Changes between Version 73 and Version 74 of gallery/movies


Ignore:
Timestamp:
Sep 3, 2012 10:18:20 AM (12 years ago)
Author:
maronga
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • gallery/movies

    v73 v74  
    88\\
    99Available movies in Gallery 1:
    10 * [[#cbl|Convective boundary layer with horizontally homogeneous heating (2001-2010, 5 movies)]]
    11 * [[#karman|Kármán vortex street (2009, 2 movies)]]
    12 * [[#lead|Flow over an ice lead (2006, 1 movie)]]
    13 * [[#cube|Flow around a single cube (2005, 2 movies)]]
    14 * [[#allianz|LES of a city quarter of Hanover (Allianz tower, 2006, 1 movie)]]
    15 * [[#entrainment|Mixing in the entrainment zone (2011, 2 movie)]]
    16 * [[#clouds|LES of Cumulus clouds (2012, 1 movie)]]
     10* [[./cbl|Convective boundary layer with horizontally homogeneous heating (2001-2010, 5 movies)]]
     11* [[./karman|Kármán vortex street (2009, 2 movies)]]
     12* [[./lead|Flow over an ice lead (2006, 1 movie)]]
     13* [[./cube|Flow around a single cube (2005, 2 movies)]]
     14* [[./city|LES of a city quarter of Hanover (Allianz tower, 2006, 1 movie)]]
     15* [[./entrainment|Mixing in the entrainment zone (2011, 2 movie)]]
     16* [[./clouds|LES of Cumulus clouds (2012, 1 movie)]]
    1717{{{#!comment
    1818You can find more movies in [[gallery/movies2|Gallery 2]]!
    1919}}}
    20 ----
    21 
    22 == Convective boundary layer with horizontally homogeneous heating == #cbl
    23 The following four sequences are showing different flow aspects and phenomena of the convective boundary layer. All simulations are driven by a constant and horizontally homogeneous surface sensible (and latent) heat flux. The initial state is an atmosphere at rest with neutral stratification, capped by an inversion at about 800m. Simulations differ in domain size and grid resolution.\\
    24 
    25 ||||='''First sequence: 3D view on moist convection (2001)''' =||
    26 {{{#!td style="vertical-align:top; border: 0px solid"
    27 {{{#!html
    28 <embed
    29     type="application/x-shockwave-flash"
    30     id="player"
    31     name="player"
    32     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    33     width="512"
    34     height="408"
    35     allowfullscreen="true"
    36     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cbl5.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery//movies/cbl5_preview.jpg"
    37 />
    38 }}}
    39 }}}
    40 {{{#!td style="vertical-align:top; border: 0px solid""
    41 '''Project:''' none\\
    42 \\
    43 '''Responsible:''' [[imuk/members/raasch|Siegfried Raasch]]\\
    44 \\
    45 '''Description:''' Particles are released near the surface. The particle color reflects the buoyancy at the current particle position (red: positive, blue: negative). The particle size is proportional to the magnitude of the vertical velocity component. The isososurfaces display areas with a liquid water content larger than 0.2 g/kg, i.e. cumulus clouds. The horizontal domain size in this simulation is too small in order to allow the development of the typical near-surface hexagonal flow pattern (see next two sequences).\\
    46 ||||='''Model Setup'''  =||
    47 ||Total domain size (x|y|z):||2000m x 2000m x 4638m||
    48 ||Grid spacing (x|y|z):||25m x 25m x 25m||
    49 ||Number of grid points (x|y|z):||80 x 80 x 80||
    50 ||Simulated time:||1h||
    51 ||CPU-time:||176h||
    52 ||Number of CPUs:||32||
    53 ||Machine/ processor type:||SGI Altix ICE at HLRN / Intel Xeon Gainestown||
    54 ||Visualization software:||DSVR||
    55 \\
    56 ||||||='''Download'''  =||
    57 ||Video Format  ||File size  ||
    58 ||Flash (.flv)  ||  9.6mb||[[htdocs:gallery/movies/cbl5.flv|Download]]  ||
    59 ||MPEG (.avi)   ||  9.7mb||[[htdocs:gallery/movies/cbl5.avi|Download]]  ||
    60 \\
    61 }}}
    62 
    63 
    64 \\
    65 
    66 
    67 ||||='''Second & Third sequence: horizontal cross-sections (2009)''' =||
    68 {{{#!td style="vertical-align:top; border: 0px solid; width:512px"
    69 {{{#!html
    70 <embed
    71     type="application/x-shockwave-flash"
    72     id="player"
    73     name="player"
    74     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    75     width="356"
    76     height="366"
    77     allowfullscreen="true"
    78     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cbl_25fps_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cbl_preview.jpg"
