < & |
---|
| 600 | intermediate_timestep_count_max ) THEN |
---|
| 601 | |
---|
| 602 | DO k = nzb+1, nzt |
---|
[1353] | 603 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 604 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 605 | ENDDO |
---|
| 606 | |
---|
| 607 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 608 | DO k = nzb+1, nzt |
---|
[1353] | 609 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 610 | ENDDO |
---|
[2696] | 611 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 612 | DO k = nzb+1, nzt |
---|
| 613 | te_dissm(k) = -9.5625_wp * te_diss(k) + 5.3125_wp * te_dissm(k) |
---|
| 614 | ENDDO |
---|
| 615 | ENDIF |
---|
[1] | 616 | ENDIF |
---|
| 617 | |
---|
| 618 | ENDIF |
---|
| 619 | ENDIF |
---|
| 620 | |
---|
| 621 | |
---|
| 622 | ! |
---|
| 623 | !-- Boundary conditions for the prognostic variables. |
---|
[2696] | 624 | !-- At the top boundary (nzt+1) u, v, e, and diss keep their initial |
---|
| 625 | !-- values (ug(nzt+1), vg(nzt+1), 0, 0). |
---|
[2334] | 626 | !-- At the bottom boundary, Dirichlet condition is used for u and v (0) |
---|
[2696] | 627 | !-- and Neumann condition for e and diss (e(nzb)=e(nzb+1)). |
---|
[1353] | 628 | u1d_p(nzb) = 0.0_wp |
---|
| 629 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 630 | |
---|
[1] | 631 | ! |
---|
| 632 | !-- Swap the time levels in preparation for the next time step. |
---|
| 633 | u1d = u1d_p |
---|
| 634 | v1d = v1d_p |
---|
| 635 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 636 | e1d = e1d_p |
---|
[2696] | 637 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 638 | diss1d = diss1d_p |
---|
| 639 | ENDIF |
---|
[1] | 640 | ENDIF |
---|
| 641 | |
---|
| 642 | ! |
---|
| 643 | !-- Compute diffusion quantities |
---|
| 644 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 645 | |
---|
| 646 | ! |
---|
[2696] | 647 | !-- First compute the vertical fluxes in the constant-flux layer |
---|
[1691] | 648 | IF ( constant_flux_layer ) THEN |
---|
[1] | 649 | ! |
---|
| 650 | !-- Compute theta* using Rif numbers of the previous time step |
---|
[2334] | 651 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 652 | ! |
---|
| 653 | !-- Stable stratification |
---|
[1353] | 654 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 655 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 656 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 657 | ) |
---|
| 658 | ELSE |
---|
| 659 | ! |
---|
| 660 | !-- Unstable stratification |
---|
[1353] | 661 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 662 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 663 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 664 | |
---|
| 665 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 666 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 667 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 668 | ENDIF |
---|
| 669 | |
---|
[1691] | 670 | ENDIF ! constant_flux_layer |
---|
[1] | 671 | |
---|
| 672 | ! |
---|
| 673 | !-- Compute the Richardson-flux numbers, |
---|
[2696] | 674 | !-- first at the top of the constant-flux layer using u* of the |
---|
| 675 | !-- previous time step (+1E-30, if u* = 0), then in the remaining area. |
---|
| 676 | !-- There the rif-numbers of the previous time step are used. |
---|
[1] | 677 | |
---|
[1691] | 678 | IF ( constant_flux_layer ) THEN |
---|
[75] | 679 | IF ( .NOT. humidity ) THEN |
---|
[1] | 680 | pt_0 = pt_init(nzb+1) |
---|
| 681 | flux = ts1d |
---|
| 682 | ELSE |
---|
[1353] | 683 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 684 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 685 | ENDIF |
---|
| 686 | rif1d(nzb+1) = zu(nzb+1) * kappa * g * flux / & |
---|
[1353] | 687 | ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 688 | ENDIF |
---|
| 689 | |
---|
| 690 | DO k = nzb_diff, nzt |
---|
[75] | 691 | IF ( .NOT. humidity ) THEN |
---|
[1] | 692 | pt_0 = pt_init(k) |
---|
| 693 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 694 | ELSE |
