Changeset 197 for palm/trunk/DOC/app/chapter_4.1.html
- Timestamp:
- Sep 16, 2008 3:29:03 PM (16 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
palm/trunk/DOC/app/chapter_4.1.html
r166 r197 5510 5510 5511 5511 5512 <tr> 5512 <tr><td style="vertical-align: top;"><p><a name="humidity"></a><b>humidity</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><i>.F.</i></td><td style="vertical-align: top;"><p>Parameter to 5513 switch on the prognostic equation for specific 5514 humidity q.<br> 5515 5516 5517 5518 5519 5520 5521 </p> 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 <p>The initial vertical 5536 profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a> 5537 and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>. 5538 Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a> 5539 and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br> 5540 5541 5542 5543 5544 5545 5546 5547 </p> 5548 5549 5550 5551 5552 5553 5554 5555 If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a> 5556 = .TRUE.), q becomes the total liquid water content (sum of specific 5557 humidity and liquid water content).</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_height"></a>inflow_damping_height</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">from precursor run</span></td><td style="vertical-align: top;">Height below which the turbulence signal is used for turbulence recycling (in m).<br><br>In case of a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>), 5558 this parameter defines the vertical thickness of the turbulent layer up 5559 to which the turbulence extracted at the recycling plane (see <a href="chapter_4.1.html#recycling_width">recycling_width</a>) 5560 shall be imposed to the inflow. Above this level the turbulence signal 5561 is linearly damped to zero. The transition range within which the 5562 signal falls to zero is given by the parameter <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>By default, this height is set as the height of the convective boundary layer as calculated from a precursor run. See <a href="chapter_3.9.html">chapter 3.9</a> about proper settings for getting this CBL height from a precursor run. </td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_width"></a>inflow_damping_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#inflow_damping_height">inflow_damping</a></span><a href="chapter_4.1.html#inflow_damping_height"><br style="font-style: italic;"><span style="font-style: italic;">_height</span></a></td><td style="vertical-align: top;">Transition range within which the turbulance signal is damped to zero (in m).<br><br>See <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> for explanation.</td></tr><tr> 5513 5563 5514 5564 … … 6022 6072 must be switched of in the equation of motion for w (this 6023 6073 requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the 6024 source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p> 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 </ul> 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 <p style="font-style: normal;">Values may be 6074 source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p></ul> 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 <p style="font-style: italic;">'read_data_for_recycling'</p><p style="font-style: normal; margin-left: 40px;">Here, 6089 3d-data from a precursor run are read by the initial (main) run. The 6090 precursor run is allowed to have a smaller domain along x and y 6091 compared with the main run. Also, different numbers of processors can 6092 be used for these two runs. Limitations are that the precursor run must 6093 use cyclic horizontal boundary conditions and that the subdomains of 6094 the main run must not be larger than the subdomains of the precursor 6095 run. If the total domain of the main run is larger than that of the precursor 6096 run, the domain is filled by cyclic repetition of the (cyclic) 6097 precursor data. This initialization method is recommended if a 6098 turbulent inflow is used (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). 