Changes between Version 2 and Version 3 of doc/tec/sgs


Ignore:
Timestamp:
Apr 14, 2016 11:38:09 AM (9 years ago)
Author:
Giersch
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/sgs

    v2 v3  
    1 [[NoteBox(warn,This site is currently under construction!)]]
     1 [[NoteBox(warn,This site is currently under construction!)]]
    22
    33= Turbulence closure =
    44
    5 One of the main challenges in LES modeling is the turbulence closure. The filtering process yields four SGS covariance terms (see Eqs.~\ref{eq:nse}\ref{eq:1hss}) that cannot be explicitly calculated. In PALM, these SGS terms are parametrized using a 1.5-order closure after [#deardorff Deardorff (1980)]. PALM uses the modified version of [#moeng Moeng and Wyngaard (1988)] and [#saiki Saiki et al. (2000)]. The closure is based on the assumption that the energy transport by SGS eddies is proportional to the local gradients of the mean quantities and reads
    6 
    7 
    8 
    9 
     5One of the main challenges in LES modeling is the turbulence closure. The filtering process yields four SGS covariance terms (see the first five equations at [wiki:doc/tec/gov governing equations]) that cannot be explicitly calculated. In PALM, these SGS terms are parametrized using a 1.5-order closure after [#deardorff Deardorff (1980)]. PALM uses the modified version of [#moeng Moeng and Wyngaard (1988)] and [#saiki Saiki et al. (2000)]. The closure is based on the assumption that the energy transport by SGS eddies is proportional to the local gradients of the mean quantities and reads
     6{{{
     7#!Latex
     8\begin{align*}
     9&   \overline{u_i^{\prime\prime} u_j^{\prime\prime}} - \frac{2}{3} e \delta_{ij} = -K_\mathrm{m} \left(\frac{\partial u_{i}} {\partial x_{j}} + \frac{\partial u_j} {\partial x_{i}}\right),\,\\
     10&  \overline{u^{\prime\prime}_{i}\theta^{\prime\prime}} = -K_\mathrm{h} \:\frac{\partial \theta} {\partial x_{i}},\,\\
     11&  \overline{u^{\prime\prime}_{i}q^{\prime\prime}_\mathrm{v}} = -K_\mathrm{h} \:\frac{\partial q_\mathrm{v}} {\partial x_{i}},\,\\
     12&  \overline{u^{\prime\prime}_{i}s^{\prime\prime}} = -K_\mathrm{h} \:\frac{\partial s}{\partial x_{i}},\,
     13\end{align*}
     14}}}
     15where ''K'',,m,, and ''K'',,h,, are the local SGS eddy diffusivities of momentum and heat, respectively. They are related to the SGS-TKE as follows
     16{{{
     17#!Latex
     18\begin{align*}
     19&K_\mathrm{m} = c_\mathrm{m}\;l\sqrt{e},\\
     20&  K_\mathrm{h} = \left(1+\frac{2l}{\boldsymbol{\varDelta}}\right)  K_\mathrm{m}.
     21\end{align*}
     22}}}
     23Here, ''c'',,m,, = 0.1 is a model constant and '''''Δ''' = (Δx Δy Δz)^1/3^'' with ''Δx'', ''Δy'', ''Δz'' being the grid spacings in ''x'', ''y'' and ''z'' direction, respectively. The SGS mixing length ''l'' depends on height ''z'' (distance from the wall when topography is used), '''''Δ''''', and stratification and is calculated as
     24{{{
     25#!Latex
     26\begin{align*}
     27  & l =
     28\begin{cases}
     29\min\left(1.8z,\boldsymbol{\varDelta},
     30  0.76\sqrt{e}\left(\frac{g}{\theta_{\mathrm{v},0}}
     31 \frac{\partial{\theta_{\mathrm{v}}}}{\partial z}\right)^{-\frac{1}{2}} \right) &\text{for~}