---|
[1353] | 695 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[1] | 696 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
[2337] | 697 | + 0.61_wp & |
---|
| 698 | * ( pt_init(k+1) * q_init(k+1) & |
---|
| 699 | - pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 700 | ) * dd2zu(k) |
---|
| 701 | ENDIF |
---|
[1353] | 702 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 703 | rif1d(k) = g / pt_0 * flux / & |
---|
| 704 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 705 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 706 | + 1E-30_wp & |
---|
[1] | 707 | ) |
---|
| 708 | ELSE |
---|
[1353] | 709 | rif1d(k) = g / pt_0 * flux / & |
---|
| 710 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 711 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 712 | + 1E-30_wp & |
---|
| 713 | ) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 714 | ENDIF |
---|
| 715 | ENDDO |
---|
| 716 | ! |
---|
| 717 | !-- Richardson-numbers must remain restricted to a realistic value |
---|
| 718 | !-- range. It is exceeded excessively for very small velocities |
---|
| 719 | !-- (u,v --> 0). |
---|
[2059] | 720 | WHERE ( rif1d < -5.0_wp ) rif1d = -5.0_wp |
---|
| 721 | WHERE ( rif1d > 1.0_wp ) rif1d = 1.0_wp |
---|
[1] | 722 | |
---|
| 723 | ! |
---|
| 724 | !-- Compute u* from the absolute velocity value |
---|
[1691] | 725 | IF ( constant_flux_layer ) THEN |
---|
[1] | 726 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 727 | |
---|
[1353] | 728 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 729 | ! |
---|
| 730 | !-- Stable stratification |
---|
| 731 | us1d = kappa * uv_total / ( & |
---|
[1353] | 732 | LOG( zu(nzb+1) / z01d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
[1] | 733 | ( zu(nzb+1) - z01d ) / zu(nzb+1) & |
---|
| 734 | ) |
---|
| 735 | ELSE |
---|
| 736 | ! |
---|
| 737 | !-- Unstable stratification |
---|
[1353] | 738 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) ) |
---|
| 739 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 740 | zu(nzb+1) * z01d ) ) |
---|
[2337] | 741 | us1d = kappa * uv_total / ( & |
---|
| 742 | LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 743 | (1.0_wp+a) ) + & |
---|
| 744 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 745 | ) |
---|
[1] | 746 | ENDIF |
---|
| 747 | |
---|
| 748 | ! |
---|
| 749 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 750 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 751 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 752 | |
---|
| 753 | ! |
---|
[2696] | 754 | !-- Boundary condition for the turbulent kinetic energy and |
---|
| 755 | !-- dissipation rate at the top of the constant-flux layer. |
---|
[1] | 756 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure |
---|
| 757 | !-- compatibility with the 3D model. |
---|
| 758 | IF ( ibc_e_b == 2 ) THEN |
---|
[2334] | 759 | e1d(nzb+1) = ( us1d / c_m )**2 |
---|
[1] | 760 | ENDIF |
---|
[2696] | 761 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 762 | e1d(nzb+1) = us1d**2 / SQRT( c_mu ) |
---|
| 763 | diss1d(nzb+1) = us1d**3 / ( kappa * zu(nzb+1) ) |
---|
| 764 | diss1d(nzb) = diss1d(nzb+1) |
---|
| 765 | ENDIF |
---|
[1] | 766 | e1d(nzb) = e1d(nzb+1) |
---|
| 767 | |
---|
[1960] | 768 | IF ( humidity ) THEN |
---|
[1] | 769 | ! |
---|
| 770 | !-- Compute q* |
---|
[2334] | 771 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 772 | ! |
---|
[1960] | 773 | !-- Stable stratification |
---|
| 774 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
[1353] | 775 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * rif1d(nzb+1) * & |
---|
| 776 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 777 | ) |
---|
[1960] | 778 | ELSE |
---|
[1] | 779 | ! |
---|
[1960] | 780 | !-- Unstable stratification |
---|
| 781 | a = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) ) |
---|
| 782 | b = SQRT( 1.0_wp - 16.0_wp * rif1d(nzb+1) / & |
---|
| 783 | zu(nzb+1) * z0h1d ) |
---|
