Changes between Version 6 and Version 7 of doc/tec/gov


Ignore:
Timestamp:
Apr 13, 2016 3:57:17 PM (9 years ago)
Author:
Giersch
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/gov

    v6 v7  
    1313#!Latex
    1414\begin{align*}
    15  \frac{\partial u_i}{\partial t}&= - \frac{\partial u_i u_j}{\partial x_j} -\varepsilon_{ijk}f_j u_k + \varepsilon_{i3j}f_3 {u_{\mathrm{g},j}} - \frac{1}{\rho_0} \frac{\partial \pi^\ast}{\partial x_i} + g \frac{\theta_\mathrm{v} - \langle\theta_{\mathrm{v}}\rangle}{\langle\theta_{\mathrm{v}}\rangle}\delta_{i3}-\frac{\partial}{\partial x_j} \left(\overline{u_i^{\prime\prime} u_j^{\prime\prime}} - \frac{2}{3}e\delta_{ij}\right), \\
     15 \frac{\partial u_i}{\partial t} &= - \frac{\partial u_i u_j}{\partial x_j} -\varepsilon_{ijk}f_j u_k + \varepsilon_{i3j}f_3 {u_{\mathrm{g},j}} - \frac{1}{\rho_0} \frac{\partial \pi^\ast}{\partial x_i} + g \frac{\theta_\mathrm{v} - \langle\theta_{\mathrm{v}}\rangle}{\langle\theta_{\mathrm{v}}\rangle}\delta_{i3}-\frac{\partial}{\partial x_j} \left(\overline{u_i^{\prime\prime} u_j^{\prime\prime}} - \frac{2}{3}e\delta_{ij}\right), \\
    1616 \frac{\partial u_j}{\partial x_j}&=0, \\
    1717 \frac{\partial \theta}{\partial t} &= - \frac{\partial u_j \theta}{\partial x_j} -\frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}\theta^{\prime\prime}}\right) - \frac{L_\mathrm{V}}{c_p \Pi} \Psi_{q_\mathrm{v}}, \\
     
    2424{{{
    2525#!Latex
    26 $e =
    27 \frac{1}{2} \overline{u_i^{\prime\prime} u_i^{\prime\prime}}$
     26\begin{align*}
     27e = \frac{1}{2} \overline{u_i^{\prime\prime} u_i^{\prime\prime}},
     28\end{align*}
    2829}}}
     30and ''g'' is the gravitational acceleration. The potential temperature is defined as
     31{{{
     32#!Latex
     33\begin{align*}
     34 \theta = T/\,\Pi,
     35\end{align*}
     36}}}
     37with the current absolute temperature ''T'' and the Exner function
     38{{{
     39#!Latex
     40\begin{align*}
     41  & \Pi = \left(\frac{p}{p_0}\right)^{R_\mathrm{d}/c_p},
     42\end{align*}
     43}}}
     44with ''p'' being the hydrostatic air pressure, ''p'',,0,, = 1000 hPa a reference pressure, ''R'',,d,, the specific gas constant for dry
     45air, and ''c'',,p,, the specific heat of dry air at constant pressure. The virtual potential temperature is defined as
     46{{{
     47#!Latex
     48\begin{align*}
     49  & \theta_\mathrm{v} = \theta \left[1+\left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right) q_\mathrm{v} - q_\mathrm{l}\right],
     50\end{align*}
     51}}}
     52with the specific gas constant for water vapor ''R'',,v,,, and the liquid water specific humidity ''q'',,l,,. For the computation of ''q'',,l,,, see the descriptions of the embedded cloud microphysical models in Sects. ~\ref{sec:micro} and \ref{sec:lcm}. Furthermore,
     53''L'',,V,, is the latent heat of vaporization, and ''Ψ'',,q,,v,,,, and ''Ψ'',,s,, are source/sink terms of ''q'',,v,, and ''s'', respectively.
    2954
    3055== References ==