Ignore:
Timestamp:
Dec 23, 2010 12:06:00 PM (11 years ago)
Author:
suehring
Message:

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

Location:
palm/trunk/SOURCE
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/SOURCE

    • Property svn:mergeinfo set to (toggle deleted branches)
      /palm/branches/suehring423-666
      /palm/branches/letzel/masked_output/SOURCE296-409
  • palm/trunk/SOURCE/inflow_turbulence.f90

    r623 r667  
    44! Current revisions:
    55! -----------------
    6 !
     6! Using nbgp recycling planes for a better resolution of the turbulent flow
     7! near the inflow.
    78!
    89! Former revisions:
     
    3536    IMPLICIT NONE
    3637
    37     INTEGER ::  i, imax, j, k, ngp_ifd, ngp_pr
     38    INTEGER ::  i, imax, j, k, l, ngp_ifd, ngp_pr
    3839
    3940    REAL, DIMENSION(1:2) ::  volume_flow_l, volume_flow_offset
    40     REAL, DIMENSION(nzb:nzt+1,5) ::  avpr, avpr_l
    41     REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,5) ::  inflow_dist
     41    REAL, DIMENSION(nzb:nzt+1,5,nbgp) ::  avpr, avpr_l
     42    REAL, DIMENSION(nzb:nzt+1,nysg:nyng,5,nbgp) ::  inflow_dist
    4243
    4344    CALL cpu_log( log_point(40), 'inflow_turbulence', 'start' )
    4445
    4546!
    46 !-- Carry out horizontal averaging in the recycling plane
     47!-- Carry out spanwise averaging in the recycling plane
    4748    avpr_l = 0.0
    48     ngp_pr = ( nzt - nzb + 2 ) * 5
    49     ngp_ifd = ngp_pr * ( nyn - nys + 3 )
     49    ngp_pr = ( nzt - nzb + 2 ) * 5 * nbgp
     50    ngp_ifd = ngp_pr * ( nyn - nys + 1 + 2 * nbgp )
    5051
    5152!
    5253!-- First, local averaging within the recycling domain
    53     IF ( recycling_plane >= nxl )  THEN
    54 
    55        imax = MIN( nxr, recycling_plane )
    56 
    57        DO  i = nxl, imax
     54
     55    i = recycling_plane
     56
     57#if defined( __parallel )
     58    IF ( myidx == id_recycling )  THEN
     59       
     60       DO  l = 1, nbgp
    5861          DO  j = nys, nyn
    59              DO  k = nzb, nzt+1
    60 
    61                 avpr_l(k,1) = avpr_l(k,1) + u(k,j,i)
    62                 avpr_l(k,2) = avpr_l(k,2) + v(k,j,i)
    63                 avpr_l(k,3) = avpr_l(k,3) + w(k,j,i)
    64                 avpr_l(k,4) = avpr_l(k,4) + pt(k,j,i)
    65                 avpr_l(k,5) = avpr_l(k,5) + e(k,j,i)
     62             DO  k = nzb, nzt + 1
     63
     64                avpr_l(k,1,l) = avpr_l(k,1,l) + u(k,j,i)
     65                avpr_l(k,2,l) = avpr_l(k,2,l) + v(k,j,i)
     66                avpr_l(k,3,l) = avpr_l(k,3,l) + w(k,j,i)
     67                avpr_l(k,4,l) = avpr_l(k,4,l) + pt(k,j,i)
     68                avpr_l(k,5,l) = avpr_l(k,5,l) + e(k,j,i)
    6669
    6770             ENDDO
    6871          ENDDO
    69        ENDDO
    70 
    71     ENDIF
    72 
    73 !    WRITE (9,*) '*** averaged profiles avpr_l'
    74 !    DO  k = nzb, nzt+1
    75 !       WRITE (9,'(F5.1,1X,F5.1,1X,F5.1,1X,F6.1,1X,F7.2)') avpr_l(k,1),avpr_l(k,2),avpr_l(k,3),avpr_l(k,4),avpr_l(k,5)
    76 !    ENDDO
    77 !    WRITE (9,*) ' '
    78 
    79 #if defined( __parallel )
     72          i = i + 1
     73       ENDDO
     74
     75    ENDIF
    8076!
    8177!-- Now, averaging over all PEs
    8278    IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
    83     CALL MPI_ALLREDUCE( avpr_l(nzb,1), avpr(nzb,1), ngp_pr, MPI_REAL, MPI_SUM, &
    84                         comm2d, ierr )
     79    CALL MPI_ALLREDUCE( avpr_l(nzb,1,1), avpr(nzb,1,1), ngp_pr,  &
     80                    MPI_REAL, MPI_SUM, comm2d, ierr )
     81
    8582#else
     83    DO  l = 1, nbgp
     84       DO  j = nys, nyn
     85          DO  k = nzb, nzt + 1
     86
     87             avpr_l(k,1,l) = avpr_l(k,1,l) + u(k,j,i)
     88             avpr_l(k,2,l) = avpr_l(k,2,l) + v(k,j,i)
     89             avpr_l(k,3,l) = avpr_l(k,3,l) + w(k,j,i)
     90             avpr_l(k,4,l) = avpr_l(k,4,l) + pt(k,j,i)
     91             avpr_l(k,5,l) = avpr_l(k,5,l) + e(k,j,i)
     92
     93          ENDDO
     94       ENDDO
     95       i = i + 1
     96    ENDDO
     97   
    8698    avpr = avpr_l
    8799#endif
    88100
    89     avpr = avpr / ( ( ny + 1 ) * ( recycling_plane + 1 ) )
    90 
    91 !    WRITE (9,*) '*** averaged profiles'
    92 !    DO  k = nzb, nzt+1
    93 !       WRITE (9,'(F5.1,1X,F5.1,1X,F5.1,1X,F6.1,1X,F7.2)') avpr(k,1),avpr(k,2),avpr(k,3),avpr(k,4),avpr(k,5)
    94 !    ENDDO
    95 !    WRITE (9,*) ' '
    96 
     101    avpr = avpr / ( ny + 1 )
    97102!
    98103!-- Calculate the disturbances at the recycling plane
     
