Changes between Initial Version and Version 1 of doc/app/bcmequ


Ignore:
Timestamp:
Feb 27, 2019 3:05:48 PM (6 years ago)
Author:
westbrink
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/bcmequ

    v1 v1  
     1== Overview ==
     2[[TracNav(doc/app/partoc|nocollapse)]]
     3[[TracNav(doc/tec/bcmtoc|nocollapse)]]
     4
     5[[NoteBox(note,This page is part of the ** Bulk Cloud Model** (BCM) documentation. \\ It contains a listing of physical basics and the equations used.. \\ For an overview of all BCM-related pages\, see the **[wiki:doc/tec/microphysics Bulk Cloud Model main page]**.)]]
     6
     7
     8
     9Therefore, PALM solves the prognostic equations for the total water mixing ratio
     10{{{
     11#!Latex
     12\begin{align*}
     13  & q = q_\mathrm{v} + q_\mathrm{l},
     14\end{align*}
     15}}}
     16instead of ''q'',,v,,, and for a linear approximation of the liquid water potential temperature ([#emanuel1994 e.g., Emanuel, 1994])
     17{{{
     18#!Latex
     19\begin{align*}
     20  \theta_\mathrm{l} = \theta - \frac{L_\mathrm{V}}{c_p \Pi}
     21  q_\mathrm{l}\,,
     22\end{align*}
     23}}}
     24instead of ''θ'' as described in Sect. [wiki:doc/tec/gov governing equations]. Since ''q'' and ''θ'',,l,, are conserved quantities for wet adiabatic processes, condensation/evaporation is not considered for these variables.
     25
     26PALM offers three different schemes ([#kessler1969 Kessler (1969)], [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)], [#morrison2007 Morrison et al. (2007)]) for the treatment of liquid phase microphysics. The [#kessler1969 Kessler (1969)] scheme provides a computational inexpensive way for the bulk microphysics. However, it only converts supersaturation into liquid water and considering autoconversion after a parameterization of [#kessler1969 Kessler (1969)].
     27
     28A more detailed parameterization is given by following the two-moment scheme of [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)], which is based on the separation of the droplet spectrum into droplets with radii < 40 μm (cloud droplets) and droplets with radii ≥ 40 μm (rain droplets). Here, the model predicts the first two moments of these partial droplet spectra, namely cloud and rain
     29droplet number concentration (''N'',,c,, and ''N'',,r,,, respectively) as well as cloud and rain water mixing ratio
     30(''q'',,c,, and ''q'',,r,,, respectively). Consequently, ''q'',,l,, is the sum of both ''q'',,c,, and ''q'',,r,,. The moments' corresponding microphysical tendencies are derived by assuming the partial droplet spectra to follow a gamma distribution that can be described by the predicted quantities and empirical relationships for the distribution's slope and shape parameters. For a detailed derivation of these terms, see [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)].
     31
     32We employ the computational efficient implementation of this scheme as used in the UCLA-LES ([#savic2008 Savic-Jovcic and Stevens, 2008]) and DALES ([#heus2010 Heus et al., 2010]) models. We thus solve only two additional prognostic equations for ''N'',,r,, and ''q'',,r,,:
     33{{{
     34#!Latex
     35\begin{align*}
     36 \frac{\partial N_\mathrm{r}}{\partial t} = - u_j \frac{\partial N_\mathrm{r}}{\partial x_j} - \frac{\partial}{\partial x_j}\left(\overline{u_j^{\prime\prime}N_\mathrm{r}^{\prime\prime}}\right) +   \Psi_{N_\mathrm{r}},\\
     37 \frac{\partial q_\mathrm{r}}{\partial t} = - u_j
     38 \frac{\partial q_\mathrm{r}}{\partial x_j} - \frac{\partial}{\partial
     39   x_j}\left(\overline{u_j^{\prime\prime}q_\mathrm{r}^{\prime\prime}}\right)
     40 + \Psi_{q_\mathrm{r}},
     41\end{align*}
     42}}}
     43with the sink/source terms ''Ψ'',,Nr,, and ''Ψ'',,qr,,, and the SGS fluxes
     44{{{
     45#!Latex
     46\begin{align*}
     47  &  \overline{u_j^{\prime\prime}N_\mathrm{r}^{\prime\prime}} = -K_\mathrm{h} \:\frac{\partial q_\mathrm{r}} {\partial x_{i}}\,\\
     48  & \overline{u_j^{\prime\prime}q_\mathrm{r}^{\prime\prime}} =
     49  -K_\mathrm{h} \:\frac{\partial N_\mathrm{r}} {\partial
     50    x_{i}}\,
     51\end{align*}
     52}}}
     53with ''N'',,c,, and ''q'',,c,, being a fixed parameter and a diagnostic quantity, respectively.
