Ignore:
Timestamp:
Jan 14, 2019 12:49:24 PM (6 years ago)
Author:
maronga
Message:

removed most_methods circular and lookup. added improved version of palm_csd

File:
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/SCRIPTS/palm_csd

    r3629 r3668  
    2525# -----------------
    2626# $Id$
     27# Various improvements and bugfixes
     28#
     29# 3629 2018-12-13 12:18:54Z maronga
    2730# Added canopy generator calls. Some improvements
    2831#
     
    7275
    7376#  Definition of settings
    74    global settings_filename_out
     77
    7578   global settings_bridge_width
    7679   global settings_lai_roof_intensive
     
    100103   global global_site
    101104   global global_source
    102    global global_version
     105
     106   global  path_out
     107   global filename_out
     108   global version_out
    103109
    104110
     
    158164   global zt_min
    159165
    160    settings_filename_out = "default"
    161166   settings_bridge_width = 3.0
    162167   settings_lai_roof_intensive = 0.5
     
    185190   global_site = ""
    186191   global_source = ""
    187    global_version = 1
    188 
     192
     193   path_out = ""
     194   version_out = 1
     195   filename_out = "default"
     196   
    189197   domain_names = []
    190198   domain_px = []
     
    260268         global_site = config.get(read_tmp, 'site')
    261269         global_source = config.get(read_tmp, 'source')
    262          global_version = float(config.get(read_tmp, 'version'))
     270
    263271
    264272      if ( read_tmp == 'settings' ):
    265          settings_filename_out = config.get(read_tmp, 'filename_out')
    266273         settings_lai_roof_intensive = config.get(read_tmp, 'lai_roof_intensive')
    267274         settings_lai_roof_extensive = config.get(read_tmp, 'lai_roof_extensive')
     
    273280         settings_lai_alpha = float(config.get(read_tmp, 'lai_alpha'))
    274281         settings_lai_beta = float(config.get(read_tmp, 'lai_beta'))
     282
     283      if ( read_tmp == 'output' ):
     284         path_out = config.get(read_tmp, 'path')         
     285         filename_out = config.get(read_tmp, 'file_out')
     286         version_out = float(config.get(read_tmp, 'version'))
    275287
    276288      if ( read_tmp.split("_")[0] == 'domain' ):
     
    322334         input_file_street_crossings.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_street_crossings'))
    323335         input_file_patch_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_patch_height'))
    324          input_file_tree_crown_diameter.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_crown_diameter')) 
     336         
     337         tmp = config.get(read_tmp, 'file_tree_crown_diameter')
     338         if tmp is not None:
     339            input_file_tree_crown_diameter.append(config.get(read_tmp, 'path') + "/" + tmp) 
     340         else:
     341            input_file_tree_crown_diameter.append(None)
    325342         input_file_tree_height.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_height')) 
    326343         input_file_tree_trunk_diameter.append(config.get(read_tmp, 'path') + "/" + config.get(read_tmp, 'file_tree_trunk_diameter')) 
     
    433450#  Calculate indices and input files
    434451   ii.append(input_px.index(domain_px[i]))
    435    filename.append(settings_filename_out + "_" + domain_names[i])
     452   filename.append(path_out + "/" + filename_out + "_" + domain_names[i])
    436453   if domain_parent[i] is not None:
    437454      ii_parent.append(domain_names.index(domain_parent[i]))
     
    447464#  Create NetCDF output file and set global attributes
    448465   nc_create_file(filename[i])
    449    nc_write_global_attributes(filename[i],float(x_UTM[0,0]),float(y_UTM[0,0]),float(lat[0,0]),float(lon[0,0]),"",global_acronym,global_angle,global_author,global_campaign,global_comment,global_contact,global_data_content,global_dependencies,global_institution,global_keywords,global_location,global_palm_version,global_references,global_site,global_source,global_version)
     466   nc_write_global_attributes(filename[i],float(x_UTM[0,0]),float(y_UTM[0,0]),float(lat[0,0]),float(lon[0,0]),"",global_acronym,global_angle,global_author,global_campaign,global_comment,global_contact,global_data_content,global_dependencies,global_institution,global_keywords,global_location,global_palm_version,global_references,global_site,global_source,version_out)
    450467
    451468   
     
    468485del zt_all[:]
    469486
     487print( "Shift terrain height by -" + str(zt_min))
    470488for i in range(0,ndomains):
    471489
     
