Changes between Initial Version and Version 1 of doc/app/salsa_parameters


Ignore:
Timestamp:
Jan 28, 2019 1:00:09 PM (6 years ago)
Author:
westbrink
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/salsa_parameters

    v1 v1  
     1
     2== Parameter list ==
     3'''NAMELIST group name: {{{salsa_parameters}}}''' \\
     4
     5||='''Parameter Name'''  =||='''[../fortrantypes FORTRAN Type]'''  =||='''Default Value'''  =||='''Explanation'''  =||
     6|----------------
     7{{{#!td style="vertical-align:top"
     8[=#advect_particle_water '''advect_particle_water''']
     9}}}
     10{{{#!td style="vertical-align:top"
     11L
     12}}}
     13{{{#!td style="vertical-align:top"
     14.T.
     15}}}
     16{{{#!td
     17Parameter to switch on the advection of condensed water in aerosol particles.
     18
     19If '''advect_particle_water''' = .F., the aerosol particle water content is calculated at each dt_salsa based on the equilibrium solution using the ZSR
     20method (Stokes and Robinson, 1966).
     21}}}
     22|----------------
     23{{{#!td style="vertical-align:top"
     24[=#bc_salsa_b '''bc_salsa_b''']
     25}}}
     26{{{#!td style="vertical-align:top"
     27C(20)
     28}}}
     29{{{#!td style="vertical-align:top"
     30'neumann'
     31}}}
     32{{{#!td
     33The bottom boundary condition of the aerosol (and gas) concentrations.
     34
     35Allowed are the values '' 'dirichlet' '' (constant surface concentration over the entire simulation) and 'neumann' (zero concentration gradient).
     36
     37If the aerosol (ans gaseous) emissions are defined as surface fluxes, '''bc_salsa_b''' = '' 'neumann' '' is required.
     38}}}
     39|----------------
     40{{{#!td style="vertical-align:top"
     41[=#bc_salsa_t '''bc_salsa_t''']
     42}}}
     43{{{#!td style="vertical-align:top"
     44C(20)
     45}}}
     46{{{#!td style="vertical-align:top"
     47'neumann'
     48}}}
     49{{{#!td
     50The top boundary condition of the aerosol (and gas) concentrations.
     51
     52Allowed are the values '' 'dirichlet' '' (constant top boundary concentration over the entire simulation) and '' 'neumann' '' (zero concentration gradient).
     53}}}
     54|----------------
     55{{{#!td style="vertical-align:top"
     56[=#decycle_lr '''decycle_lr''']
     57}}}
     58{{{#!td style="vertical-align:top"
     59L
     60}}}
     61{{{#!td style="vertical-align:top"
     62.F.
     63}}}
     64{{{#!td
     65Parameter to the switch on the decycling of aerosol particles along x. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied.
     66
     67The decycling method per each lateral boundary is set by [#decycle_method decycle_method].
     68}}}
     69|----------------
     70{{{#!td style="vertical-align:top"
     71[=#decycle_method '''decycle_method''']
     72}}}
     73{{{#!td style="vertical-align:top"
     74C(20) * 4
     75}}}
     76{{{#!td style="vertical-align:top"
     77'dirichlet','dirichlet',\\'dirichlet','dirichlet'
     78}}}
     79{{{#!td
     80The decycling method at lateral boundaries, in the following order: left, right, south, north.
     81
     82If '''decycle_method''' = 'dirichlet', the initial aerosol (and gas) concentrations are copied to the ghost layers and the first three grid points at the boundary.
     83
     84If '''decycle_method''' = 'neumann', a zero concentration gradient is set at the boundary.
     85}}}
     86|----------------
     87{{{#!td style="vertical-align:top"
     88[=#decycle_ns '''decycle_ns''']
     89}}}
     90{{{#!td style="vertical-align:top"
     91L
     92}}}
     93{{{#!td style="vertical-align:top"
     94.F.
     95}}}
     96{{{#!td
     97Parameter to the switch on the decycling of aerosol particles along y. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied.
     98
     99The decycling method per each lateral boundary is set by [#decycle_method decycle_method].
     100}}}
     101|----------------
     102{{{#!td style="vertical-align:top"
     103[=#depo_topo_type '''depo_topo_type''']
     104}}}
     105{{{#!td style="vertical-align:top"
     106C(20)
     107}}}
     108{{{#!td style="vertical-align:top"
     109'zhang2001'
     110}}}
     111{{{#!td
     112The method to solve the aerosol size specific dry deposition velocity (in m s-1) over an urban surface.