    79 />
    80 <br>
    81 <embed
    82     type="application/x-shockwave-flash"
    83     id="player"
    84     name="player"
    85     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    86     width="356"
    87     height="366"
    88     allowfullscreen="true"
    89     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cbl2_25fps_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cbl2_preview.jpg"
    90 />
    91 }}}
    92 }}}
    93 {{{#!td style="vertical-align:top; border: 0px solid""
    94 '''Project:''' [[imuk/projects/2008_05|Numerical Simulation of the interaction between the atmosphere and the wing circulation]]\\
    95 \\
    96 '''Responsible:''' [[imuk/members/helmke|Carolin Helmke]]\\
    97 \\
    98 '''Description:''' \\
    99 Second sequence:\\
    100 Shown is the horizontal near-surface flow at z = 10m in a dry convective boundary layer. The particle color reflects the vertical velocity at the current particle position (red: upward, blue:downward). The near-surface flow is dominated by hexagonal cells with weak downdrafts in their centers and strong narrow updrafts within the lines of convergence between the cells. This flow pattern is sometimes called spoke-like pattern. Big plumes with cumulus clouds at their top can always be found at those centers where several spokes are merging. Although a very high grid resolution has been used, the pixel resolution used here does not allow to see any detailed small-scale flow structures. This sequence shows the last 15 minutes of a model run with 1.5 hours simulated time in total.\\
    101 \\
    102 Third sequence:\\
    103 The simulation and particle features are the same as for the second sequence, but here only a part of the horizontal domain with a size of 400 m x 400 m is shown. The fine grid spacing allows to resolve vortex-like structures which develop within the convergence lines. Some of them are part of dust-devil-like vortices (see next sequence).
    104 ||||='''Model Setup'''  =||
    105 ||Total domain size (x|y|z):||4096.0m x 4096.0m x 1859.7m||
    106 ||Grid spacing (x|y|z):||2m x 2m x 2m||
    107 ||Number of grid points (x|y|z):||2048 x 2048 x 450||
    108 ||Simulated time:||900s||
    109 ||CPU-time:||4.8h||
    110 ||Number of CPUs:||2048||
    111 ||Machine/ processor type:||SGI Altix ICE at HLRN / Intel Xeon Gainestown||
    112 ||Visualization software:||DSVR||
    113 \\
    114 ||||||='''Download'''  =||
    115 ||Video Format  ||File size  ||
    116 ||Flash (.flv)  ||  13.7mb||[[htdocs:gallery/movies/cbl_25fps_flash.flv|Download]] (2nd Sequence)   ||
    117 ||MPEG (.avi)   ||  14.3mb||[[htdocs:gallery/movies/cbl_25fps_mpeg.avi|Download]]  (2nd Sequence)   ||
    118 ||Flash (.flv)  ||   3.1mb||[[htdocs:gallery/movies/cbl2_25fps_flash.flv|Download]] (3nd Sequence)  ||
    119 ||MPEG (.avi)   ||   3.1mb||[[htdocs:gallery/movies/cbl2_25fps_mpeg.avi|Download]] (3rd Sequence)   ||
    120 \\
    121 }}}
    122 
    123 
    124 \\
    125 
    126 
    127 ||||='''Fourth sequence: dust devils (2006)''' =||
    128 {{{#!td style="vertical-align:top; border: 0px solid"
    129 {{{#!html
    130 <embed
    131     type="application/x-shockwave-flash"
    132     id="player"
    133     name="player"
    134     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    135     width="512"
    136     height="368"
    137     allowfullscreen="true"
    138     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/dust_devil.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/dust_devil_preview.jpg"
    139 />
    140 }}}
    141 }}}
    142 {{{#!td style="vertical-align:top; border: 0px solid""
    143 '''Project:''' [[imuk/projects/2006_02|LES of dust devils]]\\
    144 \\
    145 '''Responsible:''' [[imuk/members/franke|Theres Riechelmann]]\\
    146 \\
    147 '''Description:''' \\
    148 This animation displays 3d-views of the lower 150m of the same convective boundary layer as shown before. Particles are released near the surface in those areas, where the dynamic pressure is below a specified threshold of -2 Pa. This allows to visualize dust-devil like vortices, which always have a pressure minimum in their center. The particle color displays the magnitude of horizontal velocity (red: fast, blue: slow). At the end of the sequence, two dust devils with opposite rotation collide and cancel out each other due to conservation of angular momentum.
