24 | | & \frac{\partial e}{\partial t} = - \frac{\partial |
25 | | \overline{u^{\prime\prime}w^{\prime\prime}}}{\partial z} - |
26 | | \frac{\partial \overline{v^{\prime\prime}w^{\prime\prime}}}{\partial |
27 | | z} - \frac{g}{\theta} \frac{\partial |
28 | | \overline{w^{\prime\prime}\theta^{\prime\prime}}}{\partial z} - |
29 | | \frac{\partial \overline{w^{\prime\prime}e^{\prime\prime}}}{\partial |
30 | | z} - \epsilon\;. |
| 24 | & \frac{\partial e}{\partial t} = - \overline{u^{\prime\prime}w^{\prime\prime}} \frac{\partial u}{\partial z} |
| 25 | - \overline{v^{\prime\prime}w^{\prime\prime}} \frac{\partial v}{\partial z} |
| 26 | + \frac{g}{\theta} \overline{w^{\prime\prime}\theta^{\prime\prime}} |
| 27 | - \frac{\partial \overline{w^{\prime\prime}e^{\prime\prime}}}{\partial z} |
| 28 | - \epsilon\;. |