     113Available options:
     114'zhang2001' (Zhang et al. 2001)
     115'petroff2010' (Petroff & Zhang, 2010).
     116
     117Note that the surface material is not specified in the included parametrisations.
     118}}}
     119|----------------
     120{{{#!td style="vertical-align:top"
     121[=#depo_vege_type '''depo_vege_type''']
     122}}}
     123{{{#!td style="vertical-align:top"
     124C(20)
     125}}}
     126{{{#!td style="vertical-align:top"
     127'zhang2001'
     128}}}
     129{{{#!td
     130The method to solve the aerosol size specific dry deposition velocity (in m s-1).
     131Available options:
     132'zhang2001' (Zhang et al. 2001)
     133'petroff2010' (Petroff & Zhang, 2010)
     134
     135Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees.
     136}}}
     137|----------------
     138{{{#!td style="vertical-align:top"
     139[=#dpg '''dpg''']
     140}}}
     141{{{#!td style="vertical-align:top"
     142R(7)
     143}}}
     144{{{#!td style="vertical-align:top"
     1450.013, 0.054, 0.86, 0.2, 0.2, 0.2, 0.2
     146}}}
     147{{{#!td
     148The number geometric mean diameter per aerosol mode (in µm). A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
     149
     150If [#isdtyp isdtyp]= 1, the initial aerosol size distribution is described by input parameters '''dpg''', [#sigmag sigmag] and [#n_lognorm n_lognorm].
     151}}}
     152|----------------
     153{{{#!td style="vertical-align:top"
     154[=#dt_salsa '''dt_salsa''']
     155}}}
     156{{{#!td style="vertical-align:top"
     157R
     158}}}
     159{{{#!td style="vertical-align:top"
     1600.1
     161}}}
     162{{{#!td
     163Time step for calling aerosol dynamic processes of SALSA. For switching on individual processes, see [#nlcnd nlcnd], [#nlcndgas nlcndgas], [#nlcndh2oae nlcndh2oae], [#nlcoag nlcoag], [#nldepo nldepo], [#nldepo_vege nldepo_vege], [#nldepo_topo nldepo_topo], [#nldistupdate nldistupdate] and [#nsnucl nsnucl].
     164}}}
     165|----------------
     166{{{#!td style="vertical-align:top"
     167[=#feedback_to_palm '''feedback_to_palm''']
     168}}}
     169{{{#!td style="vertical-align:top"
     170L
     171}}}
     172{{{#!td style="vertical-align:top"
     173.F.
     174}}}
     175{{{#!td
     176Parameter to switch on the dynamic feedback to the flow due to condensation of water vapour on aerosol particles.
     177
     178If '''feedback_to_palm''' = .F., the salsa module does not interact with the flow.
     179}}}
     180|----------------
     181{{{#!td style="vertical-align:top"
     182[=#H2SO4_init '''H2SO4_init''']
     183}}}
     184{{{#!td style="vertical-align:top"
     185R
     186}}}
     187{{{#!td style="vertical-align:top"
     1881.0
     189}}}
     190{{{#!td
     191Initial number concentration (in m^-3^) of gaseous sulphuric acid H2SO4 (g).
     192}}}
     193|----------------
     194{{{#!td style="vertical-align:top"
     195[=#HNO3_init '''HNO3_init''']
     196}}}
     197{{{#!td style="vertical-align:top"
     198R
     199}}}
     200{{{#!td style="vertical-align:top"
     2011.0
     202}}}
     203{{{#!td
     204Initial number concentration (in m^-3^) of gaseous nitric acid HNO3 (g).
     205}}}
     206|----------------
     207{{{#!td style="vertical-align:top"
     208[=#igctyp '''igctyp''']
     209}}}
     210{{{#!td style="vertical-align:top"
     211I
     212}}}
     213{{{#!td style="vertical-align:top"
     2141
     215}}}
     216{{{#!td
     217Gas concentration initialisation type.
     218
     219If '''igctyp''' = 1, the whole modelling domain is initialised with values given in [#H2SO4_init H2SO4_init], [#HNO3_init HNO3_init], [#NH3_init NH3_init], [#OCNV_init OCNV_init] and [#OCSV_init OCSV_init].
     220
     221If '''igctyp''' = 2, the initial gas concentrations are read from the input file PIDS_CHEM. In this case, also vertical profiles can be provided.