    149 ||||='''Model Setup'''  =||
    150 ||Total domain size (x|y|z):||768m x 768m x 768m||
    151 ||Grid spacing (x|y|z):||2m x 2m x 2m||
    152 ||Number of grid points (x|y|z):||384 x 384 x 384||
    153 ||Simulated time:||1h||
    154 ||CPU-time:||||
    155 ||Number of CPUs:||||
    156 ||Machine/ processor type:||IBM Regatta / Power 4||
    157 ||Visualization software:||DSVR||
    158 \\
    159 ||||||='''Download'''  =||
    160 ||Video Format  ||File size  ||
    161 ||Flash (.flv)  ||  9.6mb||[[htdocs:gallery/movies/dust_devil.flv|Download]]  ||
    162 ||MPEG (.avi)   ||  9.7mb||[[htdocs:gallery/movies/dust_devil.avi|Download]]  ||
    163 \\
    164 }}}
    165 
    166 
    167 \\
    168 
    169 
    170 ||||='''Fifth sequence: structure parameter for temperature C,,T,,^2^ (2010)''' =||
    171 {{{#!td style="vertical-align:top; border: 0px solid"
    172 {{{#!html
    173 <embed
    174     type="application/x-shockwave-flash"
    175     id="player"
    176     name="player"
    177     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    178     width="512"
    179     height="408"
    180     allowfullscreen="true"
    181     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/ct2_1_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/ct2_1_preview.jpg"
    182 />
    183 }}}
    184 }}}
    185 {{{#!td style="vertical-align:top; border: 0px solid""
    186 '''Project:''' [[imuk/projects/2010_02|High-resolution LES studies of the turbulent structure of the lower atmospheric boundary layer over heterogeneous terrain and implications for the interpretation of scintillometer data]]\\
    187 \\
    188 '''Responsible:''' [[imuk/members/maronga|Björn Maronga]]\\
    189 \\
    190 '''Description:''' \\
    191 This visualization shows the turbulent structure parameter C,,T,,^2^ in the surface layer of a convectively driven boundary layer. Dark colors match to high values up to 0.01, whereas white colors represent lower values down to 0.001. All values which are out of range are set to transparent. Shown is the last half an hour of the simulation. The movie shows, that C,,T,,^2^ is high near the surface, decreasing with height. High values, in comparison with their horizontal environment can be observed in regions where warm air rises upward (plumes). These regions organize in hexagonal cells, which can also be seen in this sequence. Please note that the capping inversion in this simulation was in a height of about 400m.\\
    192 
    193 ||||='''Model Setup'''  =||
    194 ||Total domain size (x|y|z):||1280m x 1280m x 1080m||
    195 ||Grid spacing (x|y|z):||5m x 5m x 5m||
    196 ||Number of grid points (x|y|z):||256 x 256 x 256||
    197 ||Simulated time:||1.5h||
    198 ||CPU-time:||1.5h||
    199 ||Number of CPUs:||64||
    200 ||Machine/ processor type:||SGI Altix ICE at HLRN / Intel Xeon Gainestown||
    201 ||Visualization software:||VAPOR||
    202 \\
    203 }}}
    204 
    205 ----
    206 
    207 == Kármán vortex street (2009) == #karman
    208 
    209 
    210 ||||='''Kármán vortex street (2009)''' =||
    211 {{{#!td style="vertical-align:top; border: 0px solid"
    212 {{{#!html
    213 <embed
    214     type="application/x-shockwave-flash"
    215     id="player"
    216     name="player"
    217     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    218     width="512"
    219     height="266"
    220     allowfullscreen="true"
    221     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/karman_black.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/karman_preview.jpg"
    222 />
    223 <br>
    224 <embed
    225     type="application/x-shockwave-flash"
    226     id="player"
    227     name="player"
    228     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    229     width="512"
    230     height="331"
    231     allowfullscreen="true"
    232     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/karman2_50fps_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/karman2_preview.jpg"
    233 />
    234 }}}
    235 }}}
    236 {{{#!td style="vertical-align:top; border: 0px solid""
    237 '''Project:''' [[imuk/projects/2008_04|LES of Kármán vortex streets in the atmospheric boundary layer]]\\
    238 \\