     54
     55The [#morrison2007 Morrison et al. (2007)] microphysics scheme can be understood as an extension of the scheme of [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)], where ''N'',,c,, and ''q'',,c,, are prognostic quantities as well. Moreover, using the [#morrison2007 Morrison et al. (2007)] scheme includes an explicit calculation of diffusional growth and an activation parameterization.
     56
     57In the next subsections we will describe the diagnostic/prognostic determination (in dependence of the chosen scheme) of ''q'',,c,,. From Sect. [wiki:doc/tec/microphysics#Autoconversion autoconversion] on, the microphysical processes considered in the sink/source terms of ''θ'',,l,,, ''q'', ''N'',,r,, and ''q'',,r,,, as well as ''N'',,c,, and ''q'',,c,, for the [#morrison2007 Morrison et al. (2007)] scheme.
     58{{{
     59#!Latex
     60\begin{align*}
     61  &  \Psi_{\theta_\mathrm{l}} = - \frac{L_\mathrm{v}}{c_p \Pi} \varphi_q,\\
     62  &  \Psi_{q}  = \left.\frac{\partial q}{\partial t} \right|_\text{sed, c} + \left.\frac{\partial q}{\partial t} \right|_\text{sed, r},\\
     63  &  \Psi_{N_\mathrm{r}} = \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_{\text{auto}}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{slf/brk}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_{\text{evap}}+ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{sed, r},\\
     64  & \Psi_{q_\mathrm{r}} = \left.\frac{\partial
     65      q_\mathrm{r}}{\partial t} \right|_{\text{auto}} +
     66  \left.\frac{\partial q_\mathrm{r}}{\partial t}
     67  \right|_{\text{accr}}+ \left.\frac{\partial q_\mathrm{r}}{\partial
     68      t} \right|_{\text{evap}}+ \left.\frac{\partial
     69      q_\mathrm{r}}{\partial t} \right|_\text{sed, r},\\
     70  &  \Psi_{N_\mathrm{c}} = \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_{\text{acti}}+ \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_\text{auto}+ \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_{\text{evap}}+ \left.\frac{\partial N_\mathrm{c}}{\partial t} \right|_\text{sed, c},\\
     71  & \Psi_{q_\mathrm{c}} = \left.\frac{\partial
     72      q_\mathrm{c}}{\partial t} \right|_{\text{auto}} +
     73  \left.\frac{\partial q_\mathrm{c}}{\partial t}
     74  \right|_{\text{accr}}+ \left.\frac{\partial q_\mathrm{c}}{\partial
     75      t} \right|_{\text{cond,evap}}+ \left.\frac{\partial
     76      q_\mathrm{c}}{\partial t} \right|_\text{sed, c},
     77\end{align*}
     78}}}
     79are used in the formulations of [#seifert2006 Seifert and Beheng (2006)] unless explicitly specified. Section [wiki:doc/tec/microphysics#Turbulenceclosure turbulence closure] gives an overview of the necessary changes for the turbulence closure [wiki:doc/tec/sgs#Turbulenceclosure (cf. Sect. turbulence closure)] using ''q'' and ''θ'',,l,, instead of ''q'',,v,, and ''θ'', respectively.