     222}}}
     223|----------------
     224{{{#!td style="vertical-align:top"
     225[=#isdtyp '''isdtyp''']
     226}}}
     227{{{#!td style="vertical-align:top"
     228I
     229}}}
     230{{{#!td style="vertical-align:top"
     2311
     232}}}
     233{{{#!td
     234Aerosol size distribution initialisation type.
     235
     236If '''isdtyp''' = 1, the whole modelling domain is initialised with a constant log-normal aerosol size distribution described by input parameters [#dpg dpg], [#sigmag sigmag] and [#n_lognorm n_lognorm].
     237
     238If '''isdtyp''' = 2, the initial aerosol size distribution is read from the input file PIDS_AERO. In this case, also a vertical profile of the aerosol size distribution can be provided.
     239}}}
     240|----------------
     241{{{#!td style="vertical-align:top"
     242[=#listspec '''listspec''']
     243}}}
     244{{{#!td style="vertical-align:top"
     245C*3(7)
     246}}}
     247{{{#!td style="vertical-align:top"
     248'SO4',
     2496 * '   '
     250}}}
     251{{{#!td
     252List of activated aerosol chemical components.
     253Available options: \\
     254
     255SO4 = Sulphates\\
     256OC = Organic carbon\\
     257BC = Black carbon\\
     258DU = Dust\\
     259SS = Sea salt\\
     260NH =  Ammonia\\
     261NO = Nitrates\\
     262
     263All chemical components included in the simulation must be activated here.
     264}}}
     265|----------------
     266{{{#!td style="vertical-align:top"
     267[=#mass_fracs_a '''mass_fracs_a''']
     268}}}
     269{{{#!td style="vertical-align:top"
     270R(7)
     271}}}
     272{{{#!td style="vertical-align:top"
     2731.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
     274}}}
     275{{{#!td
     276Mass fractions of soluble chemical components (subrange 2a).
     277
     278Given in the same order as the list of activated aerosol chemical components [#listspec listspec].
     279}}}
     280|----------------
     281{{{#!td style="vertical-align:top"
     282[=#mass_fracs_b '''mass_fracs_b''']
     283}}}
     284{{{#!td style="vertical-align:top"
     285R(7)
     286}}}
     287{{{#!td style="vertical-align:top"
     2880.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
     289}}}
     290{{{#!td
     291Mass fractions of insoluble chemical components (subrange 2b).
     292
     293Given in the same order as the list of activated aerosol chemical components [#listspec listspec].
     294
     295Setting '''mass_fracs_b''' > 0.0 and [#nf2a nf2a] < 1.0 allows for the description of externally mixed aerosol particle populations in the subrange 2. However, this notably increases the computational demand.
     296
     297If the sum of SUM('''mass_fracs_b''') = 0.0, all aerosol particles are assumed to be soluble and the subrange 2b is not initialised.
     298}}}
     299|----------------
     300{{{#!td style="vertical-align:top"
     301[=#n_lognorm '''n_lognorm''']
     302}}}
     303{{{#!td style="vertical-align:top"
     304R(7)
     305}}}
     306{{{#!td style="vertical-align:top"
     3071.04E5, 3.23E4, 5.4, 0.0, 0.0, 0.0, 0.0
     308}}}
     309{{{#!td
     310The total aerosol number concentration per aerosol mode (in cm^-3^). A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
     311
     312If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], [#sigmag sigmag] and '''n_lognorm'''.
     313}}}
     314|----------------
     315{{{#!td style="vertical-align:top"
     316[=#nbin '''nbin''']
     317}}}
     318{{{#!td style="vertical-align:top"
     319I(2)
     320}}}
     321{{{#!td style="vertical-align:top"
     3223, 7
     323}}}
     324{{{#!td
     325Number of aerosol size bins per subrange.
     326}}}
     327|----------------
     328{{{#!td style="vertical-align:top"
     329[=#nf2a '''nf2a''']
     330}}}
     331{{{#!td style="vertical-align:top"
     332R
     333}}}
     334{{{#!td style="vertical-align:top"
     3351.0
     336}}}
     337{{{#!td
     338The number fraction allocated to subrange 2a. The number fraction allocated to the subrange 2b will be then 1.0-nf2a.
     339}}}
     340|----------------
     341{{{#!td style="vertical-align:top"
     342[=#NH3_init '''NH3_init''']
     343}}}
     344{{{#!td style="vertical-align:top"
     345R
     346}}}
     347{{{#!td style="vertical-align:top"
     3481.0
     349}}}
     350{{{#!td
     351Initial number concentration (in m^-3^) of gaseous ammonia NH3 (g).