    475493   y = nc_read_from_file_1d(input_file_y[ii[i]], "y", domain_y0[i], domain_y1[i])
    476494
    477    print( "Shift terrain height by -" + str(zt_min))
    478495   zt = zt - zt_min
     496   
     497   nc_write_global_attribute(filename[i], 'origin_z', float(zt_min))
    479498
    480499#  If necessary, interpolate parent domain terrain height on child domain grid and blend the two
     
    494513
    495514#     Interpolate array and bring to PALM grid of child domain
     515
    496516      zt_ip = interpolate_2d(zt_parent,tmp_x,tmp_y,x,y)
    497517      zt_ip = bring_to_palm_grid(zt_ip,x,y,domain_dz[ii_parent[i]])
     
    580600 
    581601   building_type = nc_read_from_file_2d(input_file_building_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i]) 
    582    building_type[building_type == 255] = fillvalues["building_type"]
     602   building_type[building_type >= 254] = fillvalues["building_type"]
    583603   building_type = np.where(building_type < 1,defaultvalues["building_type"],building_type)
    584604 
     
    594614      building_type = np.where((building_type == fillvalues["building_type"]) & (buildings_2d != fillvalues["buildings_2d"]),defaultvalues["building_type"],building_type)
    595615      print("Data check #2 " + str(check_arrays_2(buildings_2d,building_type,fillvalues["buildings_2d"],fillvalues["building_type"])))
     616 
    596617 
    597618   nc_write_to_file_2d(filename[i], 'buildings_2d', buildings_2d, datatypes["buildings_2d"],'y','x',fillvalues["buildings_2d"])
     
    606627   nc_write_attribute(filename[i], 'building_id', 'long_name', 'building id')
    607628   nc_write_attribute(filename[i], 'building_id', 'units', '')
    608    nc_write_attribute(filename[i], 'building_id', 'res_orig', domain_px[i])
     629   nc_write_attribute(filename[i], 'building_id', 'res _orig', domain_px[i])
    609630   nc_write_attribute(filename[i], 'building_id', 'coordinates', 'E_UTM N_UTM lon lat')
    610631   nc_write_attribute(filename[i], 'building_id', 'grid_mapping', 'E_UTM N_UTM lon lat')   
     
    616637   nc_write_attribute(filename[i], 'building_type', 'coordinates', 'E_UTM N_UTM lon lat')
    617638   nc_write_attribute(filename[i], 'building_type', 'grid_mapping', 'E_UTM N_UTM lon lat')   
     639 
     640   print("out_1: " + str(np.any(building_type == -2)))
    618641 
    619642del buildings_2d
     
    705728#  #6 Remove water for pixels with buildings
    706729   water_type = np.where((water_type != fillvalues["water_type"]) & (building_type != fillvalues["building_type"]),fillvalues["water_type"],water_type)
    707    
    708 
    709 #  #7 to be removed: set default soil type everywhere
    710    soil_type = np.where((vegetation_type != fillvalues["vegetation_type"]) | (pavement_type != fillvalues["pavement_type"]),defaultvalues["soil_type"],fillvalues["soil_type"])
    711  
     730 
     731   
     732#  Correct vegetation_type when a vegetation height is available and is indicative of low vegeetation
     733   vegetation_height = nc_read_from_file_2d(input_file_vegetation_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])   
     734         
     735   vegetation_type = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), 3, vegetation_type)
     736   vegetation_height = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), fillvalues["vegetation_height"],vegetation_height)
    712737 
    713738#  Check for consistency and fill empty fields with default vegetation type
     
    717742      vegetation_type = np.where(consistency_array == 0,defaultvalues["vegetation_type"],vegetation_type)
    718743      consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"])
    719    
     744
     745#  #7 to be removed: set default soil type everywhere
     746   soil_type = np.where((vegetation_type != fillvalues["vegetation_type"]) | (pavement_type != fillvalues["pavement_type"]),defaultvalues["soil_type"],fillvalues["soil_type"])
     747       
     748   
     749#  Check for consistency and fill empty fields with default vegetation type
     750   consistency_array, test = check_consistency_3(vegetation_type,pavement_type,soil_type,fillvalues["vegetation_type"],fillvalues["pavement_type"],fillvalues["soil_type"])
     751       
    720752#  Create surface_fraction array
    721753   x = nc_read_from_file_2d_all(filename[i], 'x')
     