     80
     81[[Image(Table4.png,600px,border=1)]]
     82
     83== Activation of cloud droplets ==
     84
     85The use of the  [#morrison2007 Morrison et al. (2007)] scheme enables a prognostic equation for the cloud droplet number concentration. Here, it is assumed that cloud droplets are activated in dependence of the current supersaturation. This basic method is called Twomey activation scheme with the general form of
     86{{{
     87#!Latex
     88\begin{align*}
     89  & N_\mathrm{CCN}=N_\mathrm{0} \times S^\mathrm{k},
     90\end{align*}
     91}}}
     92where ''N'',,CCN,, is the number of activated aerosols, ''N'',,0,, is the number concentration of dry aerosol, S is the supersaturation and k is power index between 0 and 1. In PALM the supersaturation is calculated explicitly by their thermodynamic fields of potential temperature and water vapor mixing ratio. However, curvature and solution effects can be considered with an analytical extension of the Twomey type activation scheme of [#khvorostyanov2006 Khvorostyanov and Curry (2006)]. By doing so, the number of activated aerosol is calculated by
     93{{{
     94#!Latex
     95\begin{align*}
     96  & N_\mathrm{CCN}=\frac{N_\mathrm{0}}{2} [1-\text{erf}(u)];\hspace{1.5cm} u = \frac{\ln(S_\mathrm{0}/S)}{\sqrt{2} \ln \sigma_\mathrm{s}}
     97\end{align*}
     98}}}
     99where erf is the Gaussian error function, and
     100{{{
     101#!Latex
     102\begin{align*}
     103   S_\mathrm{0} & = r_\mathrm{d0}^{-(1+\beta)} \left(\frac{4A^3}{27b}\right)^{1/2},\\
     104   \sigma_\mathrm{s} & = \sigma_\mathrm{d}^{1+\beta}.
     105\end{align*}
     106}}}
     107Here A is the Kelivn parameter and b and ''β'' depend on the chemical composition and physical properties of the dry aerosol.
     108Since aerosol is not predicted in this scheme, the number of aerosols previously activated is assumed to be equal to the number of droplets ''N'',,c,,.
     109Therefore, the actual activation rate is given by 
     110{{{
     111#!Latex
     112\begin{align*}
     113    \left. \frac{\partial N_\mathrm{c}}{\partial t} \right|_{\text{acti}} = \text{max}\left(\frac{N_\mathrm{CCN}-N_\mathrm{c}}{\Delta t},0\right).
     114\end{align*}
     115}}}
     116== Diffusional growth of cloud water ==
     117
     118By the usage of [#seifert2001 Seifert and Beheng (2001],[#seifert2006  2006)] scheme the diagnostic estimation of ''q'',,c,, is based on the assumption that water supersaturations are immediately removed by the diffusional growth of cloud droplets only. This can be justified since the bulk surface area of cloud droplets exceeds that of rain drops considerably ([#stevens2008 Stevens and Seifert, 2008]). Following this saturation adjustment approach, ''q'',,c,, is obtained by
     119{{{
     120#!Latex
     121\begin{align*}
     122  & q_\mathrm{c}=\max{\left(0, q - q_\mathrm{r} - q_\mathrm{s}
     123    \right)},
     124\end{align*}
     125}}}
     126where ''q'',,s,, is the saturation mixing ratio. Because ''q'',,s,, is a function of ''T'' (not predicted), ''q'',,s,, is computed from the liquid water temperature ''T'',,l,, = ''Π θ,,l,, in a first step:
     127{{{
     128#!Latex
     129\begin{align*}
     130 q_\mathrm{s}(T_\mathrm{l}) = \frac{R_\mathrm{d}}{R_\mathrm{v}}
     131 \frac{p_\text{v, s}(T_\mathrm{l})}{p - p_\text{v, s}(T_\mathrm{l})},
     132\end{align*}
     133}}}
     134using an empirical relationship for the saturation water vapor pressure ''p'',,v,s,, ([#bougeault1981 Bougeault, 1981]):
     135{{{
     136#!Latex
     137\begin{align*}
     138  & p_\text{v, s}(T_\mathrm{l}) = 610.78 \text{Pa} \cdot
     139  \exp{\left(17.269\,\frac{T_\mathrm{l}-273.16\,\text{K}}{T_\mathrm{l}-35.86\,\text{K}}
     140    \right)}.
