Changes between Version 13 and Version 14 of doc/tec/rk3


Ignore:
Timestamp:
Nov 12, 2015 2:26:40 PM (10 years ago)
Author:
boeske
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/rk3

    v13 v14  
    55{{{
    66#!Latex
    7 \[  \frac{d \psi}{d t} & = & f(t,\psi) \]
     7$\dfrac{d \psi}{d t} = f(t,\psi)$
    88}}}
    99as follows ( Baldauf, 2008 ):
    1010{{{
    1111#!Latex
    12 \[ \psi^{(0)} = \psi^{n}, \]
    13 \[ k^{i} = f(t^{n} + \Delta t\,\alpha_{i},\,\psi^{i-1}), \]
    14 \[ \psi^{i} = \psi^{n} + \Delta t\,\sum^{i}_{j=1}\,\beta_{i+1,j}\,k^{j}, \quad \textnormal{mit} \quad i \in [1,2,...,N] \]
    15 \[ \psi^{n+1} = \psi^{N}. \]
     12\begin{align*}
     13 \psi^{(0)} &= \psi^{n}, \\
     14 k^{i}      &= f(t^{n} + \Delta t\,\alpha_{i},\,\psi^{i-1}), \\
     15 \psi^{i}   &= \psi^{n} + \Delta t\,\sum^{i}_{j=1}\,\beta_{i+1,j}\,k^{j}, \quad \textnormal{mit} \quad i \in [1,2,...,N] \\
     16 \psi^{n+1} &= \psi^{N}.
     17\end{align*}
    1618}}}
    1719The coefficients can be written in a so-called Butcher-Tableau:
     
    3133{{{
    3234#!Latex
    33 \[ \hat\psi_{1} & = & \psi_{n} + \frac{1}{3} \Delta t f\left(\psi_{n}\right) \]
    34 \[ \hat\psi_{2} & = & \hat\psi_{1} + \frac{1}{48} \Delta t \left( 45 f\left(\hat\psi_1\right) - 25 f\left(\psi_{n}\right) \right) \]
    35 \[ f\left(\hat\psi_{1}\right) & = &-153 f\left(\hat\psi_{1}\right) + 85 f\left(\psi_{n}\right) \]
    36 \[ \hat\psi_{3} & = & \left( \psi_{n+1} \right) = \hat\psi_{2} + \frac{1}{240} \Delta t \left( 128 f\left(\hat\psi_2\right) + 15 f \left(\hat\psi_{1}\right) \right) \]
     35\begin{align*}
     36 \hat\psi_{1}               &= \psi_{n} + \frac{1}{3} \Delta t f\left(\psi_{n}\right) \\
     37 \hat\psi_{2}               &= \hat\psi_{1} + \frac{1}{48} \Delta t \left( 45 f\left(\hat\psi_1\right) - 25 f\left(\psi_{n}\right) \right) \\
     38 f\left(\hat\psi_{1}\right) &= -153 f\left(\hat\psi_{1}\right) + 85 f\left(\psi_{n}\right) \\
     39 \hat\psi_{3}               &= \left( \psi_{n+1} \right) = \hat\psi_{2} + \frac{1}{240} \Delta t \left( 128 f\left(\hat\psi_2\right) + 15 f \left(\hat\psi_{1}\right) \right)
     40\end{align*}
    3741}}}
    3842
    3943For reasons of clarity the [../../app/inipar#timestep_scheme time integration] for several schemes (further schemes are: Leapfrog, Euler and 2^nd^ order Runge-Kutta scheme) is implemented as follows (here e.g. the u-component of velocity):
    4044
     45
    4146{{{
    42 #!Latex
    43 \begin{split}
    44  \textnormal{u}\_\textnormal{p}\left(k,j,i\right) = \left(1.0 - \textnormal{tsc}\left(1\right) \right) * \textnormal{u}\_\textnormal{m}\left(k,j,i\right) + \textnormal{tsc}\left(1\right) * \textnormal{u}\left(k,j,i\right) + \textnormal{dt}\_\textnormal{3d}* \left( \\
    45                              \textnormal{tsc}\left(2\right) * \textnormal{tend}\left(k,j,i\right) + \textnormal{tsc}\left(3\right) * \textnormal{tu}\_\textnormal{m}\left(k,j,i\right)  \\
    46                              + \textnormal{tsc}\left(4\right) * \left(\textnormal{p}\left(k,j,i)\right) - \textnormal{p}\left(k,j,i-1\right) \right) * \textnormal{ddx} \ \ ) \\
    47                              - \textnormal{tsc}\left(5\right) * \textnormal{rdf}\left(k\right) * \left(\textnormal{u}\left(k,j,i) - \textnormal{ug} \right)
    48 \end{split}
     47u_p(k,j,i) = ( 1.0 - tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + dt_3d * (
     48               tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i)
     49             + tsc(4) * ( p(k,j,i) - p(k,j,i-1)) * ddx )
     50             - tsc(5) * rdf(k) * ( u(k,j,i) -ug )
    4951}}}
     52
    5053
    5154and steered by the array {{{tsc(1:5)}}}