    239 '''Responsible:''' [[imuk/members/heinze|Rieke Heinze]]\\
    240 \\
    241 '''Description:''' \\
    242 Atmospheric vortex streets consist of two rows of counterrotating mesoscale eddies with vertical axis in the wake of large islands. They resemble classical Kármán vortex streets which occur in laboratory experiments behind a cylinder. Usually, atmospheric vortex streets can be found in the stratocumulus capped mixed layer over the ocean when there is a strong elevated inversion well below the island top.\\
    243 \\
    244 In the animations the island consists of a single Gaussian shaped mountain with a height of about 1.3 km and a base diameter of about 12km. Particles are released in one layer and act as passive tracers. Their vertical motion is disabled. The colour of the particles reflects the difference between the temperature at the respective particle position and the mean temperature, horizontally averaged over the total domain. Blue/red colours represent a relatively low/high temperature. The animation shows that the cores of the eddies are warmer than the environment. The length of the animation corresponds to about 14h real time.
    245 ||||='''Model Setup'''  =||
    246 ||Total domain size (x|y|z):||144km x 60.8km x 3.8km||
    247 ||Grid spacing (x|y|z):||100m x 100m x 100m||
    248 ||Number of grid points (x|y|z):||1440 x 608 x 32||
    249 ||Simulated time:||14h||
    250 ||CPU-time:||1.1h||
    251 ||Number of CPUs:||256||
    252 ||Machine/ processor type:||SGI Altix ICE at HLRN / Intel XEON Harpertown||
    253 ||Visualization software:||DSVR||
    254 \\
    255 ||||||='''Download'''  =||
    256 ||Video Format  ||File size  ||
    257 ||Flash (.flv)  ||  10.0mb||[[htdocs:gallery/movies/karman.flv|Download]] (top view) ||
    258 ||MPEG (.avi)   ||  17.1mb||[[htdocs:gallery/movies/karman_mpeg.avi|Download]] (top view) ||
    259 ||Flash (.flv)  ||   9.9mb||[[htdocs:gallery/movies/karman2_50fps_flash.flv|Download]] (side view, 50fps) ||
    260 ||MPEG (.avi)   ||   9.9mb||[[htdocs:gallery/movies/karman2_50fps_mpeg.avi|Download]] (side view, 50fps) ||
    261 \\
    262 }}}
    263 
    264 ----
    265 
    266 == Flow over an ice lead (2006) == #lead
    267 
    268 
    269 ||||='''Flow over an ice lead (2006)''' =||
    270 {{{#!td style="vertical-align:top; border: 0px solid"
    271 {{{#!html
    272 <embed
    273     type="application/x-shockwave-flash"
    274     id="player"
    275     name="player"
    276     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    277     width="512"
    278     height="346"
    279     allowfullscreen="true"
    280     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/lead.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/lead_preview.jpg"
    281 />
    282 }}}
    283 }}}
    284 {{{#!td style="vertical-align:top; border: 0px solid""
    285 '''Project:''' [[imuk/projects/2007_01|The Physics of turbulence over Antarctic leads and polynyas and its parameterization: a joint study using observations, LES and a micro-/mesoscale model]]\\
    286 \\
    287 '''Responsible:''' [[imuk/members/witha|Björn Witha]]\\
    288 \\
    289 '''Description:''' \\
    290 Leads in sea ice are responsible for most of the latent and sensible heat transfer from ocean to atmosphere within the marginal ice zones. The animation displays a flow along x (from left to right with a geostrophic wind of about 3 m/s) from sea ice over a lead of 1000m width. The incoming flow is laminar (without turbulence), neutrally stratified, and capped by an inversion above 300m. The surface temperature of ice is assumed to be -23.3C, while the open sea water has a temperature near the freezing point of about -3C. Particles are released near the surface and closely below the inversion. The particle color reflects the buoyancy at the current particle position (red: positive, blue: negative). The particle size is proportional to the magnitude of the vertical velocity component. Cyclic boundary conditions along y are assumed. Convection is generated above the lead but the flow re-stratifies soon after passing the lead. The spatial resolution of the model is still insufficient to resolve the turbulent convection above the first half (upstream part) of the lead.