     141\end{align*}
     142}}}
     143''q'',,s,,(''T'') is subsequently calculated from a 1st-order Taylor series expansion of ''q'',,s,, at ''T'',,l,, ([#sommeria1977 Sommeria and Deardorff, 1977]):
     144{{{
     145#!Latex
     146\begin{align*}
     147  & q_\mathrm{s}(T)=q_\mathrm{s}(T_\mathrm{l})\frac{1+\beta\,q}{1+
     148    \beta\,q_\mathrm{s}(T_\mathrm{l})},
     149\end{align*}
     150}}}
     151with
     152{{{
     153#!Latex
     154\begin{align*}
     155  & \beta = \frac{L_\mathrm{v}^2}{R_\mathrm{v} c_p
     156    T_\mathrm{l}^2}.
     157\end{align*}
     158}}}
     159
     160In contrast to that an explicit approach for the diffusional growth is applied in case of [#morrison2007 Morrison et al. (2007)]. The condensation rate is calculated following [#khairoutdinov2000 Khairoutdinov and Kogan (2000)] and given by
     161{{{
     162#!Latex
     163\begin{align*}
     164  & \left.\frac{\partial q_\mathrm{c}}{\partial t}
     165  \right|_{\text{cond,evap}}= \frac{4
     166  \pi\,G(T,p)}{\rho_\mathrm{a}}S\, R_\mathrm{c},
     167\end{align*}
     168}}}
     169where S is the supersaturation, ''R'',,c,, the integral radius and G(T,p) a function of temperature and pressure considering heat conductivity and diffusion.
     170Using this explicit approach the used timestep must fulfill a new criterion, since it is assumed that the supersaturation is constant during one timestep. The typical diffusion timescale is given by [#arnason1971 Arnason and Brown (1971)] with
     171{{{
     172#!Latex
     173\begin{align*}
     174  & \Delta t \leq 2 \tau
     175\end{align*}
     176}}}
     177with
     178{{{
     179#!Latex
     180\begin{align*}
     181  & \tau = (4\, \pi\,D_\mathrm{v}\,\langle r_\mathrm{c}\rangle)^{-1}.
     182\end{align*}
     183}}}
     184However, in PALM this criterion is not explicitly checked. Too ensure that unrealistic condensation or evaporation rates are avoided this scheme is limited to the value of the saturation-adjustment scheme.
     185== Autoconversion ==
     186
     187In the following Sects. [wiki:doc/tec/microphysics#Autoconversion Autoconversion] - [wiki:doc/tec/microphysics#Self-collectionandbreakup Self-collection and breakup] we describe collision and coalescence processes by applying the stochastic collection equation ([#pruppacher1997 e.g., Pruppacher and Klett, 1997, Chap. 15.3]) in the framework of the described two-moment scheme. As two species (cloud and rain droplets, hereafter also denoted as c and r, respectively) are considered only, there are three possible interactions affecting the rain quantities: autoconversion, accretion, and selfcollection. Autoconversion summarizes all merging of cloud droplets resulting in rain drops
     188(c + c → r). Accretion describes the growth of rain drops by the collection of cloud droplets (r + c → r). Selfcollection denotes the merging of rain drops (r + r → r).
