15 | | \frac{\partial u_i}{\partial t}&= - \frac{\partial u_i u_j}{\partial x_j} -\varepsilon_{ijk}f_j u_k |
16 | | + \varepsilon_{i3j}f_3 {u_{\mathrm{g},j}} - \frac{1}{\rho_0} \frac{\partial \pi^\ast}{\partial x_i} |
17 | | + g \frac{\theta_\mathrm{v} - \langle\theta_{\mathrm{v}}\rangle}{\langle\theta_{\mathrm{v}}\rangle} \delta_{i3}-\frac{\partial}{\partial x_j} \left(\overline{u_i^{\prime\prime} u_j^{\prime\prime}} - |
18 | | \frac{2}{3}e\delta_{ij}\right), \\ |
19 | | \frac{\partial u_j}{\partial x_j}&=0, \\ |
20 | | \frac{\partial \theta}{\partial t} &= - |
21 | | \frac{\partial u_j \theta}{\partial x_j} -\frac{\partial}{\partial |
22 | | x_j}\left(\overline{u_j^{\prime\prime}\theta^{\prime\prime}}\right) |
23 | | - \frac{L_\mathrm{V}}{c_p \Pi} \Psi_{q_\mathrm{v}}, \\ |
24 | | \frac{\partial q_\mathrm{v}}{\partial t} &= - |
25 | | \frac{\partial u_j q_\mathrm{v}}{\partial x_j} - |
26 | | \frac{\partial}{\partial |
27 | | x_j}\left(\overline{u_j^{\prime\prime}q^{\prime\prime}_\mathrm{v}}\right) |
28 | | + \Psi_{q_\mathrm{v}},\\ |
29 | | \frac{\partial s}{\partial t} &= - |
30 | | \frac{\partial u_j s}{\partial x_j} - \frac{\partial}{\partial |
31 | | x_j}\left(\overline{u_j^{\prime\prime}s^{\prime\prime}}\right) + |
32 | | \Psi_s. |
| 15 | \frac{\partial u_i}{\partial t}&= - \frac{\partial u_i u_j}{\partial x_j} -\varepsilon_{ijk}f_j u_k + \varepsilon_{i3j}f_3 {u_{\mathrm{g},j}} - \frac{1}{\rho_0} \frac{\partial \pi^\ast}{\partial x_i} + g \frac{\theta_\mathrm{v} - \langle\theta_{\mathrm{v}}\rangle}{\langle\theta_{\mathrm{v}}\rangle}\delta_{i3}-\frac{\partial}{\partial x_j} \left(\overline{u_i^{\prime\prime} u_j^{\prime\prime}} - \frac{2}{3}e\delta_{ij}\right), \\ |
| 16 | \frac{\partial u_j}{\partial x_j}&=0, \\ |
| 17 | \frac{\partial \theta}{\partial t} &= - \frac{\partial u_j \theta}{\partial x_j} -\frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}\theta^{\prime\prime}}\right) - \frac{L_\mathrm{V}}{c_p \Pi} \Psi_{q_\mathrm{v}}, \\ |
| 18 | \frac{\partial q_\mathrm{v}}{\partial t} &= - \frac{\partial u_j q_\mathrm{v}}{\partial x_j} - \frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}q^{\prime\prime}_\mathrm{v}}\right) + \Psi_{q_\mathrm{v}},\\ |
| 19 | \frac{\partial s}{\partial t} &= - \frac{\partial u_j s}{\partial x_j} - \frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}s^{\prime\prime}}\right) + \Psi_s. |