| 219 | The evaporation of rain drops in subsaturated air (relative water supersaturation ''S < 0'') is parametrized following [#seifert2008 Seifert (2008)]: |
| 220 | {{{ |
| 221 | #!Latex |
| 222 | \begin{align*} |
| 223 | & \left.\frac{\partial q_\mathrm{r}}{\partial t} |
| 224 | \right|_{\text{evap}}= 2 |
| 225 | \pi\,G\,S\,\frac{N_\mathrm{r}\,\lambda_\mathrm{r}^{\mu_\mathrm{r}+1}}{\Gamma(\mu_\mathrm{r}+1)}\,f_\mathrm{v}\,\rho, |
| 226 | \end{align*} |
| 227 | }}} |
| 228 | where |
| 229 | {{{ |
| 230 | #!Latex |
| 231 | \begin{align*} |
| 232 | & G = \left[\frac{R_\mathrm{v}T}{K_\mathrm{v}p_\text{v, s}(T)} + |
| 233 | \left(\frac{L_\mathrm{V}}{R_\mathrm{v} T}-1\right) |
| 234 | \frac{L_\mathrm{V}}{\lambda_\mathrm{h}\,T}\right]^{-1}, |
| 235 | \end{align*} |
| 236 | }}} |
| 237 | with ''K'',,v,,'' = 2.3 x 10^-5^'' m^2^ s^-1^ being the molecular diffusivity water vapor in air and ''λ'',,h,,'' = 2.43 x 10^-2^'' W m^-1^ K^-1^ being the heat conductivity of air. Here, ''N'',,r,, ''λ'',,r,,^''μ'',,r,,''+1^ / Γ(μ'',,r,,+1) denotes the intercept parameter of the rain drop gamma distribution with ''Γ'' being the gamma-function. Following [#stevens2008 Stevens and Seifert (2008)], the slope parameter reads as |
| 238 | {{{ |
| 239 | #!Latex |
| 240 | \begin{align*} |
| 241 | & \lambda_\mathrm{r} = \frac{\left((\mu_\mathrm{r}+3) |
| 242 | (\mu_\mathrm{r}+2) (\mu_\mathrm{r}+1)\right)^{\frac{1}{3}}}{2 |
| 243 | \cdot \widetilde{r_\mathrm{r}}}, |
| 244 | \end{align*} |
| 245 | }}} |
| 246 | with ''μ'',,r,, being the shape parameter, given by |
| 247 | {{{ |
| 248 | #!Latex |
| 249 | \begin{align*} |
| 250 | & \mu_\mathrm{r} = 10\,\cdot\,\left(1 + |
| 251 | \tanh{\left(1200\,\cdot\,\left(2 \cdot \widetilde{r_\mathrm{r}} - |
| 252 | 0.0014 \right)\right)} \right). |
| 253 | \end{align*} |
| 254 | }}} |
| 255 | In order to account for the increased evaporation of falling rain drops, the so-called ventilation effect, a ventilation factor ''f'',,v,, is calculated optionally by a series expansion considering the rain drop size distribution ([#seifert2008 Seifert, 2008, Appendix]). |
| 256 | |
| 257 | The complete evaporation of rain drops (i.e., their evaporation to a size smaller than the separation radius of 40 µm) is |
| 258 | parametrized as |
| 259 | {{{ |
| 260 | #!Latex |
| 261 | \begin{align*} |
| 262 | & \left.\frac{\partial N_\mathrm{r}}{\partial t} |
| 263 | \right|_{\text{evap}}= \gamma\,\frac{N_\mathrm{r}}{\rho |
| 264 | q_\mathrm{r}}\,\left.\frac{\partial q_\mathrm{r}}{\partial t} |
| 265 | \right|_{\text{evap}}, |
| 266 | \end{align*} |
| 267 | }}} |
| 268 | with ''γ = 0.7'' (see also [#heus2010 Heus et al., 2010]). |
| 269 | |