     189
     190The local temporal change of ''q'',,r,, due to autoconversion is
     191{{{
     192#!Latex
     193\begin{align*}
     194  & \left.\frac{\partial q_\mathrm{r}}{\partial t}
     195  \right|_{\text{auto}}=\frac{K_{\text{auto}}}{20\,m_{\text{sep}}}\frac{(\mu_\mathrm{c} +2)
     196    (\mu_\mathrm{c} +4)}{(\mu_\mathrm{c} + 1)^2} q_\mathrm{c}^2
     197  m_\mathrm{c}^2 \cdot \left[1+
     198    \frac{\Phi_{\text{auto}}(\tau_\mathrm{c})}{(1-\tau_\mathrm{c})^2}\right]
     199  \rho_0.
     200\end{align*}
     201}}}
     202Assuming that all new rain drops have a radius of 40 μm corresponding to the separation mass ''m'',,sep,, ''= 2.6 x 10^-10^'' kg, the local temporal change of ''N'',,r,, is
     203{{{
     204#!Latex
     205\begin{align*}
     206  & \left.\frac{\partial N_\mathrm{r}}{\partial t}
     207  \right|_{\text{auto}}= \rho \left.\frac{\partial
     208      q_\mathrm{r}}{\partial t} \right|_{\text{auto}}
     209  \frac{1}{m_{\text{sep}}}.
     210\end{align*}
     211}}}
     212Here, ''K'',,auto,, ''= 9.44 x 10^9^'' m^3^ kg^-2^ s^-1^ is the autoconversion kernel, ''μ'',,c,,'' = 1'' is the shape parameter of the cloud droplet gamma distribution and
     213''m'',,c,, ''= ρ q'',,c,, ''/ N'',,c,, is the mean mass of cloud droplets. ''τ'',,c,, ''= 1 - q'',,c,,'' / (q'',,c,,'' + q'',,r,,) is a dimensionless timescale steering the autoconversion similarity function
     214{{{
     215#!Latex
     216\begin{align*}
     217  &
     218  \Phi_{\text{auto}}=600\,\cdot\,\tau_\mathrm{c}^{0.68}\,\left(1-\tau_\mathrm{c}^{0.68}\right)^3.
     219\end{align*}
     220}}}
     221The increase of the autoconversion rate due to turbulence can be considered optionally by an increased autoconversion kernel depending on the local kinetic energy dissipation rate after [#seifert2010 Seifert et al. (2010)].
     222
     223== Accretion ==
     224
     225The increase of ''q'',,r,, by accretion is given by:
     226{{{
     227#!Latex
     228\begin{align*}
     229  & \left.\frac{\partial q_\mathrm{r}}{\partial t}
     230  \right|_{\text{accr}}=
     231  K_{\text{accr}}\,q_\mathrm{c}\,q_\mathrm{r}\,\Phi_{\text{accr}}(\tau_\mathrm{c})
     232  \left(\rho_0\,\rho \right)^{\frac{1}{2}},
     233\end{align*}
     234}}}
     235with the accretion kernel ''K'',,accr,,'' = 4.33'' m^3^ kg^-1^ s^-1^ and the similarity function
     236{{{
     237#!Latex
     238\begin{align*}
     239  & \Phi_{\text{accr}}=\left(\frac{\tau_\mathrm{c}}{\tau_\mathrm{c} +
     240      5 \times 10^{-5}}\right)^4.
     241\end{align*}
     242}}}
     243Turbulence effects on the accretion rate can be considered after using the kernel after [#seifert2010 Seifert et al. (2010)].