     352}}}
     353|----------------
     354{{{#!td style="vertical-align:top"
     355[=#nj3 '''nj3''']
     356}}}
     357{{{#!td style="vertical-align:top"
     358I
     359}}}
     360{{{#!td style="vertical-align:top"
     3611
     362}}}
     363{{{#!td
     364Parametrisation for calculating the apparent formation rate of 3 nm sized aerosol particles (J,,3,,, in # s^-1^). \\
     365Available options:\\
     3661 = condensational sink (Kerminen and Kulmala, 2002)\\
     3672 = coagulational sink (Lehtinen et al. 2007)\\
     3683 = coagS+self-coagulation (Anttila et al. 2010)
     369}}}
     370|----------------
     371{{{#!td style="vertical-align:top"
     372[=#nlcnd '''nlcnd''']
     373}}}
     374{{{#!td style="vertical-align:top"
     375L
     376}}}
     377{{{#!td style="vertical-align:top"
     378.F.
     379}}}
     380{{{#!td
     381Parameter to switch on the condensation of gaseous compounds on aerosol particles.
     382}}}
     383|----------------
     384{{{#!td style="vertical-align:top"
     385[=#nlcndgas '''nlcndgas''']
     386}}}
     387{{{#!td style="vertical-align:top"
     388L
     389}}}
     390{{{#!td style="vertical-align:top"
     391.F.
     392}}}
     393{{{#!td
     394Parameter to switch on the condensation of gaseous compounds, excluding water vapour, on aerosol particles.
     395
     396Requires [#nlcnd nlcnd] = .T..
     397}}}
     398|----------------
     399{{{#!td style="vertical-align:top"
     400[=#nlcndgash2oae '''nlcndgash2oae''']
     401}}}
     402{{{#!td style="vertical-align:top"
     403L
     404}}}
     405{{{#!td style="vertical-align:top"
     406.F.
     407}}}
     408{{{#!td
     409Parameter to switch on the condensation of water vapour on aerosol particles.
     410
     411Requires [#nlcnd nlcnd] = .T..
     412}}}
     413|----------------
     414{{{#!td style="vertical-align:top"
     415[=#nlcoag '''nlcoag''']
     416}}}
     417{{{#!td style="vertical-align:top"
     418L
     419}}}
     420{{{#!td style="vertical-align:top"
     421.F.
     422}}}
     423{{{#!td
     424Parameter to switch on the coagulation of aerosol particles.
     425}}}
     426|----------------
     427{{{#!td style="vertical-align:top"
     428[=#nldepo '''nldepo''']
     429}}}
     430{{{#!td style="vertical-align:top"
     431L
     432}}}
     433{{{#!td style="vertical-align:top"
     434.F.
     435}}}
     436{{{#!td
     437Parameter to switch of the dry deposition and sedimentation of aerosol particles.
     438}}}
     439|----------------
     440{{{#!td style="vertical-align:top"
     441[=#nldepo_topo '''nldepo_topo''']
     442}}}
     443{{{#!td style="vertical-align:top"
     444L
     445}}}
     446{{{#!td style="vertical-align:top"
     447.F.
     448}}}
     449{{{#!td
     450Parameter to switch aerosol dry deposition on topography elements (ground, wall, roofs). The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_topo_type depo_topo_type].
     451
     452Requires [#nldepo nldepo] = .T..
     453}}}
     454|----------------
     455{{{#!td style="vertical-align:top"
     456[=#nldepo_vege '''nldepo_vege''']
     457}}}
     458{{{#!td style="vertical-align:top"
     459L
     460}}}
     461{{{#!td style="vertical-align:top"
     462.F.
     463}}}
     464{{{#!td
     465Parameter to switch on aerosol dry deposition on resolved scale vegetation. The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_vege_type depo_vege_type].
     466
     467Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees.
     468
     469Requires [#nldepo nldepo] = .T..
     470}}}
     471|----------------
     472{{{#!td style="vertical-align:top"
     473[=#nldistupdate '''nldistupdate''']
     474}}}
     475{{{#!td style="vertical-align:top"
     476L
     477}}}
     478{{{#!td style="vertical-align:top"
     479.T.
     480}}}
     481{{{#!td
     482Parameter to switch on the aerosol number size distribution update switch.
     483
     484If '''nldistupdate''' = .F., aerosol particles that become too small or large in their size bin are not allowed to move to another size bin.