[2337] | 784 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 785 | LOG( (a-1.0_wp) / (a+1.0_wp) * & |
---|
| 786 | (b+1.0_wp) / (b-1.0_wp) ) |
---|
| 787 | ENDIF |
---|
[1] | 788 | ELSE |
---|
[1353] | 789 | qs1d = 0.0_wp |
---|
[2337] | 790 | ENDIF |
---|
[1] | 791 | |
---|
[1691] | 792 | ENDIF ! constant_flux_layer |
---|
[1] | 793 | |
---|
| 794 | ! |
---|
[2337] | 795 | !-- Compute the diabatic mixing length. The unstable stratification |
---|
| 796 | !-- must not be considered for l1d (km1d) as it is already considered |
---|
| 797 | !-- in the dissipation of TKE via l1d_diss. Otherwise, km1d would be |
---|
| 798 | !-- too large. |
---|
[1] | 799 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 800 | DO k = nzb+1, nzt |
---|
[1353] | 801 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
| 802 | l1d(k) = l_black(k) / ( 1.0_wp + 5.0_wp * rif1d(k) ) |
---|
[2337] | 803 | l1d_diss(k) = l1d(k) |
---|
[1] | 804 | ELSE |
---|
[2337] | 805 | l1d(k) = l_black(k) |
---|
| 806 | l1d_diss(k) = l_black(k) * & |
---|
| 807 | SQRT( 1.0_wp - 16.0_wp * rif1d(k) ) |
---|
[1] | 808 | ENDIF |
---|
| 809 | ENDDO |
---|
| 810 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 811 | DO k = nzb+1, nzt |
---|
| 812 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
[1353] | 813 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
| 814 | l_stable = 0.76_wp * SQRT( e1d(k) ) / & |
---|
| 815 | SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
[1] | 816 | ELSE |
---|
| 817 | l_stable = l_grid(k) |
---|
| 818 | ENDIF |
---|
| 819 | l1d(k) = MIN( l_grid(k), l_stable ) |
---|
[2337] | 820 | l1d_diss(k) = l1d(k) |
---|
[1] | 821 | ENDDO |
---|
| 822 | ENDIF |
---|
| 823 | |
---|
| 824 | ! |
---|
| 825 | !-- Compute the diffusion coefficients for momentum via the |
---|
| 826 | !-- corresponding Prandtl-layer relationship and according to |
---|
[2337] | 827 | !-- Prandtl-Kolmogorov, respectively |
---|
[1691] | 828 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 829 | IF ( rif1d(nzb+1) >= 0.0_wp ) THEN |
---|
| 830 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
| 831 | ( 1.0_wp + 5.0_wp * rif1d(nzb+1) ) |
---|
[1] | 832 | ELSE |
---|
[1353] | 833 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
| 834 | ( 1.0_wp - 16.0_wp * rif1d(nzb+1) )**0.25_wp |
---|
[1] | 835 | ENDIF |
---|
| 836 | ENDIF |
---|
[2696] | 837 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 838 | DO k = nzb_diff, nzt |
---|
| 839 | km1d(k) = c_mu * e1d(k)**2 / ( diss1d(k) + 1.0E-30_wp ) |
---|
| 840 | ENDDO |
---|
| 841 | ELSE |
---|
| 842 | DO k = nzb_diff, nzt |
---|
| 843 | km1d(k) = c_m * SQRT( e1d(k) ) * l1d(k) |
---|
| 844 | ENDDO |
---|
| 845 | ENDIF |
---|
[1] | 846 | |
---|
| 847 | ! |
---|
| 848 | !-- Add damping layer |
---|
| 849 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 850 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 851 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 852 | ENDDO |
---|
| 853 | |
---|
| 854 | ! |
---|
| 855 | !-- Compute the diffusion coefficient for heat via the relationship |
---|
| 856 | !-- kh = phim / phih * km |
---|
| 857 | DO k = nzb+1, nzt |
---|
[1353] | 858 | IF ( rif1d(k) >= 0.0_wp ) THEN |
---|
[1] | 859 | kh1d(k) = km1d(k) |
---|
| 860 | ELSE |
---|
[1353] | 861 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * rif1d(k) )**0.25_wp |
---|
[1] | 862 | ENDIF |
---|
| 863 | ENDDO |
---|
| 864 | |
---|
| 865 | ENDIF ! .NOT. constant_diffusion |
---|
| 866 | |
---|
| 867 | ENDDO ! intermediate step loop |
---|
| 868 | |
---|
| 869 | ! |
---|
| 870 | !-- Increment simulated time and output times |
---|
| 871 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 872 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 873 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 874 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 875 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 876 | |
---|
| 877 | ! |
---|
| 878 | !-- Determine and print out quantities for run control |
---|