     244
     245== Self-collection and breakup ==
     246
     247Selfcollection and breakup describe merging and splitting of rain drops, respectively, which affect the rain water drop number concentration only. Their combined impact is parametrized as
     248{{{
     249#!Latex
     250\begin{align*}
     251  & \left.\frac{\partial N_\mathrm{r}}{\partial t}
     252  \right|_\text{slf/brk}=
     253  -(\Phi_{\text{break}}(r)+1)\,\left.\frac{\partial
     254      N_\mathrm{r}}{\partial t} \right|_{\text{self}},
     255\end{align*}
     256}}}
     257with the breakup function
     258{{{
     259#!Latex
     260\begin{align*}
     261  & \Phi_{\text{break}} =
     262  \begin{cases} 0 & \text{for~}  \widetilde{r_\mathrm{r}} < 0.15 \times 10^{-3}\,\mathrm{m},\\
     263    K_{\text{break}} (\widetilde{r_\mathrm{r}}-r_{\text{eq}}) &
     264    \text{otherwise},
     265  \end{cases}
     266\end{align*}
     267}}}
     268depending on the volume averaged rain drop radius
     269{{{
     270#!Latex
     271\begin{align*}
     272  &
     273  \widetilde{r_\mathrm{r}}=\left(\frac{\rho\,q_\mathrm{r}}{\frac{4}{3}\,\pi\,\rho_{\mathrm{l},0}\,N_\mathrm{r}}
     274  \right)^{\frac{1}{3}},
     275\end{align*}
     276}}}
     277the equilibrium radius ''r'',,eq,, ''= 550 x 10^-6^'' m and the breakup kernel ''K'',,break,, ''= 2000'' m^-1^. The local temporal change of ''N'',,r,, due to selfcollection is
     278{{{
     279#!Latex
     280\begin{align*}
     281  & \left.\frac{\partial N_\mathrm{r}}{\partial t}
     282  \right|_{\text{self}}= K_{\text{self}}\,N_\mathrm{r}\,q_\mathrm{r}
     283  \left(\rho_0\,\rho \right)^{\frac{1}{2}},
     284\end{align*}
     285}}}
     286with the selfcollection kernel ''K'',,self,, ''= 7.12'' m^3^ kg^-1^ s^-1^.
     287
     288== Evaporation of rainwater ==
     289
     290The evaporation of rain drops in subsaturated air (relative water supersaturation ''S < 0'') is parametrized following [#seifert2008 Seifert (2008)]:
     291{{{
     292#!Latex
     293\begin{align*}
     294  & \left.\frac{\partial q_\mathrm{r}}{\partial t}
     295  \right|_{\text{evap}}= 2
     296  \pi\,G\,S\,\frac{N_\mathrm{r}\,\lambda_\mathrm{r}^{\mu_\mathrm{r}+1}}{\Gamma(\mu_\mathrm{r}+1)}\,f_\mathrm{v}\,\rho,
     297\end{align*}
     298}}}
     299where
     300{{{
     301#!Latex
     302\begin{align*}
     303  & G = \left[\frac{R_\mathrm{v}T}{K_\mathrm{v}p_\text{v, s}(T)} +
     304    \left(\frac{L_\mathrm{V}}{R_\mathrm{v} T}-1\right)
     305    \frac{L_\mathrm{V}}{\lambda_\mathrm{h}\,T}\right]^{-1},
     306\end{align*}
     307}}}
     308with ''K'',,v,,'' = 2.3 x 10^-5^'' m^2^ s^-1^ being the molecular diffusivity water vapor in air and ''λ'',,h,,'' = 2.43 x 10^-2^'' W m^-1^ K^-1^ being the heat conductivity of air. Here, ''N'',,r,, ''λ'',,r,,^''μ'',,r,,''+1^ / Γ(μ'',,r,,+1) denotes the intercept parameter of the rain drop gamma distribution with ''Γ'' being the gamma-function. Following [#stevens2008 Stevens and Seifert (2008)], the slope parameter reads as
     309{{{
     310#!Latex
     311\begin{align*}
     312  & \lambda_\mathrm{r} = \frac{\left((\mu_\mathrm{r}+3)
     313      (\mu_\mathrm{r}+2) (\mu_\mathrm{r}+1)\right)^{\frac{1}{3}}}{2
     314    \cdot \widetilde{r_\mathrm{r}}},
     315\end{align*}
     316}}}
     317with ''μ'',,r,, being the shape parameter, given by
     318{{{
     319#!Latex
     320\begin{align*}
     321  & \mu_\mathrm{r} = 10\,\cdot\,\left(1 +
     322    \tanh{\left(1200\,\cdot\,\left(2 \cdot \widetilde{r_\mathrm{r}} -
     323          0.0014 \right)\right)} \right).