     485}}}
     486|----------------
     487{{{#!td style="vertical-align:top"
     488[=#nsnucl '''nsnucl''']
     489}}}
     490{{{#!td style="vertical-align:top"
     491I
     492}}}
     493{{{#!td style="vertical-align:top"
     4940
     495}}}
     496{{{#!td
     497The nucleation scheme applied.
     498If '''nsnucl''' = 0, nucleation is switched off.\\
     499
     500Available options:\\
     5011 = binary nucleation (Vehkamäki et al., 2002)\\
     5022 = activation type nucleation (Riipinen et al., 2007)\\
     5033 = kinetic nucleation (Sihto et al., 2006)\\
     5044 = ternary nucleation (Napari et al., 2002a,b)\\
     5055 = organic nucleation (Paasonen et al., 2010)\\
     5066 =  sum of binary and organic nucleation (Paasonen et al., 2010)\\
     5077 =  heteromolecular nucleation (Paasonen et al., 2010)\\
     5088 =  homomolecular nucleation of H2SO4 and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010)\\
     5099 =  homomolecular nucleation of H2SO4 and organics, and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010).
     510
     511Requires [#nlcnd nlcnd] = .T..
     512
     513Note that the nucleation schemes were not evaluated in Kurppa et al. (2018).
     514}}}
     515|----------------
     516{{{#!td style="vertical-align:top"
     517[=#OCNV_init '''OCNV_init''']
     518}}}
     519{{{#!td style="vertical-align:top"
     520R
     521}}}
     522{{{#!td style="vertical-align:top"
     5231.0
     524}}}
     525{{{#!td
     526Initial number concentration (in m^-3^) of gaseous non-volatile organic compounds.
     527}}}
     528|----------------
     529{{{#!td style="vertical-align:top"
     530[=#OCSV_init '''OCSV_init''']
     531}}}
     532{{{#!td style="vertical-align:top"
     533R
     534}}}
     535{{{#!td style="vertical-align:top"
     5361.0
     537}}}
     538{{{#!td
     539Initial number concentration (in m^-3^) of gaseous semi-volatile organic compounds.
     540}}}
     541|----------------
     542{{{#!td style="vertical-align:top"
     543[=#read_restart_data_salsa '''read_restart_data_salsa''']
     544}}}
     545{{{#!td style="vertical-align:top"
     546L
     547}}}
     548{{{#!td style="vertical-align:top"
     549.F.
     550}}}
     551{{{#!td
     552Read the restart data of the salsa module from the previous run.
     553}}}
     554|----------------
     555{{{#!td style="vertical-align:top"
     556[=#reglim '''reglim''']
     557}}}
     558{{{#!td style="vertical-align:top"
     559R(3)
     560}}}
     561{{{#!td style="vertical-align:top"
     5623.0E-9, 5.0E-8, 1.0E-5
     563}}}
     564{{{#!td
     565Aerosol diameter limits for the subranges (in m) in the following order: lower limit of 1, upper limit of 1 and lower limit of 2, upper limit of 2.
     566}}}
     567|----------------
     568{{{#!td style="vertical-align:top"
     569[=#salsa_source_mode '''salsa_source_mode''']
     570}}}
     571{{{#!td style="vertical-align:top"
     572C(20)
     573}}}
     574{{{#!td style="vertical-align:top"
     575'no_source'
     576}}}
     577{{{#!td
     578Source mode for aerosol and gaseous emissions.
     579
     580Setting '''salsa_source_mode''' = 'read_from_file' reads the source information from the NetCDF aero -information file.
     581
     582Note that all chemical components included in the simulation must be activated in [#listspec listspec].
     583}}}
     584|----------------
     585{{{#!td style="vertical-align:top"
     586[=#sigmag '''sigmag''']
     587}}}
     588{{{#!td style="vertical-align:top"
     589R(7)
     590}}}
     591{{{#!td style="vertical-align:top"
     5921.8, 2.16, 2.21, 2.0, 2.0, 2.0, 2.0
     593}}}
     594{{{#!td
     595The standard deviation of the log-normal aerosol number size distribution per aerosol mode. A total of 7 different aerosol modes can be applied.  Example modes: nucleation, Aitken, accumulation and coarse mode.
     596
     597If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], '''sigmag''' and [#n_lognorm n_lognorm].
