Changes between Version 8 and Version 9 of doc/tec/sgs


Ignore:
Timestamp:
Jul 11, 2018 4:50:32 PM (6 years ago)
Author:
gronemeier
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/sgs

    v8 v9  
    11= Turbulence closure =
     2
     3== Deardorff subgrid-scale model ==
    24
    35One of the main challenges in LES modeling is the turbulence closure. The filtering process yields four SGS covariance terms (see the first five equations Sect. [wiki:doc/tec/gov governing equations]) that cannot be explicitly calculated. In PALM, these SGS terms are parametrized using a 1.5-order closure after [#deardorff Deardorff (1980)]. PALM uses the modified version of [#moeng Moeng and Wyngaard (1988)] and [#saiki Saiki et al. (2000)]. The closure is based on the assumption that the energy transport by SGS eddies is proportional to the local gradients of the mean quantities and reads
     
    9294Note that this parametrization of the SGS buoyancy flux differs from that used with bulk cloud microphysics (see Sect. [wiki:doc/tec/microphysics#Turbulenceclosure turbulence closure in cloud microphysics]).
    9395
     96
     97== Dynamic subgrid-scale model ==
     98
     99The dynamic SGS model, based on an idea of [#germano Germano et al. (1991)], can be used as an alternative to the Moeng-Wyngaard version of the Deardorff model. In this case, ''K'',,m,, is calculated as
     100{{{
     101#!Latex
     102\begin{align*}
     103   K_\mathrm{m} = c_*\;\Delta_\mathrm{max}\;\sqrt{e},
     104\end{align*}
     105}}}
     106where ''Δ'',,max,, being the maximum of ''Δx'', ''Δy'', ''Δz''.
     107The calculation of ''c'',,*,, is based on an idea of [#germano Germano et al. (1991)] to use a test filter, which is
     108{{{
     109#!Latex
     110\begin{align*}
     111   \Delta_T = 2\Delta_\mathrm{max}
     112\end{align*}
     113}}}
     114in our case. The subgrid stress on the test filter scale is then
     115{{{
     116#!Latex
     117\begin{align*}
     118   T_{ij} = \widehat{\overline{u_iu_j}} - \widehat{\overline{u}}_i\widehat{\overline{u}}_j
     119\end{align*}
     120}}}
     121(the hat denotes a filter operation on the test filter scale) which is also an unknown. The difference between subgrid stress on the test filter level and test filtered subgrid stress is described by the Germano identity
     122{{{
     123#!Latex
     124\begin{align*}
     125   L_{ij} = T_{ij} - \widehat{\tau}_{ij} = \widehat{\overline{u}_i\overline{u}_j} - \widehat{\overline{u}}_i\widehat{\overline{u}}_j
     126\end{align*}
     127}}}
     128and can be calculated directly by application of the test filter on resolved quantities. ''c'',,*,, is then calculated via
     129{{{
     130#!Latex
     131\begin{equation*}
     132   c_*=-\frac{L_{ij}^d\widehat{\overline{S}}^d_{ij}}{2\nu_t^T\widehat{\overline{S}}_{lk}^d\widehat{\overline{S}}_{kl}^d},
     133\end{equation*}
     134}}}
     135where
     136{{{
     137#!Latex
     138\begin{align*}
     139   \overline{S}_{ij} = \frac{1}{2}\left(\frac{\partial\overline{u_i}}{\partial x_j} + \frac{\partial\overline{u_j}}{\partial x_i} \right)
     140\end{align*}
     141}}}
     142the strain tensor and ''ν,,t,,'' the SGS viscosity. Unlike other dynamic models this formulation of ''c'',,*,, is not derived using model assumptions for the subgrid stress and the stress on the test filter level, but is based on proven turbulence properties ([#heinz2008 Heinz, 2008]; [#heinz2012 Heinz and Gopalan, 2012]). Furthermore, the stability of the simulation is ensured by using dynamic bounds that keep the values of ''c'',,*,, in the range
     143{{{
     144#!Latex
     145\begin{equation*}
     146   |c_*| \leq \frac{23}{24\sqrt{3}}\frac{e^{1/2}}{\Delta|\overline{S}|},
     147\end{equation*}
     148}}}
     149as was derived by [#mokhtarpoor2017 Mokhtarpoor and Heinz (2017)]. This model does not need artificial clipping for stable runs and allows the occurence of backscatter (negative values of ''ν,,t,,'').
     150
     151
    94152== References ==
    95153* [=#deardorff]'''Deardorff JW.''' 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Lay. Meteorol. 18: 495–527.
    96154
     155* [=#germano]'''Germano M., Piomelli U., Moin P., Cabot WH.''' 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3: 1760–1765.
     156
     157* [=#heinz2008]'''Heinz S.''' 2008. Realizability of dynamic subgrid-scale stress models via stochastic analysis. Monte Carlo Methods Appl. 14: 311-329.
     158
     159* [=#heinz2012]'''Heinz S., Gopalan H.''' 2012. Realizable versus non-realizable dynamic subgrid-scale stress models. Physics of Fluids 24: 115105.
     160
    97161* [=#moeng]'''Moeng CH, Wyngaard JC.''' 1988. Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci. 45: 3573–3587.
     162
     163* [=#mokhtarpoor2017]'''Mokhtarpoor R., Heinz S.''' 2017. Dynamic large eddy simulation: Stability via realizability. Physics of Fluids 29: 105104.
    98164
    99165* [=#saiki]'''Saiki EM, Moeng CH, Sullivan PP.''' 2000. Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Lay. Meteorol. 95: 1–30.