    291 ||||='''Model Setup'''  =||
    292 ||Total domain size (x|y|z):||5760m x 1280m x 1477m||
    293 ||Grid spacing (x|y|z):||10m x 10m x 10m||
    294 ||Number of grid points (x|y|z):||576 x 128 x 66||
    295 ||Simulated time:||45min||
    296 ||CPU-time:||2600s||
    297 ||Number of CPUs:||32||
    298 ||Machine/ processor type:||IBM-Regatta / Power4||
    299 ||Visualization software:||DSVR||
    300 \\
    301 ||||||='''Download'''  =||
    302 ||Video Format  ||File size  ||
    303 ||Flash (.flv)  ||  7.5mb||[[htdocs:gallery/movies/lead.flv|Download]]  ||
    304 \\
    305 }}}
    306 
    307 
    308 ----
    309 
    310 == Flow around a single cube (2005) == #cube
    311 
    312 
    313 ||||='''First & Second sequence: Flow around a single cube (2005)''' =||
    314 {{{#!td style="vertical-align:top; border: 0px solid"
    315 {{{#!html
    316 <embed
    317     type="application/x-shockwave-flash"
    318     id="player"
    319     name="player"
    320     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    321     width="512"
    322     height="408"
    323     allowfullscreen="true"
    324     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cube_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cube_preview.jpg"
    325 />
    326 <br>
    327 <embed
    328     type="application/x-shockwave-flash"
    329     id="player"
    330     name="player"
    331     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    332     width="512"
    333     height="408"
    334     allowfullscreen="true"
    335     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cube2_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cube2_preview.jpg"
    336 />
    337 }}}
    338 }}}
    339 {{{#!td style="vertical-align:top; border: 0px solid""
    340 '''Project:''' [[imuk/projects/2003_04|High Resolution LES of Turbulent Flow in the Vicinity of Buildings including Thermal Effects]]\\
    341 \\
    342 '''Responsible:''' Marcus Letzel\\
    343 \\
    344 '''Description:''' \\
    345 This animation shows the turbulent flow field generated by a single cube with an edge length of 50m. The initial flow is laminar (from left) with a mean speed of 1 m/s, and neutrally stratified. The particle color displays the height above ground (red: high, blue: low). The wake vortex behind the building is especially dominant. The side view also shows the evolution of a roof vortex. Since cyclic boundary conditions along x and y are used, the turbulence generated on the lee side of the building hits the building again from the luv side after some time.
    346 ||||='''Model Setup'''  =||
    347 ||Total domain size (x|y|z):||960m x 320m x 150m||
    348 ||Grid spacing (x|y|z):||5m x 5m x 5m||
    349 ||Number of grid points (x|y|z):||192 x 64 x 30||
    350 ||Simulated time:||1h||
    351 ||CPU-time:||155s||
    352 ||Number of CPUs:||8||
    353 ||Machine/ processor type:||NEC-SX6||
    354 ||Visualization software:||DSVR||
    355 \\
    356 ||||||='''Download'''  =||
    357 ||Video Format  ||File size  ||
    358 ||Flash (.flv)  ||  6.5mb||[[htdocs:gallery/movies/cube_flash.flv|Download]]||
    359 ||MPEG (.avi)   ||  6.5mb||[[htdocs:gallery/movies/cube_mpeg.avi|Download]]||
    360 ||Flash (.flv)  ||  7.2mb||[[htdocs:gallery/movies/cube2_flash.flv|Download]] (side view)  ||
    361 ||MPEG (.avi)   ||  7.8mb||[[htdocs:gallery/movies/cube2_mpeg.avi|Download]] (side view)  ||
    362 \\
    363 }}}
    364 
    365 
    366 ----
    367 
    368 == LES of a city quarter of Hanover (Allianz tower, 2006) == #allianz
    369 
    370 
    371 ||||='''Allianz tower (2006)''' =||
    372 {{{#!td style="vertical-align:top; border: 0px solid"
    373 {{{#!html
    374 <embed
    375     type="application/x-shockwave-flash"
    376     id="player"
    377     name="player"
    378     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    379     width="512"
    380     height="408"
    381     allowfullscreen="true"
    382     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/allianz_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/allianz_preview.jpg"
