Version 40 (modified by dom_dwd_user, 6 years ago) (diff) |
---|
Biometeorology parameters
TracNav
Core Parameters
Module Parameters
- Agent system
- Aerosol (Salsa)
- Biometeorology
- Bulk cloud physics
- Chemistry
- FASTv8
- Indoor climate
- Land surface
- Nesting
- Nesting (offline)
- Ocean
- Particles
- Plant canopy
- Radiation
- Spectra
- Surface output
- Synthetic turbulence
- Turbulent inflow
- Urban surface
- User-defined
- Virtual flights
- Virtual measurements
- Wind turbine
- Alphabetical list (outdated!)
With r3XXX a Biometeorology Module (Biometeorology_Mod) was implemented in PALM. It contains the two Models Human Thermal Comfort Model (HTCM) and UV Exposure Model (UVEM). For both models exist only one Namelist. However, for a better overview the input parameters of the two Models are described seperatly.
The module is enabled as soon as the NAMELIST biometeorology_parameters exists.
Human Thermal Comfort Model
Overview
The human thermal comfort model can provide spatially distributed values of the three thermal indices
- Perceived Temperature (PERCT, see Staiger et al. (2012))
- Universal Thermal Climate Index (UTCI, see Jendritzky et al. (2012))
- Physiologically Equivalent Temperature (PET, see Höppe (1993))
that describe thermal perception / thermal stress of a sample human being under the local meteorological conditions.
The calculation of thermal indices can be switched on by setting the flag thermal_comfort in the namelist "biometeorology_parameters" (the default is .FALSE.! If you want palm to calculate thermal comfort indices, add
&biometeorology_parameters
thermal_comfort = .TRUE.,
/
in your <projectname>p3d file!).
The calculation of the individual indices is automatically enabled or disabled by the output settings. This of course requires the Biomet_Mod to be enabled (see above).
Calculating thermal indices does require input data from both, the humidity and the ''radiation module''.
Parameter list
NAMELIST group name: biometeorology_parameters
Parameter Name | FORTRAN Type | Default Value | Explanation |
---|---|---|---|
thermal_comfort | L | .F. | Switch the calculation of thermal comfort indices off (.F.) or on (.T.). |
Output
Output by the Biomet_Mod is always two dimensional and is provided for the cell level closest to 1.1 m above ground level. All parameters are available for instantaneous and time-averaged input. A list of output quantities can be found below. Output is written to a 2d xy file, where only the layer z=0 will be used. To enable the output of the given quantity, please add
Quantity name | Meaning | Unit | input type (instantaneous or averaged) | output file (2d or 3d) |
---|---|---|---|---|
'bio_perct*_xy' | Perceived Temperature | °C | instantanious input | 2d (xy) file |
'bio_pet*_xy' | Physiologically Equivalent Temperature | °C | instantanious input | 2d (xy) file |
'bio_utci*_xy' | Universal Thermal Climate Index | °C | instantanious input | 2d (xy) file |
'bio_perct*_xy_av' | Perceived Temperature | °C | averaged input | 2d (xy) file |
'bio_pet*_xy_av' | Physiologically Equivalent Temperature | °C | averaged input | 2d (xy) file |
'bio_utci*_xy_av' | Universal Thermal Climate Index | °C | averaged input | 2d (xy) file |
to the
data_output
section.
References
Höppe, P. R. (1999): The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71–75, https://doi.org/10.1007/s004840050118.
Jendritzky, G., de Dear, R. and Havenith, G. (2012): UTCI-Why another thermal index? International Journal of Biometeorology, 56, 421–428, https://doi.org/10.1007/s00484-011-0513-7.
Bröde, P., Fiala, D., Blazejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B. and Havenith, G. (2012): Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56(3), 481-494, https://doi.org/10.1007/s00484-011-0454-1.
Staiger, H., Laschewski, G. and Graetz, A. (2012): The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics. International Journal of Biometeorology 56(1), 165–176, https://doi.org/10.1007/s00484-011-0409-6.
UV Exposure Model
Overview
This page is part of the UV Exposure Model (UVEM) documentation.
It contains a documentation about the input parameters of the exposure model.
For an overview of all UVEM-related pages, see the UV Exposure Model main page?.
The uv exposure model calculates 2-dimensional maps of the vitamin D3-weighted UV exposure of a human for unobstructed environments (Seckmeyer et al., 2013) and obstructed environments (e.g. within a city) (Schrempf et al., 2017a, Schrempf et al., 2017b).
To activate the model the parameter uv_exposure has to be set in the NAMELIST biometeorology_parameters.
Parameter list
NAMELIST group name: biometeorology_parameters
Parameter Name | FORTRAN Type | Default Value | Explanation |
---|---|---|---|
clothing | I | 1 | Choose clothing outfit for human model.
Value 0: no clothing (also no hair). |
consider_obstructions | L | .T. | Considers obstruction (e.g. from buildings and trees).
.T.: Switch consider obstructions ON Obstructions file must be calculated manually before the simulation and provided as NetCDF in the INPUT folder. |
orientation_angle | F | 180.0 | Orientation angle of front/face of the human model. Only active if also parameter turn_to_sun is set to .False. |
sun_in_south | L | .F. | Azimuthal position of the sun.
If sun_in_south = .True., the azimuthal position of the sun is always in south direction (180°).
The following parameters are used as input for the solar position calculation: time_utc_init, day_of_year_init, latitude & longitude. |
turn_to_sun | L | .T. | Orientation of the front/face of the human model.
IF turn_to_sun = .True., the front/face of the human model is always orientated in direction of the sun. |
uv_exposure | L | .F. | Activation of the UV Exposure Model. This option has to be set to .T. in order to run the model. |
References
Seckmeyer, G., Schrempf, M.Wieczorek, A., Riechelmann, S., Graw, K., Seckmeyer, S., and Zankl, M. (2013): A Novel Method to Calculate Solar UV Exposure Relevant to Vitamin D Production in Humans, Photochem. Photobiol., 89(4), 974-983, https://doi.org/10.1111/php.12074.
Schrempf, M., Thuns, N., Lange, K., and Seckmeyer, G. (2017a): Einfluss der Verschattung auf die Vitamin-D-gewichtete UV-Exposition eines Menschen, Aktuelle Derm, https://doi.org/10.1055/s-0043-105258.
Schrempf, M., Thuns, N., Lange, K., and Seckmeyer, G. (2017b): Impact of Orientation on the Vitamin D Weighted Exposure of a Human in an Urban Environment, Int. J. Environ. Res. Public Health, 14(8), 920, https://doi.org/10.3390/ijerph14080920.