    734766   nc_write_attribute(filename[i], 'surface_fraction', 'res_orig', domain_px[i])     
    735767   del surface_fraction   
    736    
    737  
    738 #  Correct vegetation_type when a vegetation height is available and is indicative of low vegeetation
    739    vegetation_height = nc_read_from_file_2d(input_file_vegetation_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])   
    740          
    741    vegetation_type = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), 3, vegetation_type)
    742    vegetation_height = np.where((vegetation_height != fillvalues["vegetation_height"]) & (vegetation_height == 0.0) & ((vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18)), fillvalues["vegetation_height"],vegetation_height)
    743 
    744768
    745769   nc_write_to_file_2d(filename[i], 'vegetation_type', vegetation_type, datatypes["vegetation_type"],'y','x',fillvalues["vegetation_type"])     
     
    779803
    780804#  pixels with bridges get building_type = 7 = bridge. This does not change the _type setting for the under-bridge
    781 #  area
     805#  area NOTE: when bridges are present the consistency check will fail at the moment
    782806   if domain_3d[i]:
    783807      if np.any(building_type != fillvalues["building_type"]):
     
    853877# Read tree data and create LAD and BAD arrays using the canopy generator
    854878for i in range(0,ndomains): 
     879   lai = nc_read_from_file_2d(input_file_lai[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])   
     880     
     881   vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type')
     882     
     883   lai = np.where(vegetation_type == fillvalues["vegetation_type"],fillvalues["vegetation_pars"],lai)
     884
     885     
     886   x = nc_read_from_file_2d_all(filename[i], 'x')
     887   y = nc_read_from_file_2d_all(filename[i], 'y') 
     888   nvegetation_pars = np.arange(0,12)
     889   vegetation_pars = np.ones((len(nvegetation_pars),len(y),len(x)))
     890   vegetation_pars[:,:,:] = fillvalues["vegetation_pars"] 
     891     
     892   vegetation_pars[1,:,:] = lai
     893     
     894
     895#  Write out first version of LAI. Will later be overwritten.
     896   nc_write_dimension(filename[i], 'nvegetation_pars', nvegetation_pars, datatypes["nvegetation_pars"])
     897   nc_write_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars, datatypes["vegetation_pars"],'nvegetation_pars','y','x',fillvalues["vegetation_pars"])
     898   nc_write_attribute(filename[i], 'vegetation_pars', 'long_name', 'vegetation_pars')
     899   nc_write_attribute(filename[i], 'vegetation_pars', 'units', '')
     900   nc_write_attribute(filename[i], 'vegetation_pars', 'res_orig', domain_px[i]) 
     901   nc_write_attribute(filename[i], 'vegetation_pars', 'coordinates', 'E_UTM N_UTM lon lat')
     902   nc_write_attribute(filename[i], 'vegetation_pars', 'grid_mapping', 'E_UTM N_UTM lon lat')   
     903
     904   del lai, vegetation_pars, vegetation_type
     905
     906# Read tree data and create LAD and BAD arrays using the canopy generator
     907for i in range(0,ndomains): 
    855908   if domain_street_trees[i]:
    856       lai = nc_read_from_file_2d(input_file_lai[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])   
    857      
    858      
     909
     910      vegetation_pars =  nc_read_from_file_2d_all(filename[i], 'vegetation_pars')
     911
     912      lai = np.copy(vegetation_pars[1,:,:])
     913
     914      x = nc_read_from_file_2d_all(filename[i], 'x')
     915      y = nc_read_from_file_2d_all(filename[i], 'y') 
     916
    859917#     Save lai data as default for low and high vegetation
    860918      lai_low = lai
    861919      lai_high = lai
    862      
    863       x = nc_read_from_file_2d_all(filename[i], 'x')
    864       y = nc_read_from_file_2d_all(filename[i], 'y') 
    865       nvegetation_pars = np.arange(0,11)
    866       vegetation_pars = np.ones((len(nvegetation_pars),len(y),len(x)))
    867       vegetation_pars[:,:,:] = fillvalues["vegetation_pars"] 
    868      
    869       vegetation_pars[1,:,:] = lai
    870      
    871 
    872 #     Write out first version of LAI. Will later be overwritten.
    873       nc_write_dimension(filename[i], 'nvegetation_pars', nvegetation_pars, datatypes["nvegetation_pars"])
    874       nc_write_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars, datatypes["vegetation_pars"],'nvegetation_pars','y','x',fillvalues["vegetation_pars"])
    875       nc_write_attribute(filename[i], 'vegetation_pars', 'long_name', 'vegetation_pars')
    876       nc_write_attribute(filename[i], 'vegetation_pars', 'units', '')
    877       nc_write_attribute(filename[i], 'vegetation_pars', 'res_orig', domain_px[i]) 
    878       nc_write_attribute(filename[i], 'vegetation_pars', 'coordinates', 'E_UTM N_UTM lon lat')
    879       nc_write_attribute(filename[i], 'vegetation_pars', 'grid_mapping', 'E_UTM N_UTM lon lat')   
    880 
    881 
     920   
    882921#     Read all tree parameters from file
    883922      tree_height = nc_read_from_file_2d(input_file_tree_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])   
    884       tree_crown_diameter = nc_read_from_file_2d(input_file_tree_crown_diameter[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])   
     923
     924      if (input_file_tree_crown_diameter[ii[i]] is not None):
     925         tree_crown_diameter = nc_read_from_file_2d(input_file_tree_crown_diameter[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])   
     926         tree_crown_diameter = np.where( (tree_crown_diameter == 0.0) | (tree_crown_diameter == -1.0) ,fillvalues["tree_data"],tree_crown_diameter)
     927      else:
     928         tree_crown_diameter = np.ones((len(y),len(x)))
     929         tree_crown_diameter[:,:] = fillvalues["tree_data"]
     930
     931
    885932      tree_trunk_diameter = nc_read_from_file_2d(input_file_tree_trunk_diameter[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])         
    886933      tree_type = nc_read_from_file_2d(input_file_tree_type[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])
     