    383 />
    384 }}}
    385 }}}
    386 {{{#!td style="vertical-align:top; border: 0px solid""
    387 '''Project:''' none\\
    388 \\
    389 '''Responsible:''' [[imuk/members/raasch|Siegfried Raasch]]\\
    390 \\
    391 '''Description:''' \\
    392 Turbulent flow around a city quarter of Hannover. The mean flow is from west (right) with a speed of 1 m/s (neutral stratification is assumed). Clouds of particles are periodically released in front of the large building (Allianz tower) and in the courtyard of another complex of buildings. The particle color reflects the height above ground (red: high, blue: low). Topography data are from laser altimeter measurements (kindly provided by the Institut für Kartographie und Geoinformatik, Leibniz Universität Hannover). The resolution of the laser data allows to resolve cars on the street west of the Allianz building, staying there because of a red traffic light. The sequence shows that the turbulent flow within street canyons is highly variable so that flow directions may change completely within short times.
    393 ||||='''Model Setup'''  =||
    394 ||Total domain size (x|y|z):||256m x 256m x 200m||
    395 ||Grid spacing (x|y|z):||1m x 1m x 1m||
    396 ||Number of grid points (x|y|z):||256 x 256 x 200||
    397 ||Simulated time:||1h||
    398 ||CPU-time:||1800s||
    399 ||Number of CPUs:||32||
    400 ||Machine/ processor type:||IBM-Regatta / Power4||
    401 ||Visualization software:||DSVR||
    402 \\
    403 ||||||='''Download'''  =||
    404 ||Video Format  ||File size  ||
    405 ||Flash (.flv)  ||  8.3mb||[[htdocs:gallery/movies/allianz_flash.flv|Download]]  ||
    406 ||MPEG (.avi)  ||  8.3mb||[[htdocs:gallery/movies/allianz_mpeg.avi|Download]]  ||
    407 \\
    408 }}}
    409 
    410 
    411 ----
    412 
    413 == Mixing in the entrainment zone (2010) == #entrainment
    414 
    415 
    416 ||||='''First sequence (2011)''' =||
    417 {{{#!td style="vertical-align:top; border: 0px solid"
    418 {{{#!html
    419 <embed
    420     type="application/x-shockwave-flash"
    421     id="player"
    422     name="player"
    423     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    424     width="512"
    425     height="312"
    426     allowfullscreen="true"
    427     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/entrainment2.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/entrainment2_preview.jpg"
    428 />
    429 <br>
    430 <embed
    431     type="application/x-shockwave-flash"
    432     id="player"
    433     name="player"
    434     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    435     width="512"
    436     height="312"
    437     allowfullscreen="true"
    438     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/entrainment3.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/entrainment3_preview.jpg"
    439 />
    440 }}}
    441 }}}
    442 {{{#!td style="vertical-align:top; border: 0px solid""
    443 '''Project:''' [[imuk/projects/2010_04|Investigation of entrainment processes at the top of the atmospheric boundary layer using innovative experimental and numerical techniques]] \\
    444 \\
    445 '''Responsible:''' [[imuk/members/herbort|Florian Herbort]]\\
    446 \\
    447 '''Description:''' The upper animation shows the temporal behaviour of the potential temperature in a vertical cross section for the top of a typical convective boundary layer and a slightly stable stratified free atmosphere across, flowing with a steady speed of 5 m/s. At the transition between the well mixed boundary layer and the free atmosphere strong gradients occur with structures that are strongly variable in space and time. At this transition exchange of the stable stratified air with the well mixed layer below occur leading to a deepening of the boundary layer.\\
    448 
    449 The lower animation shows a 3d-visualization of the same simulation with [[http://www.vapor.ucar.edu/|VAPOR]], but only the transition between mixed layer and free atmosphere for the temperature range 303.0 - 305.0 K.