| 879 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 880 | CALL run_control_1d |
---|
| 881 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 882 | ENDIF |
---|
| 883 | |
---|
| 884 | ! |
---|
| 885 | !-- Profile output on file |
---|
| 886 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 887 | CALL print_1d_model |
---|
| 888 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 889 | ENDIF |
---|
| 890 | |
---|
| 891 | ! |
---|
| 892 | !-- Determine size of next time step |
---|
| 893 | CALL timestep_1d |
---|
| 894 | |
---|
| 895 | ENDDO ! time loop |
---|
| 896 | |
---|
| 897 | |
---|
| 898 | END SUBROUTINE time_integration_1d |
---|
| 899 | |
---|
| 900 | |
---|
| 901 | !------------------------------------------------------------------------------! |
---|
| 902 | ! Description: |
---|
| 903 | ! ------------ |
---|
[1682] | 904 | !> Compute and print out quantities for run control of the 1D model. |
---|
[1] | 905 | !------------------------------------------------------------------------------! |
---|
[1682] | 906 | |
---|
| 907 | SUBROUTINE run_control_1d |
---|
[1] | 908 | |
---|
[1682] | 909 | |
---|
[1320] | 910 | USE constants, & |
---|
| 911 | ONLY: pi |
---|
[1] | 912 | |
---|
| 913 | IMPLICIT NONE |
---|
| 914 | |
---|
[2338] | 915 | INTEGER(iwp) :: k !< loop index |
---|
[1320] | 916 | |
---|
[2338] | 917 | REAL(wp) :: alpha !< angle of wind vector at top of constant-flux layer |
---|
| 918 | REAL(wp) :: energy !< kinetic energy |
---|
| 919 | REAL(wp) :: umax !< maximum of u |
---|
| 920 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
| 921 | REAL(wp) :: vmax !< maximum of v |
---|
[1] | 922 | |
---|
| 923 | ! |
---|
| 924 | !-- Output |
---|
| 925 | IF ( myid == 0 ) THEN |
---|
| 926 | ! |
---|
| 927 | !-- If necessary, write header |
---|
| 928 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 929 | CALL check_open( 15 ) |
---|
[1] | 930 | WRITE ( 15, 100 ) |
---|
| 931 | run_control_header_1d = .TRUE. |
---|
| 932 | ENDIF |
---|
| 933 | |
---|
| 934 | ! |
---|
| 935 | !-- Compute control quantities |
---|
| 936 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 937 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 938 | DO k = nzb+1, nzt+1 |
---|
| 939 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 940 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 941 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 942 | ENDDO |
---|
[1322] | 943 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 944 | |
---|
| 945 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1691] | 946 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
[1346] | 947 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 948 | ELSE |
---|
| 949 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 950 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 951 | ENDIF |
---|
[1353] | 952 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 953 | |
---|
| 954 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, & |
---|
| 955 | dt_1d, umax, vmax, us1d, alpha, energy |
---|
| 956 | ! |
---|
| 957 | !-- Write buffer contents to disc immediately |
---|
[1808] | 958 | FLUSH( 15 ) |
---|
[1] | 959 | |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
| 962 | ! |
---|
| 963 | !-- formats |
---|
[2299] | 964 | 100 FORMAT (///'1D run control output:'/ & |
---|
[1] | 965 | &'------------------------------'// & |
---|
| 966 | &'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
| 967 | &'-------------------------------------------------------------') |
---|
[1697] | 968 | 101 FORMAT (I5,2X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
[1] | 969 | |
---|
| 970 | |
---|
| 971 | END SUBROUTINE run_control_1d |
---|
| 972 | |
---|
| 973 | |
---|
| 974 | |
---|
| 975 | !------------------------------------------------------------------------------! |
---|
| 976 | ! Description: |
---|
| 977 | ! ------------ |
---|
[1682] | 978 | !> Compute the time step w.r.t. the diffusion criterion |
---|