    889936#     Remove missing values from the data. Reasonable values will be set by the tree generator   
    890937      tree_height = np.where( (tree_height == 0.0) | (tree_height == -1.0) ,fillvalues["tree_data"],tree_height)
    891       tree_crown_diameter = np.where( (tree_crown_diameter == 0.0) | (tree_crown_diameter == -1.0) ,fillvalues["tree_data"],tree_crown_diameter)
    892938      tree_trunk_diameter = np.where( (tree_trunk_diameter == 0.0) | (tree_trunk_diameter == -1.0) ,fillvalues["tree_data"],tree_trunk_diameter)
    893939      tree_type = np.where( (tree_type == 0.0) | (tree_type == -1.0) ,fillvalues["tree_data"],tree_type)
     
    907953#     For zero-height patches, set vegetation_type to short grass and remove these pixels from the patch height array
    908954      vegetation_type = np.where( (patch_height == 0.0) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),3,vegetation_type)
    909       patch_type = np.where( (patch_height == 0.0) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),fillvalues["tree_data"],patch_height)      
    910       nc_overwrite_to_file_2d(filename[i], 'vegetation_type', vegetation_type) 
     955      patch_type = np.where( (patch_height == 0.0) & ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ),fillvalues["tree_data"],patch_height)   
     956     
    911957
    912958      max_tree_height = max(tree_height.flatten())
     
    914960     
    915961      if ( (max_tree_height != fillvalues["tree_data"]) | (max_patch_height == fillvalues["tree_data"]) ):
    916            
     962
    917963         lad, bad, tree_ids, zlad = generate_single_tree_lad(x,y,domain_dz[i],max_tree_height,max_patch_height,tree_type,tree_height,tree_crown_diameter,tree_trunk_diameter,lai,settings_season,fillvalues["tree_data"])
    918964 
     
    925971            bad[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],bad[k,:,:],fillvalues["tree_data"])
    926972            tree_ids[k,:,:] = np.where(buildings_2d == fillvalues["buildings_2d"],tree_ids[k,:,:],fillvalues["tree_data"])     
    927  
     973
     974         del buildings_2d
    928975 
    929976         nc_write_dimension(filename[i], 'zlad', zlad, datatypes["tree_data"])
     
    949996         nc_write_attribute(filename[i], 'tree_id', 'grid_mapping', 'E_UTM N_UTM lon lat')           
    950997           
    951          del buildings_2d, lai, lad, bad, tree_ids, zlad
    952 
    953       del vegetation_pars, tree_height, tree_crown_diameter, tree_trunk_diameter, tree_type, patch_height, vegetation_type, x, y
     998         del lai, lad, bad, tree_ids, zlad
     999
     1000      del vegetation_pars, tree_height, tree_crown_diameter, tree_trunk_diameter, tree_type, patch_height, x, y
    9541001
    9551002
     