     324\end{align*}
     325}}}
     326In order to account for the increased evaporation of falling rain drops, the so-called ventilation effect, a ventilation factor ''f'',,v,, is calculated optionally by a series expansion considering the rain drop size distribution ([#seifert2008 Seifert, 2008, Appendix]).
     327
     328The complete evaporation of rain drops (i.e., their evaporation to a size smaller than the separation radius of 40 µm) is
     329parametrized as
     330{{{
     331#!Latex
     332\begin{align*}
     333  & \left.\frac{\partial N_\mathrm{r}}{\partial t}
     334  \right|_{\text{evap}}= \gamma\,\frac{N_\mathrm{r}}{\rho
     335    q_\mathrm{r}}\,\left.\frac{\partial q_\mathrm{r}}{\partial t}
     336  \right|_{\text{evap}},
     337\end{align*}
     338}}}
     339with ''γ = 0.7'' (see also [#heus2010 Heus et al., 2010]).
     340
     341== Sedimentation of cloudwater ==
     342
     343As shown by [#ackerman Ackerman et al. (2009)], the sedimentation of cloud water has to be taken in account for the simulation of stratocumulus clouds. They suggest the cloud water sedimentation flux to be calculated as
     344{{{
     345#!Latex
     346\begin{align*}
     347  & F_{q_\mathrm{c}} = k \left(\frac{4}{3}
     348    \pi\rho_\mathrm{l}N_\mathrm{c}\right)^{-2/3} \left(\rho
     349    q_\mathrm{c}\right)^{\frac{5}{3}} \exp{\left(5
     350      \ln^2{\sigma_\mathrm{g}}\right)},
     351\end{align*}
     352}}}
     353based on a Stokes drag approximation of the terminal velocities of log-normal distributed cloud droplets.  Here, ''k = 1.2 x 10^8^'' m^-1^ s^-1^ is a parameter and ''σ'',,g,, ''= 1.3'' the geometric SD of the cloud droplet size distribution ([#geoffroy Geoffroy et al., 2010]). The tendency of ''q'' results from the sedimentation flux divergences and reads as
     354{{{
     355#!Latex
     356\begin{align*}
     357  & \left.\frac{\partial q}{\partial t} \right|_\text{sed, c}= -
     358  \frac{\partial F_{q_\mathrm{c}}}{\partial z} \frac{1}{\rho}.
     359\end{align*}
     360}}}
     361
     362== Sedimentation of rainwater ==
     363
     364The sedimentation of rain water is implemented following [#stevens2008 Stevens and Seifert (2008)]. The sedimentation velocities are based on an empirical relation for the terminal fall velocity after [#rogers1993 Rogers et al. (1993)]. They are given by
     365{{{
     366#!Latex
     367\begin{align*}
     368  & w_{N_\mathrm{r}} = \left(9.65\,\text{m\,s}^{-1} -
     369    9.8\,\text{m\,s}^{-1} \left(1+
     370      600\,\text{m}/\lambda_\mathrm{r}\right)^{-(\mu_\mathrm{r} + 1)}
     371  \right),
     372\end{align*}
     373}}}
     374and
     375{{{
     376#!Latex
     377\begin{align*}
     378  & w_{q_\mathrm{r}} = \left(9.65\,\text{m\,s}^{-1} -
     379    9.8\,\text{m\,s}^{-1} \left(1+
     380      600\,\text{m}/\lambda_\mathrm{r}\right)^{-(\mu_\mathrm{r} + 4)}
     381  \right).
