Changes between Version 7 and Version 8 of doc/tec/microphysics


Ignore:
Timestamp:
Jun 1, 2016 7:50:32 PM (8 years ago)
Author:
Giersch
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/microphysics

    v7 v8  
    114114== Autoconversion ==
    115115
     116In the following Sects. [wiki:doc/tec/microphysics#Autoconversion Autoconversion] - [wiki:doc/tec/microphysics#Self-collectionandbreakup Self-collection and breakup] we describe collision and coalescence processes by applying the stochastic collection equation ([#pruppacher1997 e.g., Pruppacher and Klett, 1997, Chap. 15.3]) in the framework of the described two-moment scheme. As two species (cloud and rain droplets, hereafter also denoted as c and r, respectively) are considered only, there are three possible interactions affecting the rain quantities: autoconversion, accretion, and selfcollection. Autoconversion summarizes all merging of cloud droplets resulting in rain drops
     117(c + c → r). Accretion describes the growth of rain drops by the collection of cloud droplets (r + c → r). Selfcollection denotes the merging of rain drops (r + r → r).
     118
     119The local temporal change of ''q'',,r,, due to autoconversion is
     120{{{
     121#!Latex
     122\begin{align*}
     123  & \left.\frac{\partial q_\mathrm{r}}{\partial t}
     124  \right|_{\text{auto}}=\frac{K_{\text{auto}}}{20\,m_{\text{sep}}}\frac{(\mu_\mathrm{c} +2)
     125    (\mu_\mathrm{c} +4)}{(\mu_\mathrm{c} + 1)^2} q_\mathrm{c}^2
     126  m_\mathrm{c}^2 \cdot \left[1+
     127    \frac{\Phi_{\text{auto}}(\tau_\mathrm{c})}{(1-\tau_\mathrm{c})^2}\right]
     128  \rho_0.
     129\end{align*}
     130}}}
     131Assuming that all new rain drops have a radius of 40 μm corresponding to the separation mass ''m'',,sep,, ''= 2.6 x 10^-10^'' kg, the local temporal change of ''N'',,r,, is
     132{{{
     133#!Latex
     134\begin{align*}
     135  & \left.\frac{\partial N_\mathrm{r}}{\partial t}
     136  \right|_{\text{auto}}= \rho \left.\frac{\partial
     137      q_\mathrm{r}}{\partial t} \right|_{\text{auto}}
     138  \frac{1}{m_{\text{sep}}}.
     139\end{align*}
     140}}}
     141Here, ''K'',,auto,, ''= 9.44 x 10^9^'' m^3^ kg^-2^ s^-1^ is the autoconversion kernel, ''μ'',,c,,'' = 1'' is the shape parameter of the cloud droplet gamma distribution and
     142''m'',,c,, ''= ρ q'',,c,, ''/ N'',,c,, is the mean mass of cloud droplets. ''τ'',,c,, ''= 1 - q'',,c,,'' / (q'',,c,,'' + q'',,r,,) is a dimensionless timescale steering the autoconversion similarity function
     143{{{
     144#!Latex
     145\begin{align*}
     146  &
     147  \Phi_{\text{auto}}=600\,\cdot\,\tau_\mathrm{c}^{0.68}\,\left(1-\tau_\mathrm{c}^{0.68}\right)^3.
     148\end{align*}
     149}}}
     150The increase of the autoconversion rate due to turbulence can be considered optionally by an increased autoconversion kernel depending on the local kinetic energy dissipation rate after [#seifert2010 Seifert et al. (2010)].
     151
    116152== Accretion ==
    117153
     154The increase of ''q'',,r,, by accretion is given by:
     155{{{
     156#!Latex
     157\begin{align*}
     158  & \left.\frac{\partial q_\mathrm{r}}{\partial t}
     159  \right|_{\text{accr}}=
     160  K_{\text{accr}}\,q_\mathrm{c}\,q_\mathrm{r}\,\Phi_{\text{accr}}(\tau_\mathrm{c})
     161  \left(\rho_0\,\rho \right)^{\frac{1}{2}},
     162\end{align*}
     163}}}
     164with the accretion kernel ''K'',,accr,,'' = 4.33'' m^3^ kg^-1^ s^-1^ and the similarity function
     165{{{
     166#!Latex
     167\begin{align*}
     168  & \Phi_{\text{accr}}=\left(\frac{\tau_\mathrm{c}}{\tau_\mathrm{c} +
     169      5 \times 10^{-5}}\right)^4.
     170\end{align*}
     171}}}
     172Turbulence effects on the accretion rate can be considered after using the kernel after [#seifert2010 Seifert et al. (2010)].
     173
    118174== Self-collection and breakup ==
     175
     176Selfcollection and breakup describe merging and splitting of rain drops, respectively, which affect the rain water drop number concentration only. Their combined impact is parametrized as
     177{{{
     178#!Latex
     179\begin{align*}
     180  & \left.\frac{\partial N_\mathrm{r}}{\partial t}
     181  \right|_\text{slf/brk}=
     182  -(\Phi_{\text{break}}(r)+1)\,\left.\frac{\partial
     183      N_\mathrm{r}}{\partial t} \right|_{\text{self}},
     184\end{align*}
     185}}}
     186with the breakup function
     187{{{
     188#!Latex
     189\begin{align*}
     190  & \Phi_{\text{break}} =
     191  \begin{cases} 0 & \text{for~}  \widetilde{r_\mathrm{r}} < 0.15 \times 10^{-3}\,\mathrm{m},\\
     192    K_{\text{break}} (\widetilde{r_\mathrm{r}}-r_{\text{eq}}) &
     193    \text{otherwise},
     194  \end{cases}
     195\end{align*}
     196}}}
     197depending on the volume averaged rain drop radius
     198{{{
     199#!Latex
     200\begin{align*}
     201  &
     202  \widetilde{r_\mathrm{r}}=\left(\frac{\rho\,q_\mathrm{r}}{\frac{4}{3}\,\pi\,\rho_{\mathrm{l},0}\,N_\mathrm{r}}
     203  \right)^{\frac{1}{3}},
     204\end{align*}
     205}}}
     206the equilibrium radius ''r'',,eq,, ''= 550 x 10^-6^'' m and the breakup kernel ''K'',,break,, ''= 2000'' m^-1^. The local temporal change of ''N'',,r,, due to selfcollection is
     207{{{
     208#!Latex
     209\begin{align*}
     210  & \left.\frac{\partial N_\mathrm{r}}{\partial t}
     211  \right|_{\text{self}}= K_{\text{self}}\,N_\mathrm{r}\,q_\mathrm{r}
     212  \left(\rho_0\,\rho \right)^{\frac{1}{2}},
     213\end{align*}
     214}}}
     215with the selfcollection kernel ''K'',,self,, ''= 7.12'' m^3^ kg^-1^ s^-1^.
    119216
    120217== Evaporation of rainwater ==
     
    143240
    144241* [=#sommeria1977]'''Sommeria G, Deardorff JW.''' 1977. Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci. 34: 344–355.
     242
     243* [=#pruppacher1997]'''Pruppacher HR, and Klett JD.''' 1997. Microphysics of Clouds and Precipitation. 2nd Edn. Kluwer Academic Publishers. Dordrecht.
     244
     245* [=#seifert2010]'''Seifert A, Nuijens L, Stevens B.''' 2010. Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Q. J. Roy. Meteor. Soc. 136: 1753–1762.
     246