    9611008      vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type')
    9621009      lad = nc_read_from_file_3d_all(filename[i], 'lad')
     1010      zlad = nc_read_from_file_1d_all(filename[i], 'zlad')
    9631011      patch_height = nc_read_from_file_2d(input_file_patch_height[ii[i]], 'Band1', domain_x0[i], domain_x1[i], domain_y0[i], domain_y1[i])
    9641012      vegetation_pars = nc_read_from_file_3d_all(filename[i], 'vegetation_pars')
    9651013      lai = vegetation_pars[1,:,:]
    9661014
    967 #     For all pixels where the LAD array does not contains a street tree and for which a high vegetation was set and for which a patch height is either missing of larger than one grid spacing
    968 #     the lai_high is reset to a low vegetation value
    969       lai_high = np.where( (lad[0,:,:] == fillvalues["tree_data"]) & ( ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ) & ( (patch_height == fillvalues["tree_data"]) | (patch_height >= domain_dz[i])) ),settings_lai_low_default,fillvalues["tree_data"])
    970 
    971 #     For all pixels where lai_high is set but no lai is available, set the default high vegetation lai TODO: check if this makes sense bacauce lai_high = lai anway?!
    972       lai_high = np.where( (lai_high != fillvalues["tree_data"]) & (lai == fillvalues["tree_data"]), settings_lai_high_default, lai_high)
    973 
    974 #     Define a patch height whereever it is missing, but where a high vegetation LAI was set
     1015
     1016#     Determine all pixels that do not already have and LAD but which are high vegetation to a dummy value of 1.0 and remove all other pixels
     1017      lai_high = np.where( (lad[0,:,:] == fillvalues["tree_data"]) & ( ( (vegetation_type == 4) | (vegetation_type == 5) | (vegetation_type == 6) |(vegetation_type == 7) | (vegetation_type == 17) | (vegetation_type == 18) ) & ( (patch_height == fillvalues["tree_data"]) | (patch_height >= domain_dz[i])) ),1.0,fillvalues["tree_data"])
     1018
     1019#     Now, assign either the default LAI for high vegetation or the value stored in the LAI array.
     1020      lai_high = np.where( (lai_high != fillvalues["tree_data"]) & (lai == fillvalues["tree_data"]), settings_lai_high_default, lai)
     1021
     1022#     Define a patch height wherever it is missing, but where a high vegetation LAI was set
    9751023      patch_height = np.where ( (lai_high != fillvalues["tree_data"]) & (patch_height == fillvalues["tree_data"]), settings_patch_height_default, patch_height)
    9761024
     
    9781026      patch_height = np.where ( (lad[0,:,:] != fillvalues["tree_data"]), fillvalues["tree_data"], patch_height)
    9791027
     1028#     Remove patch heights that have no lai_high value
     1029      patch_height = np.where ( (lai_high == fillvalues["tree_data"]), fillvalues["tree_data"], patch_height)
     1030
    9801031#     For missing LAI values, set either the high vegetation default or the low vegetation default   
    981       lai_high = np.where( (patch_height > 2.0) & (lai_high == fillvalues["tree_data"]),settings_lai_high_default,lai_high)
    982       lai_high = np.where( (patch_height <= 2.0) & (lai_high == fillvalues["tree_data"]),settings_lai_low_default,lai_high)
    983    
    984    
     1032      lai_high = np.where( (patch_height > 2.0) & (patch_height != fillvalues["tree_data"]) & (lai_high == fillvalues["tree_data"]),settings_lai_high_default,lai_high)
     1033      lai_high = np.where( (patch_height <= 2.0) & (patch_height != fillvalues["tree_data"]) & (lai_high == fillvalues["tree_data"]),settings_lai_low_default,lai_high)
     1034         
    9851035      if ( max(patch_height.flatten()) >= (2.0 * domain_dz[i]) ):
    9861036         print("    start calculating LAD (this might take some time)")
    987          lad_patch, patch_nz, status = process_patch(domain_dz[i],patch_height,lai_high,settings_lai_alpha,settings_lai_beta)
     1037         lad_patch, patch_nz, status = process_patch(domain_dz[i],patch_height,max(zlad),lai_high,settings_lai_alpha,settings_lai_beta)
    9881038
    9891039         lad[0:patch_nz+1,:,:] = np.where( (lad[0:patch_nz+1,:,:] == fillvalues["tree_data"]),lad_patch[0:patch_nz+1,:,:], lad[0:patch_nz+1,:,:] )
     