[1] | 979 | !------------------------------------------------------------------------------! |
---|
[1682] | 980 | |
---|
| 981 | SUBROUTINE timestep_1d |
---|
[1] | 982 | |
---|
| 983 | IMPLICIT NONE |
---|
| 984 | |
---|
[2338] | 985 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 986 | |
---|
[2338] | 987 | REAL(wp) :: dt_diff !< time step accorind to diffusion criterion |
---|
| 988 | REAL(wp) :: fac !< factor of criterion |
---|
| 989 | REAL(wp) :: value !< auxiliary variable |
---|
[1] | 990 | |
---|
| 991 | ! |
---|
| 992 | !-- Compute the currently feasible time step according to the diffusion |
---|
| 993 | !-- criterion. At nzb+1 the half grid length is used. |
---|
[2696] | 994 | fac = 0.125 !0.35_wp !### changed from 0.35 |
---|
[1] | 995 | dt_diff = dt_max_1d |
---|
| 996 | DO k = nzb+2, nzt |
---|
[1353] | 997 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 998 | dt_diff = MIN( value, dt_diff ) |
---|
| 999 | ENDDO |
---|
[1353] | 1000 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 1001 | dt_1d = MIN( value, dt_diff ) |
---|
| 1002 | |
---|
| 1003 | ! |
---|
| 1004 | !-- Set flag when the time step becomes too small |
---|
[1353] | 1005 | IF ( dt_1d < ( 0.00001_wp * dt_max_1d ) ) THEN |
---|
[1] | 1006 | stop_dt_1d = .TRUE. |
---|
[254] | 1007 | |
---|
| 1008 | WRITE( message_string, * ) 'timestep has exceeded the lower limit &', & |
---|
| 1009 | 'dt_1d = ',dt_1d,' s simulation stopped!' |
---|
| 1010 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
| 1011 | |
---|
[1] | 1012 | ENDIF |
---|
| 1013 | |
---|
| 1014 | END SUBROUTINE timestep_1d |
---|
| 1015 | |
---|
| 1016 | |
---|
| 1017 | |
---|
| 1018 | !------------------------------------------------------------------------------! |
---|
| 1019 | ! Description: |
---|
| 1020 | ! ------------ |
---|
[1682] | 1021 | !> List output of profiles from the 1D-model |
---|
[1] | 1022 | !------------------------------------------------------------------------------! |
---|
[1682] | 1023 | |
---|
| 1024 | SUBROUTINE print_1d_model |
---|
[1] | 1025 | |
---|
| 1026 | IMPLICIT NONE |
---|
| 1027 | |
---|
[2338] | 1028 | INTEGER(iwp) :: k !< loop parameter |
---|
[1] | 1029 | |
---|
[2338] | 1030 | LOGICAL, SAVE :: write_first = .TRUE. !< flag for writing header |
---|
[1] | 1031 | |
---|
| 1032 | |
---|
| 1033 | IF ( myid == 0 ) THEN |
---|
| 1034 | ! |
---|
| 1035 | !-- Open list output file for profiles from the 1D-model |
---|
| 1036 | CALL check_open( 17 ) |
---|
| 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- Write Header |
---|
[2338] | 1040 | IF ( write_first ) THEN |
---|
| 1041 | WRITE ( 17, 100 ) TRIM( run_description_header ) |
---|
| 1042 | write_first = .FALSE. |
---|
| 1043 | ENDIF |
---|
[1] | 1044 | |
---|
| 1045 | ! |
---|
| 1046 | !-- Write the values |
---|
[2338] | 1047 | WRITE ( 17, 104 ) TRIM( simulated_time_chr ) |
---|
| 1048 | WRITE ( 17, 101 ) |
---|
[1] | 1049 | WRITE ( 17, 102 ) |
---|
| 1050 | WRITE ( 17, 101 ) |
---|
| 1051 | DO k = nzt+1, nzb, -1 |
---|
| 1052 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), & |
---|
[2696] | 1053 | rif1d(k), km1d(k), kh1d(k), l1d(k), diss1d(k) |
---|
[1] | 1054 | ENDDO |
---|
| 1055 | WRITE ( 17, 101 ) |
---|
| 1056 | WRITE ( 17, 102 ) |
---|
| 1057 | WRITE ( 17, 101 ) |
---|
| 1058 | |
---|
| 1059 | ! |
---|
| 1060 | !-- Write buffer contents to disc immediately |
---|
[1808] | 1061 | FLUSH( 17 ) |
---|
[1] | 1062 | |
---|
| 1063 | ENDIF |
---|
| 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- Formats |
---|
[2338] | 1067 | 100 FORMAT ('# ',A/'#',10('-')/'# 1d-model profiles') |
---|
| 1068 | 104 FORMAT (//'# Time: ',A) |
---|
[2696] | 1069 | 101 FORMAT ('#',111('-')) |
---|
| 1070 | 102 FORMAT ('# k zu u v pt e ', & |
---|
| 1071 | 'rif Km Kh l diss ') |
---|
| 1072 | 103 FORMAT (1X,I4,1X,F7.1,9(1X,E10.3)) |
---|
[1] | 1073 | |
---|
| 1074 | |
---|
| 1075 | END SUBROUTINE print_1d_model |
---|
[2338] | 1076 | |
---|
| 1077 | |
---|
| 1078 | END MODULE |
---|