    101106#if defined( __parallel )
    102107    IF ( myidx == id_recycling )  THEN
    103 
    104        DO  j = nys-1, nyn+1
     108       DO  l = 1, nbgp
     109          DO  j = nysg, nyng
     110             DO  k = nzb, nzt + 1
     111
     112                inflow_dist(k,j,1,l) = u(k,j,i+1) - avpr(k,1,l)
     113                inflow_dist(k,j,2,l) = v(k,j,i)   - avpr(k,2,l)
     114                inflow_dist(k,j,3,l) = w(k,j,i)   - avpr(k,3,l)
     115                inflow_dist(k,j,4,l) = pt(k,j,i)  - avpr(k,4,l)
     116                inflow_dist(k,j,5,l) = e(k,j,i)   - avpr(k,5,l)
     117             
     118            ENDDO
     119          ENDDO
     120          i = i + 1
     121       ENDDO
     122
     123    ENDIF
     124#else
     125    DO  l = 1, nbgp
     126       DO  j = nysg, nyng
    105127          DO  k = nzb, nzt+1
    106128
    107               inflow_dist(k,j,1) = u(k,j,i+1) - avpr(k,1)
    108               inflow_dist(k,j,2) = v(k,j,i)   - avpr(k,2)
    109               inflow_dist(k,j,3) = w(k,j,i)   - avpr(k,3)
    110               inflow_dist(k,j,4) = pt(k,j,i)  - avpr(k,4)
    111               inflow_dist(k,j,5) = e(k,j,i)   - avpr(k,5)
    112 
    113           ENDDO
    114        ENDDO
    115 
    116     ENDIF
    117 #else
    118     DO  j = nys-1, nyn+1
    119        DO  k = nzb, nzt+1
    120 
    121           inflow_dist(k,j,1) = u(k,j,i+1) - avpr(k,1)
    122           inflow_dist(k,j,2) = v(k,j,i)   - avpr(k,2)
    123           inflow_dist(k,j,3) = w(k,j,i)   - avpr(k,3)
    124           inflow_dist(k,j,4) = pt(k,j,i)  - avpr(k,4)
    125           inflow_dist(k,j,5) = e(k,j,i)   - avpr(k,5)
    126 
    127        ENDDO
     129             inflow_dist(k,j,1,l) = u(k,j,i+1) - avpr(k,1,l)
     130             inflow_dist(k,j,2,l) = v(k,j,i)   - avpr(k,2,l)
     131             inflow_dist(k,j,3,l) = w(k,j,i)   - avpr(k,3,l)
     132             inflow_dist(k,j,4,l) = pt(k,j,i)  - avpr(k,4,l)
     133             inflow_dist(k,j,5,l) = e(k,j,i)   - avpr(k,5,l)
     134             
     135          ENDDO
     136       ENDDO
     137       i = i + 1
    128138    ENDDO
    129139#endif
     