     382\end{align*}
     383}}}
     384The resulting sedimentation fluxes ''F'',,Nr,, and ''F'',,qr,, are calculated using a semi-Lagrangian
     385scheme and a slope limiter (see [#stevens2008 Stevens and Seifert, 2008], their Appendix A). The resulting tendencies read as
     386{{{
     387#!Latex
     388\begin{align*}
     389 &
     390 \left.\frac{\partial q_\mathrm{r}}{\partial t} \right|_\text{sed, r}= -\frac{\partial F_{q_\mathrm{r}}}{\partial z},~ \left.\frac{\partial N_\mathrm{r}}{\partial t} \right|_\text{sed, r}= -\frac{\partial F_{N_\mathrm{r}}}{\partial z},\;\text{and}~ \left.\frac{\partial q}{\partial t} \right|_\text{sed, r}=
     391 \left.\frac{\partial q_\mathrm{r}}{\partial t} \right|_\text{sed, r}.
     392\end{align*}
     393}}}
     394
     395== Turbulence closure ==
     396
     397Using bulk cloud microphysics, PALM predicts liquid water temperature ''θ'',,l,, and total water mixing ratio ''q'' instead of ''θ''
     398and ''q'',,v,,. Consequently, some terms in the Eq. for
     399{{{
     400#!Latex
     401$\overline{w^{\prime\prime}{\theta_{\mathrm{v}}}^{\prime\prime}}$
     402}}}
     403of Sect. [wiki:/doc/tec/sgs turbulence closure] are unknown. We thus follow [#cuijpers1993 Cuijpers and Duynkerke (1993)] and calculate the SGS buoyancy flux from the known SGS fluxes
     404{{{
     405#!Latex
     406$\overline{w^{\prime\prime}{\theta_{\mathrm{l}}}^{\prime\prime}}$
     407}}}
     408and
     409{{{
     410#!Latex
     411$\overline{w^{\prime\prime}{q}^{\prime\prime}}$.
     412}}}
     413In unsaturated air (''q'',,c,, = 0) the Eq. for
     414{{{
     415#!Latex
     416$\overline{w^{\prime\prime}
     417    {\theta_{\mathrm{v}}}^{\prime\prime}}$
     418}}}
     419of Sect. [wiki:/doc/tec/sgs turbulence closure] is then replaced by
     420{{{
     421#!Latex
     422\begin{align*}
     423  & \overline{w^{\prime\prime}
     424    {\theta_{\mathrm{v}}}^{\prime\prime}}=K_1\,\cdot\,\overline{w^{\prime\prime}
     425    {\theta_\mathrm{l}}^{\prime\prime}} +
     426  K_2\,\cdot\,\overline{w^{\prime\prime} {q}^{\prime\prime}},
     427\end{align*}
     428}}}
     429with
     430{{{
     431#!Latex
     432\begin{align*}
     433  &  K_1 = 1+\left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right)\,\cdot\,q,\\
     434  & K_2 =
     435  \left(\frac{R_\mathrm{v}}{R_\mathrm{d}}-1\right)\,\cdot\,\theta_\mathrm{l},
     436\end{align*}
     437}}}
     438and in saturated air (''q'',,c,, > 0) by
     439{{{
     440#!Latex
     441\begin{align*}
     442  &
     443  K_1 =\frac{1 - q + \frac{R_\mathrm{v}}{R_\mathrm{d}} (q-q_\mathrm{l}) \cdot \left(1 + \frac{L_\mathrm{V}}{R_\mathrm{v} T} \right)}{1 + \frac{L_\mathrm{V}^2}{R_\mathrm{v} c_p T^2} (q-q_\mathrm{l})},\\
     444  & K_2 = \left(\frac{L_\mathrm{V}}{c_p T} K_1 - 1 \right)
     445  \cdot \theta.
     446\end{align*}
     447}}}