3d-data must be made available to the run by activating an appropriate file connection statement for local file BININ. See <a href="chapter_3.9.html">chapter 3.9</a> for more details, where usage of a turbulent inflow is explained. </p><p style="font-style: normal;">Values may be 6053 6099 combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles 6054 6100 initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>, … … 6069 6115 6070 6116 6071 <p style="font-style: italic;"> </p>6117 6072 6118 6073 6119 … … 6749 6795 6750 6796 6751 <tr> 6752 6753 6754 6755 6756 6757 6758 <td style="vertical-align: top;"> 6759 6760 6761 6762 6763 6764 6765 <p><a name="humidity"></a><b>humidity</b></p> 6766 6767 6768 6769 6770 6771 6772 6773 </td> 6774 6775 6776 6777 6778 6779 6780 <td style="vertical-align: top;">L</td> 6781 6782 6783 6784 6785 6786 6787 6788 <td style="vertical-align: top;"><i>.F.</i></td> 6789 6790 6791 6792 6793 6794 6795 6796 <td style="vertical-align: top;"> 6797 6798 6799 6800 6801 6802 6803 <p>Parameter to 6804 switch on the prognostic equation for specific 6805 humidity q.<br> 6806 6807 6808 6809 6810 6811 6812 </p> 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 <p>The initial vertical 6827 profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a> 6828 and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>. 6829 Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a> 6830 and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br> 6831 6832 6833 6834 6835 6836 6837 6838 </p> 6839 6840 6841 6842 6843 6844 6845 6846 If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a> 6847 = .TRUE.), q becomes the total liquid water content (sum of specific 6848 humidity and liquid water content).</td> 6849 6850 6851 6852 6853 6854 6855 </tr> 6797 6856 6798 6857 6799 … … 7809 7751 7810 7752 7811 <tr> 7812 7813 7814 7815 7816 7817 7818 <td style="vertical-align: top;"> 7819 7820 7821 7822 7823 7824 7825 <p><a name="npex"></a><b>npex</b></p> 7826 7827 7828 7829 7830 7831 7832 </td> 7833 7834 7835 7836 7837 7838 7839 7840 <td style="vertical-align: top;">I</td> 7841 7842 7843 7844 7845 7846 7847 <td style="vertical-align: top;"><br> 7848 7849 7850 7851 7852 7853 7854 </td> 7855 7856 7857 7858 7859 7860 7861 <td style="vertical-align: top;"> 7862 7863 7864 7865 7866 7867 7868 <p>Number of processors 7869 along x-direction of the virtual 7870 processor 7871 net. </p> 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 <p>For parallel runs, the total 7886 number of processors to be used 7887 is given by 7888 the <span style="font-weight: bold;">mrun</span> 7889 option <a href="http://www.muk.uni-hannover.de/software/mrun_beschreibung.html#Opt-X">-X</a>. 7890 By default, depending on the type of the parallel computer, PALM 7891 generates a 1d processor 7892 net (domain decomposition along x, <span style="font-weight: bold;">npey</span> 7893 = <span style="font-style: italic;">1</span>) or a 7894 2d-net (this is 7895 favored on machines with fast communication network). In case of a 7896 2d-net, it is tried to make it more or less square-shaped. If, for 7897 example, 16 processors are assigned (-X 16), a 4 * 4 processor net is 7898 generated (<span style="font-weight: bold;">npex</span> 7899 = <span style="font-style: italic;">4</span>, <span style="font-weight: bold;">npey</span> 7900 = <span style="font-style: italic;">4</span>). 7901 This choice is optimal for square total domains (<a href="#nx">nx</a> 7902 = <a href="#ny">ny</a>), 7903 since then the number of ghost points at the lateral boundarys of 7904 the subdomains is minimal. If <span style="font-weight: bold;">nx</span> 7905 nd <span style="font-weight: bold;">ny</span> 7906 differ extremely, the 7907 processor net should be manually adjusted using adequate values for <span style="font-weight: bold;">npex</span> and <span style="font-weight: bold;">npey</span>. </p> 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 <p><b>Important:</b> The value of <span style="font-weight: bold;">npex</span> * <span style="font-weight: bold;">npey</span> must exactly 7922 correspond to the 7923 value assigned by the <span style="font-weight: bold;">mrun</span>-option 7924 <tt>-X</tt>. 7925 Otherwise the model run will abort with a corresponding error 7926 message. <br> 7927 7928 7929 7930 7931 7932 7933 7934 Additionally, the specification of <span style="font-weight: bold;">npex</span> 7935 and <span style="font-weight: bold;">npey</span> 7936 may of course 7937 override the default setting for the domain decomposition (1d or 2d) 7938 which may have a significant (negative) effect on the code performance. 