| 125 | |
| 126 | Thus additional prognostic equations for ''N'',,i,, and ''q'',,i,, are solved: |
| 127 | {{{ |
| 128 | #!Latex |
| 129 | \begin{align*} |
| 130 | \frac{\partial N_\mathrm{i}}{\partial t} = - u_j \frac{\partial N_\mathrm{i}}{\partial x_j} - \frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}N_\mathrm{i}^{\prime\prime}}\right) + \Psi_{N_\mathrm{i}},\\ |
| 131 | \frac{\partial q_\mathrm{i}}{\partial t} = - u_j |
| 132 | \frac{\partial q_\mathrm{i}}{\partial x_j} - \frac{\partial}{\partial |
| 133 | x_j}\left(\overline{u_j^{\prime\prime}q_\mathrm{i}^{\prime\prime}}\right) |
| 134 | + \Psi_{q_\mathrm{i}}, |
| 135 | \end{align*} |
| 136 | }}} |
| 137 | with the sink/source terms ''Ψ'',,Ni,, and ''Ψ'',,qi,,, and the SGS fluxes |
| 138 | {{{ |
| 139 | #!Latex |
| 140 | \begin{align*} |
| 141 | & \overline{u_j^{\prime\prime}N_\mathrm{i}^{\prime\prime}} = -K_\mathrm{h} \:\frac{\partial N_\mathrm{i}} {\partial x_{i}}\,\\ |
| 142 | & \overline{u_j^{\prime\prime}q_\mathrm{i}^{\prime\prime}} = |
| 143 | -K_\mathrm{h} \:\frac{\partial q_\mathrm{i}} {\partial |
| 144 | x_{i}}\, |
| 145 | \end{align*} |
| 146 | }}} |