    450 
    451 ||||='''Model Setup'''  =||
    452 ||Total domain size (x|y|z):||3840m x 3840m x 1440m||
    453 ||Grid spacing (x|y|z):||3m x 3m x 3m||
    454 ||Number of grid points (x|y|z):||1280 x 1280 x 480||
    455 ||Simulated time:||1h 56m||
    456 ||CPU-time:||28h 15m||
    457 ||Number of CPUs:||1024||
    458 ||Machine/ processor type:||SGI Altix ICE at [https://www.hlrn.de/home/view/Service HLRN] / Intel Xeon Gainestown||
    459 ||Visualization software:||[http://www.ittvis.com/ProductServices/IDL.aspx IDL] (top), [[http://www.vapor.ucar.edu/|VAPOR]] (bottom)||
    460 \\
    461 ||||||='''Download'''  =||
    462 ||Video Format  ||File size  ||
    463 ||Flash (.flv)  ||  9.8mb||[[htdocs:gallery/movies/entrainment2.flv|Download]] (cross section)  ||
    464 ||MPEG (.avi)  ||  9.8mb||[[htdocs:gallery/movies/entrainment2.avi|Download]] (cross section)  ||
    465 ||Flash (.flv)  || 10.0mb||[[htdocs:gallery/movies/entrainment3.flv|Download]] (3D)  ||
    466 ||MPEG (.avi)  ||  9.8mb||[[htdocs:gallery/movies/entrainment3.avi|Download]] (3D)  ||
    467 \\
    468 }}}
    469 
    470 ----
    471 
    472 == LES of cumulus clouds (2012) == #clouds
    473 
    474 
    475 ||||='''First sequence''' =||
    476 {{{#!td style="vertical-align:top; border: 0px solid"
    477 {{{#!html
    478 <embed
    479     type="application/x-shockwave-flash"
    480     id="player"
    481     name="player"
    482     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    483     width="512"
    484     height="358"
    485     allowfullscreen="true"
    486     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cloud1_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cloud1_preview.jpg"
    487 />
    488 }}}
    489 }}}
    490 {{{#!td style="vertical-align:top; border: 0px solid""
    491 '''Project:''' [[wiki:imuk/projects/2008_02|Investigations on in-cloud turbulence effects on drop growth and precipitation formation]]\\
    492 \\
    493 '''Responsible:''' [[imuk/members/franke|Theres Riechelmann]], [[imuk/members/maronga|Björn Maronga]]\\
    494 \\
    495 '''Description:''' \\
    496 This sequence shows the development of cumulus clouds at an accelerated pace in the homogeneously-heated convective boundary layer. The shown time period spans approx. 80 minutes, the shown region is of size 1.4 km x 1.4 km in the horizonzal and 1.5 km in the vertical direction. The clouds are represented through the liquid water content. Darker (gray) shades refer to a higher water content than white shades. The background scenary here is not physical and used for decorational reasons only.
    497 ||||='''Model Setup'''  =||
    498 ||Total domain size (x|y|z):||4096m x 4096m x 1900m||
    499 ||Grid spacing (x|y|z):||4m x 4m x 4m||
    500 ||Number of grid points (x|y|z):||1024 x 1024 x 448||
    501 ||Simulated time:||2h||
    502 ||CPU-time:||6.5h||
    503 ||Number of CPUs:||1024||
    504 ||Machine/ processor type:||SGI Altix ICE at [https://www.hlrn.de/home/view/Service HLRN]||
    505 ||Visualization software:||VAPOR||
    506 \\
    507 ||||||='''Download'''  =||
    508 ||Video Format  ||File size  ||
    509 ||Flash (.flv)  ||  3.9mb||[[htdocs:gallery/movies/cloud1_flash.flv|Download]]  ||
    510 ||MPEG (.avi)   ||  3.6mb||[[htdocs:gallery/movies/cloud1_mpeg.avi|Download]]  ||
    511 \\
    512 }}}
    513 
    514 ||||='''Second sequence''' =||
    515 {{{#!td style="vertical-align:top; border: 0px solid"
    516 {{{#!html
    517 <embed
    518     type="application/x-shockwave-flash"
    519     id="player"
    520     name="player"
    521     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    522     width="512"
    523     height="358"
    524     allowfullscreen="true"
    525     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cloud2_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cloud2_preview.png"
    526 />
    527 }}}
    528 }}}
    529 {{{#!td style="vertical-align:top; border: 0px solid""
    530 '''Project:''' [[wiki:imuk/projects/2008_02|Investigations on in-cloud turbulence effects on drop growth and precipitation formation]]\\
    531 \\
    532 '''Responsible:''' [[imuk/members/franke|Theres Riechelmann]], [[imuk/members/maronga|Björn Maronga]]\\
    533 \\
    534 '''Description:''' \\
    535 As sequence one, but a different cloud at a different location. The shown region is of size 1.0 km x 1.2 km in the horizonzal and 1.5 km in the vertical direction. The arrows indicate the strength and direction of the wind in a vertical plane through the center of the cloud. Red and blue colors refer for up- and downdrafts, respectively.