     598}}}
     599|----------------
     600{{{#!td style="vertical-align:top"
     601[=#skip_time_do_salsa '''skip_time_do_salsa''']
     602}}}
     603{{{#!td style="vertical-align:top"
     604R
     605}}}
     606{{{#!td style="vertical-align:top"
     6070.0
     608}}}
     609{{{#!td
     610Time after which SALSA is switched on. This parameter can be used to allow the LES model to develop turbulence before aerosol particles and their processes are switched on.
     611}}}
     612|----------------
     613{{{#!td style="vertical-align:top"
     614[=#van_der_waals_coagc '''van_der_waals_coagc''']
     615}}}
     616{{{#!td style="vertical-align:top"
     617L
     618}}}
     619{{{#!td style="vertical-align:top"
     620.F.
     621}}}
     622{{{#!td
     623Parameter to switch on the van der Waals forces when calculating the collision kernel in the coagulation subroutine. Parametrisation follows Karl et al. (2016).
     624}}}
     625|----------------
     626{{{#!td style="vertical-align:top"
     627[=#write_binary_salsa '''write_binary_salsa''']
     628}}}
     629{{{#!td style="vertical-align:top"
     630L
     631}}}
     632{{{#!td style="vertical-align:top"
     633.F.
     634}}}
     635{{{#!td
     636Write the binary restart data for the salsa module.
     637}}}
     638
     639\\\\
     640
     641The following quantities can be additionally output when the aerosol module SALSA is used:
     642
     643
     644\\\\
     645
     646
     647||='''Quantity name'''  =||='''Meaning'''  =||='''Unit'''  =||='''Remarks'''  =||
     648|----------------
     649{{{#!td style="vertical-align:top"
     650['''g_<gaseous_compound>''']
     651}}}
     652{{{#!td style="vertical-align:top"
     653Concentration of <gaseous_compound>
     654}}}
     655{{{#!td style="vertical-align:top"
     656# m^-3^
     657}}}
     658{{{#!td
     659Options: 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV','g_OCSV'.
     660
     661Time-averaged output not available.
     662}}}
     663|----------------
     664{{{#!td style="vertical-align:top"
     665[=#LDSA '''LDSA''']
     666}}}
     667{{{#!td style="vertical-align:top"
     668Total lung-deposited surface area
     669}}}
     670{{{#!td style="vertical-align:top"
     671µm^2^ cm^-3^
     672
     673}}}
     674{{{#!td
     675
     676}}}
     677|----------------
     678{{{#!td style="vertical-align:top"
     679['''N_bin<bin number>''']
     680}}}
     681{{{#!td style="vertical-align:top"
     682Aerosol number concentration in the aerosol size bin <bin number>
     683}}}
     684{{{#!td style="vertical-align:top"
     685# m^-3^
     686
     687}}}
     688{{{#!td
     689Time-averaged output not available.
     690}}}
     691|----------------
     692{{{#!td style="vertical-align:top"
     693[=#Ntot '''Ntot''']
     694}}}
     695{{{#!td style="vertical-align:top"
     696Total aerosol number concentration
     697}}}
     698{{{#!td style="vertical-align:top"
     699# m^-3^
     700
     701}}}
     702{{{#!td
     703
     704}}}
     705|----------------
     706{{{#!td style="vertical-align:top"
     707[=#PM2.5 '''PM2.5''']
     708}}}
     709{{{#!td style="vertical-align:top"
     710Total mass concentration of particulate matter smaller than 2.5 µm in diameter
     711
     712}}}
     713{{{#!td style="vertical-align:top"
     714kg m^-3^
     715
     716}}}
     717{{{#!td
     718
     719}}}
     720|----------------
     721{{{#!td style="vertical-align:top"
     722[=#PM10 '''PM10''']
     723}}}
     724{{{#!td style="vertical-align:top"
     725Total mass concentration of particulate matter smaller than 10 µm in diameter
     726
     727}}}
     728{{{#!td style="vertical-align:top"
     729kg m^-3^
     730
     731}}}
     732{{{#!td
     733
     734}}}
     735|----------------
     736{{{#!td style="vertical-align:top"
     737['''s_<chemical_compound>''']
     738}}}
     739{{{#!td style="vertical-align:top"
     740Mass concentration of <chemical_compound> in the aerosol phase
     741
     742}}}
     743{{{#!td style="vertical-align:top"
     744kg m^-3^
     745
     746}}}
     747{{{#!td
     748Options: 's_BC', 's_DU', 's_NH', 's_NO', 's_OC', 's_SO4', 's_SS'.
     749
     750Time-averaged output available only for black carbon (BC).
     751}}}