    134144    IF ( myidx == id_recycling  .AND.  myidx /= id_inflow )  THEN
    135145
    136        CALL MPI_SEND( inflow_dist(nzb,nys-1,1), ngp_ifd, MPI_REAL, &
     146       CALL MPI_SEND( inflow_dist(nzb,nysg,1,1), ngp_ifd, MPI_REAL, &
    137147                      id_inflow, 1, comm1dx, ierr )
    138148
     
    140150
    141151       inflow_dist = 0.0
    142        CALL MPI_RECV( inflow_dist(nzb,nys-1,1), ngp_ifd, MPI_REAL, &
     152       CALL MPI_RECV( inflow_dist(nzb,nysg,1,1), ngp_ifd, MPI_REAL, &
    143153                      id_recycling, 1, comm1dx, status, ierr )
    144154
     
    150160    IF ( nxl == 0 )  THEN
    151161
    152        DO  j = nys-1, nyn+1
    153           DO  k = nzb, nzt+1
    154 
    155 !              WRITE (9,*) 'j=',j,' k=',k
    156 !              WRITE (9,*) 'mean_u = ', mean_inflow_profiles(k,1), ' dist_u = ',&
    157 !                          inflow_dist(k,j,1)
    158 !              WRITE (9,*) 'mean_v = ', mean_inflow_profiles(k,2), ' dist_v = ',&
    159 !                          inflow_dist(k,j,2)
    160 !              WRITE (9,*) 'mean_w = 0.0', ' dist_w = ',&
    161 !                          inflow_dist(k,j,3)
    162 !              WRITE (9,*) 'mean_pt = ', mean_inflow_profiles(k,4), ' dist_pt = ',&
    163 !                          inflow_dist(k,j,4)
    164 !              WRITE (9,*) 'mean_e = ', mean_inflow_profiles(k,5), ' dist_e = ',&
    165 !                          inflow_dist(k,j,5)
    166               u(k,j,0)   = mean_inflow_profiles(k,1) + &
    167                            inflow_dist(k,j,1) * inflow_damping_factor(k)
    168               v(k,j,-1)  = mean_inflow_profiles(k,2) + &
    169                            inflow_dist(k,j,2) * inflow_damping_factor(k)
    170               w(k,j,-1)  = inflow_dist(k,j,3) * inflow_damping_factor(k)
    171               pt(k,j,-1) = mean_inflow_profiles(k,4) + &
    172                            inflow_dist(k,j,4) * inflow_damping_factor(k)
    173               e(k,j,-1)  = mean_inflow_profiles(k,5) + &
    174                            inflow_dist(k,j,5) * inflow_damping_factor(k)
    175               e(k,j,-1)  = MAX( e(k,j,-1), 0.0 )
     162       DO  j = nysg, nyng
     163          DO  k = nzb, nzt + 1
     164
     165              u(k,j,-nbgp+1:0)   = mean_inflow_profiles(k,1) + &
     166                           inflow_dist(k,j,1,1:nbgp) * inflow_damping_factor(k)
     167              v(k,j,-nbgp:-1)  = mean_inflow_profiles(k,2) + &
     168                           inflow_dist(k,j,2,1:nbgp) * inflow_damping_factor(k)
     169              w(k,j,-nbgp:-1)  = inflow_dist(k,j,3,1:nbgp) * inflow_damping_factor(k)
     170              pt(k,j,-nbgp:-1) = mean_inflow_profiles(k,4) + &
     171                           inflow_dist(k,j,4,1:nbgp) * inflow_damping_factor(k)
     172              e(k,j,-nbgp:-1)  = mean_inflow_profiles(k,5) + &
     173                           inflow_dist(k,j,5,1:nbgp) * inflow_damping_factor(k)
     174              e(k,j,-nbgp:-1)  = MAX( e(k,j,-nbgp:-1), 0.0 )
    176175
    177176          ENDDO
Note: See TracChangeset for help on using the changeset viewer.