    536 ||||='''Model Setup'''  =||
    537 ||Total domain size (x|y|z):||4096m x 4096m x 1900m||
    538 ||Grid spacing (x|y|z):||4m x 4m x 4m||
    539 ||Number of grid points (x|y|z):||1024 x 1024 x 448||
    540 ||Simulated time:||2h||
    541 ||CPU-time:||6.5h||
    542 ||Number of CPUs:||1024||
    543 ||Machine/ processor type:||SGI Altix ICE at [https://www.hlrn.de/home/view/Service HLRN]||
    544 ||Visualization software:||VAPOR||
    545 \\
    546 ||||||='''Download'''  =||
    547 ||Video Format  ||File size  ||
    548 ||Flash (.flv)  ||  4.3mb||[[htdocs:gallery/movies/cloud2_flash.flv|Download]]  ||
    549 ||MPEG (.avi)   || 10.9mb||[[htdocs:gallery/movies/cloud2_mpeg.avi|Download]]  ||
    550 \\
    551 }}}
    552 
    553 ||||='''Third sequence''' =||
    554 {{{#!td style="vertical-align:top; border: 0px solid"
    555 {{{#!html
    556 <embed
    557     type="application/x-shockwave-flash"
    558     id="player"
    559     name="player"
    560     src="http://palm.muk.uni-hannover.de/chrome/site/gallery/player.swf"
    561     width="512"
    562     height="358"
    563     allowfullscreen="true"
    564     flashvars="file=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cloud3_flash.flv&image=http://palm.muk.uni-hannover.de/chrome/site/gallery/movies/cloud3_preview.png"
    565 />
    566 }}}
    567 }}}
    568 {{{#!td style="vertical-align:top; border: 0px solid""
    569 '''Project:''' [[wiki:imuk/projects/2008_02|Investigations on in-cloud turbulence effects on drop growth and precipitation formation]]\\
    570 \\
    571 '''Responsible:''' [[imuk/members/franke|Theres Riechelmann]], [[imuk/members/maronga|Björn Maronga]]\\
    572 \\
    573 '''Description:''' \\
    574 The third sequence shows the same cloud as sequence two, but from a different view angle. Arrows again indicate the flow circulation under the cloud (updrafts are in red colors). The bottom shows the near-surface vertical wind speed (high wind speeds in red).
    575 ||||='''Model Setup'''  =||
    576 ||Total domain size (x|y|z):||4096m x 4096m x 1900m||
    577 ||Grid spacing (x|y|z):||4m x 4m x 4m||
    578 ||Number of grid points (x|y|z):||1024 x 1024 x 448||
    579 ||Simulated time:||2h||
    580 ||CPU-time:||6.5h||
    581 ||Number of CPUs:||1024||
    582 ||Machine/ processor type:||SGI Altix ICE at [https://www.hlrn.de/home/view/Service HLRN]||
    583 ||Visualization software:||VAPOR||
    584 \\
    585 ||||||='''Download'''  =||
    586 ||Video Format  ||File size  ||
    587 ||Flash (.flv)  ||  4.2mb||[[htdocs:gallery/movies/cloud1_flash.flv|Download]]  ||
    588 ||MPEG (.avi)   || 10.9mb||[[htdocs:gallery/movies/cloud1_mpeg.avi|Download]]  ||
    589 \\
    590 }}}