Changes between Version 1 and Version 2 of doc/tec/bc


Ignore:
Timestamp:
Apr 5, 2016 1:03:01 PM (9 years ago)
Author:
maronga
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/bc

    v1 v2  
    1 [[NoteBox(warn,This site is currently under construction!)]]
     1= Boundary conditions =
     2
     3== Constant flux layer ==
     4Following Monin-Obukhov similarity theory (MOST) a constant flux layer can be assumed as boundary condition between the surface and the first grid level where scalars and horizontal velocities are defined (''k'' = 1, ''z'',,MO,, = 0.5 ''Δz''). It is then required to provide the roughness lengths for momentum ''z'',,0,, and heat ''z'',,0,h,,. Momentum and heat fluxes as well as the horizontal velocity components are calculated using the following framework. The formulation is theoretically only valid for horizontally-averaged quantities. In PALM we assume that MOST can be also applied locally and we therefore calculate local fluxes, velocities, and scaling parameters.
     5
     6Following MOST, the vertical profile of the horizontal wind velocity
     7{{{
     8#!Latex
     9\begin{equation*}
     10u_\mathrm{h} = (u^2 + v^2)^{\frac{1}{2}}
     11\end{equation*}
     12}}}
     13is given in the surface layer by
     14{{{
     15#!Latex
     16\begin{align}
     17  & \frac{\partial u_\mathrm{h}}{\partial z} =
     18  \frac{u_\ast}{\kappa z}\Phi_\mathrm{m}\left(\frac{z}{L}\right)\;,
     19\end{align}
     20}}}
     21where ''κ'' = 0.4 is the Von Kármán constant and Φ,,m,, is the similarity function for momentum in the formulation of Businger-Dyer (see e.g. [#panofsky Panofsky and Dutton 1984])
     22{{{
     23#!Latex
     24\begin{align}
     25  & \Phi_\mathrm{m} =
     26  \begin{cases}
     27    1 + 5 \frac{z}{L} & \text{for~}  \frac{z}{L} \geq 0 \\
     28    \left(1 - 16 \frac{z}{L}\right)^{-\frac{1}{4}} & \text{for~}
     29    \frac{z}{L} < 0\;.
     30  \end{cases}
     31\end{align}
     32}}}
     33Here, ''L'' is the Obukhov length, calculated as
     34{{{
     35#!Latex
     36\begin{align}
     37  & \label{eq:L}
     38L = \frac{\theta_\mathrm{v}(z) u_\ast^2}{\kappa g
     39    \left[\theta_\ast + 0.61 \theta(z) q_\ast + 0.61
     40      q_\mathrm{v}(z) \theta_\ast\right]}\;.
     41\end{align}
     42}}}
     43The scaling parameters ''θ'',,*,, and  ''q'',,*,, are defined by MOST
     44as:
     45{{{
     46#!Latex
     47\begin{align}
     48  & \label{eq:scales} \theta_\ast = -
     49  \frac{\overline{w^{\prime\prime}\theta^{\prime\prime}}_0}{u_\ast},~q_\ast
     50  = -
     51  \frac{\overline{w^{\prime\prime}q_\mathrm{v}^{\prime\prime}}_0}{u_\ast}\;,
     52\end{align}
     53}}}
     54
     55with the friction velocity ''u'',,*,, defined as
     56{{{
     57#!Latex
     58\begin{align}
     59  & u_\ast =
     60  \left[\left(\overline{u^{\prime\prime} w^{\prime\prime}}_0\right)^2
     61    + \left(\overline{v^{\prime\prime} w^{\prime\prime}}_0\right)^2
     62  \right]^{\frac{1}{4}}\;.
     63\end{align}
     64}}}
     65
     66In PALM, ''u'',,*,, is calculated from ''u'',,h,, at ''z'',,MO,, by vertical integration over ''z'' from ''z'',,0,, to ''z'',,MO,,.
     67
     68From the equations above it is possible to derive a formulation for the horizontal wind components, viz.
     69{{{
     70#!Latex
     71\begin{align}
     72  &
     73\frac{\partial u}{\partial z} =
     74  \frac{-\overline{u^{\prime\prime} w^{\prime\prime}}_0}{u_\ast \kappa
     75    z}
     76  \Phi_\mathrm{m}\left(\frac{z}{L}\right)\,\text{and~}\,\frac{\partial
     77    v}{\partial z} = \frac{-\overline{v^{\prime\prime}
     78      w^{\prime\prime}}_0}{u_\ast \kappa z}
     79  \Phi_\mathrm{m}\left(\frac{z}{L}\right)\;.
     80\end{align}
     81}}}
     82Vertical integration of the above equation over ''z'' from ''z'',,0,, to ''z'',,MO,, then yields the surface momentum fluxes
     83{{{
     84#!Latex
     85\begin{equation*}
     86\overline{u^{\prime\prime} w^{\prime\prime}}_0,\;\; \overline{v^{\prime\prime} w^{\prime\prime}}_0
     87\end{equation*}
     88}}}
     89
     90The formulations above all require knowledge of the scaling parameters ''θ'',,*,, and  ''q'',,*,,. These are deduced from vertical
     91integration of
     92{{{
     93#!Latex
     94\begin{align}
     95  &
     96\frac{\partial \theta}{\partial z} =
     97  \frac{\theta_\ast}{\kappa z}
     98  \Phi_\mathrm{h}\left(\frac{z}{L}\right)~{\text{and}}~\frac{\partial
     99    q_\mathrm{v}}{\partial z} = \frac{q_\ast}{\kappa z}
     100  \Phi_\mathrm{h}\left(\frac{z}{L}\right)
     101\end{align}
     102}}}
     103over ''z'' from ''z'',,0,h,, to ''z'',,MO,,. The similarity function Φ,,h,, is given by
     104{{{
     105#!Latex
     106\begin{align}
     107  & \Phi_\mathrm{h} =
     108  \begin{cases}
     109    1 + 5 \frac{z}{L} & \text{for~}  \frac{z}{L} \geq 0 \\
     110    \left(1 - 16 \frac{z}{L}\right)^{-1/2} & \text{for~} \frac{z}{L}
     111    < 0\;.
     112  \end{cases}
     113\end{align}
     114}}}
     115
     116Note that this implementation of MOST in PALM requires the use of data from the previous time step. The following steps are thus carried out in sequential order. First of all, ''θ'',,*,, and  ''q'',,*,, are calculated by integration using the value of ''z'',,MO,,/L from the previous time step. Second, the new value of ''z'',,MO,,/L is derived using the new values of ''θ'',,*,, and  ''q'',,*,, but using ''u'',,*,, from the previous time step. Then, the new values of ''u'',,*,,, and subsequently the momentum fluxes are calculated by integration, respectively. At last, the new surface fluxes are derived from ''θ'',,*,, and  ''q'',,*,,, and ''u'',,*,,. In the special case, when surface fluxes are prescribed instead of surface temperature and humidity, the first and last steps are omitted and ''θ'',,*,, and  ''q'',,*,, are directly calculated from ''u'',,*,, and the surface fluxes.