     32    \frac{\partial{\theta_{\mathrm{v}}}}{\partial z} > 0, \\
     33 \min\left(1.8z, \boldsymbol{\varDelta}\right) &\text{for~}    \frac{\partial{\theta_{\mathrm{v}}}}{\partial z} \leq 0.
     34\end{cases}
     35\end{align*}
     36}}}
     37Moreover, the closure includes a prognostic equation for the SGS-TKE:
     38{{{
     39#!Latex
     40\begin{align*}
     41  & \frac{\partial{e}}{\partial t} = - u_j\frac{\partial
     42    e}{\partial x_j} - \left(\overline{u_i^{\prime\prime}
     43      u_j^{\prime\prime}}\right)\frac{\partial u_i} {\partial x_j} +
     44  \frac{g}{\theta_{\mathrm{v},0}}\overline{u_3^{\prime\prime}
     45    {\theta_{\mathrm{v}}}^{\prime\prime}}-\frac{\partial}{\partial x_j} \left[\overline{u_j^{\prime\prime}
     46      \left(e + \frac{p^{\prime\prime}}{\rho_0}\right)}\right] -
     47  \epsilon.
     48\end{align*}
     49}}}
     50The pressure term in the equation above is parametrized as
     51{{{
     52#!Latex
     53\begin{align*}
     54  &\left[\overline{u_j^{\prime\prime} \left(e +
     55        \frac{p^{\prime\prime}}{\rho_0}\right)}\right] = -2
     56  K_\mathrm{m} \frac{\partial e}{\partial x_j}
     57\end{align*}
     58}}}
     59and ''ε'' is the SGS dissipation rate within a grid volume, given by
     60{{{
     61#!Latex
     62\begin{align*}
     63  &  \epsilon=\left(0.19 +
     64    0.74\frac{l}{\boldsymbol{\varDelta}}\right)\frac{e^{\frac{3}{2}}}{l}.
     65\end{align*}
     66}}}
     67Since ''θ'',,v,, depends on ''θ'', ''q'',,v,,, and ''q'',,l,, (see last equation at [wiki:doc/tec/gov governing equations]), the vertical SGS buoyancy flux depends on the respective SGS fluxes ([#stull Stull, 1988, Chap. 4.4.5]):
     68{{{
     69#!Latex
     70\begin{align*}
     71  & \overline{w^{\prime\prime}
     72    {\theta_{\mathrm{v}}}^{\prime\prime}}=K_1\,\cdot\,\overline{w^{\prime\prime}
     73    {\theta}^{\prime\prime}} + K_2\,\cdot\,\overline{w^{\prime\prime}
     74    {q_\mathrm{v}}^{\prime\prime}}-
     75  \theta\,\cdot\,\overline{w^{\prime\prime}
     76    {q_\mathrm{l}}^{\prime\prime}},
     77\end{align*}
     78}}}
     79with
     80{{{
     81#!Latex
     82\begin{align*}
     83  & K_1 =1+\left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right) q_\mathrm{v}  - q_\mathrm{l},\\
     84  & K_2 =\left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right)\,\theta,
     85\end{align*}
     86}}}
     87and the vertical SGS flux of liquid water, calculated as
     88#!Latex
     89{{{
     90\begin{align*}
     91  & \overline{w^{\prime\prime} {q_\mathrm{l}}^{\prime\prime}} = -K_\mathrm{h} \:\frac{\partial q_\mathrm{l}} {\partial z}.
     92\end{align*}
     93}}}
     94Note that this parametrization of the SGS buoyancy flux differs from that used with bulk cloud microphysics (see Sect. [wiki:doc/tec/microphysics cloud microphysics]).
    1095
    1196== References ==
     
    16101* [=#saiki]'''Saiki EM, Moeng CH, Sullivan PP.''' 2000. Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Lay. Meteorol. 95: 1–30.
    17102
     103* [=#stull]'''Stull RB.''' 1988. An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers. Dordrecht. 666 pp.
     104