    9911041#     Remove high vegetation wherever it is replaced by a leaf area density. This should effectively remove all high vegetation pixels
    9921042      vegetation_type = np.where((lad[0,:,:] != fillvalues["tree_data"]) & (vegetation_type != fillvalues["vegetation_type"]),3,vegetation_type)
    993  
    994  
     1043             
    9951044#     If desired, remove all high vegetation. TODO: check if this is still necessary
    9961045      if domain_high_vegetation[i]:
     
    9981047
    9991048 
    1000 #     Remove LAI from pixels where a LAD was set
    1001       lai_low = np.where( (lad[0,:,:] == fillvalues["tree_data"]), lai,fillvalues["tree_data"])
     1049#     Set default low LAI for pixels with an LAD (short grass below trees)
     1050      lai_low = np.where( (lad[0,:,:] == fillvalues["tree_data"]), lai, settings_lai_low_default)
    10021051   
    1003 #     Fill low vegetation pixels without LAI set with default value
    1004       lai_low = np.where( (lai == fillvalues["tree_data"]) & (vegetation_type != fillvalues["vegetation_type"] ), settings_lai_low_default, lai)
    1005 
    1006    
     1052#     Fill low vegetation pixels without LAI set or with LAI = 0 with default value
     1053      lai_low = np.where( ( (lai_low == fillvalues["tree_data"]) | (lai_low == 0.0) ) & (vegetation_type != fillvalues["vegetation_type"] ), settings_lai_low_default, lai_low)
     1054
     1055#     Remove lai for pixels that have no vegetation_type
     1056      lai_low = np.where( vegetation_type != fillvalues["vegetation_type"], lai_low, fillvalues["tree_data"])
     1057       
    10071058#     Overwrite lai in vegetation_parameters 
    1008 
    1009       vegetation_pars[1,:,:] = lai_low
     1059      vegetation_pars[1,:,:] = np.copy(lai_low)
    10101060      nc_overwrite_to_file_3d(filename[i], 'vegetation_pars', vegetation_pars)
    10111061
    10121062#     Overwrite lad array
    10131063      nc_overwrite_to_file_3d(filename[i], 'lad', lad)
    1014      
    1015 #     Overwrite vegetation_type
    1016       nc_overwrite_to_file_2d(filename[i], 'vegetation_type', vegetation_type)   
    1017      
    1018      
    1019       del vegetation_type, lad, lai, patch_height, vegetation_pars
     1064           
     1065      nc_overwrite_to_file_2d(filename[i], 'vegetation_type', vegetation_type) 
     1066
     1067     
     1068      del vegetation_type, lad, lai, patch_height, vegetation_pars, zlad
     1069
     1070# Final consistency check
     1071for i in range(0,ndomains):
     1072   vegetation_type = nc_read_from_file_2d_all(filename[i], 'vegetation_type') 
     1073   pavement_type = nc_read_from_file_2d_all(filename[i], 'pavement_type') 
     1074   building_type = nc_read_from_file_2d_all(filename[i], 'building_type') 
     1075   water_type = nc_read_from_file_2d_all(filename[i], 'water_type')     
     1076   soil_type = nc_read_from_file_2d_all(filename[i], 'soil_type') 
     1077
     1078#  Check for consistency and fill empty fields with default vegetation type
     1079   consistency_array, test = check_consistency_4(vegetation_type,building_type,pavement_type,water_type,fillvalues["vegetation_type"],fillvalues["building_type"],fillvalues["pavement_type"],fillvalues["water_type"])
     1080
     1081#  Check for consistency and fill empty fields with default vegetation type
     1082   consistency_array, test = check_consistency_3(vegetation_type,pavement_type,soil_type,fillvalues["vegetation_type"],fillvalues["pavement_type"],fillvalues["soil_type"])
     1083
     1084   surface_fraction = nc_read_from_file_3d_all(filename[i], 'surface_fraction')       
     1085   surface_fraction[0,:,:] = np.where(vegetation_type != fillvalues["vegetation_type"], 1.0, 0.0)
     1086   surface_fraction[1,:,:] = np.where(pavement_type != fillvalues["pavement_type"], 1.0, 0.0)
     1087   surface_fraction[2,:,:] = np.where(water_type != fillvalues["water_type"], 1.0, 0.0)
     1088   nc_overwrite_to_file_3d(filename[i], 'surface_fraction', surface_fraction)
     1089       
     1090   del vegetation_type, pavement_type, building_type, water_type, soil_type
Note: See TracChangeset for help on using the changeset viewer.