7939 </p> 7940 7941 7942 7943 7944 7945 7946 </td> 7947 7948 7949 7950 7951 7952 7953 </tr> 7954 7955 7956 7957 7958 7959 7960 <tr> 7961 7962 7963 7964 7965 7966 7967 <td style="vertical-align: top;"> 7968 7969 7970 7971 7972 7973 7974 <p><a name="npey"></a><b>npey</b></p> 7975 7976 7977 7978 7979 7980 7981 7982 </td> 7983 7984 7985 7986 7987 7988 7989 <td style="vertical-align: top;">I</td> 7990 7991 7992 7993 7994 7995 7996 7997 <td style="vertical-align: top;"><br> 7998 7999 8000 8001 8002 8003 8004 </td> 8005 8006 8007 8008 8009 8010 8011 <td style="vertical-align: top;"> 8012 8013 8014 8015 8016 8017 8018 <p>Number of processors 8019 along y-direction of the virtual 8020 processor 8021 net. </p> 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 <p>For further information see <a href="#npex">npex</a>.</p> 8036 8037 8038 8039 8040 8041 8042 </td> 8043 8044 8045 8046 8047 8048 8049 </tr> 7753 7754 7755 7756 7757 7758 7759 7760 8050 7761 8051 7762 … … 11530 11241 11531 11242 11532 <tr> 11243 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="recycling_width"></a>recycling_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#nx">nx</a> * <a href="chapter_4.1.html#dx">dx</a></span></td><td style="vertical-align: top;">Distance of the recycling plane from the inflow boundary (in m).<br><br>This 11244 parameter sets the horizontal extension (along the direction of the 11245 main flow) of the so-called recycling domain which is used to generate 11246 a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). <span style="font-weight: bold;">recycling_width</span> must be larger than the grid spacing (dx) and smaller than the length of the total domain (nx * dx).</td></tr><tr> 11533 11247 11534 11248 … … 14376 14090 = <a href="#scalar_advec">scalar_advec</a> 14377 14091 = '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a> 14378 = <i>'poisfft'</i> or '<i>poisfft_hybrid'</i>,14092 /= <i>'sor</i><i>'</i>, 14379 14093 <i> </i><a href="#alpha_surface">alpha_surface</a> 14380 = 0.0, <a href="#bc_lr">bc_lr</a> = <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>, <a style="" href="#galilei_transformation">galilei_transformation</a>14094 = 0.0,<span style="font-style: italic;"></span> <a style="" href="#galilei_transformation">galilei_transformation</a> 14381 14095 = <span style="font-style: italic;">.F.</span>, <a href="#cloud_physics">cloud_physics </a> = <span style="font-style: italic;">.F.</span>, <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>, <a href="#humidity">humidity</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br> 14382 14096 … … 14952 14666 14953 14667 14954 <tr> 14668 <tr><td style="vertical-align: top;"><a name="turbulent_inflow"></a><span style="font-weight: bold;">turbulent_inflow</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;">Generates a turbulent inflow at side boundaries using a turbulence recycling method.<br><br>Turbulent inflow is realized using the turbulence recycling method from Lund et al. (1998, J. Comp. Phys., <span style="font-weight: bold;">140</span>, 233-258) modified by Kataoka and Mizuno (2002, Wind and Structures, <span style="font-weight: bold;">5</span>, 379-392).<br><br>A turbulent inflow requires Dirichlet conditions at the respective inflow boundary. <span style="font-weight: bold;">So far, a turbulent inflow is realized from the left (west) side only, i.e. </span><a style="font-weight: bold;" href="chapter_4.1.html#bc_lr">bc_lr</a><span style="font-weight: bold;"> =</span><span style="font-style: italic; font-weight: bold;"> 'dirichlet/radiation'</span><span style="font-weight: bold;"> is required!</span><br><br>The initial (quasi-stationary) turbulence field should be generated by a precursor run and used by setting <a href="chapter_4.1.html#initializing_actions">initializing_actions</a> =<span style="font-style: italic;"> 'read_data_for_recycling'</span>.<br><br>The distance of the recycling plane from the inflow boundary can be set with parameter <a href="chapter_4.1.html#recycling_width">recycling_width</a>. 14669 The heigth above ground above which the turbulence signal is not used 14670 for recycling and the width of the layer within the magnitude of 14671 the turbulence signal is damped from 100% to 0% can be set with 14672 parameters <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> and <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>The detailed setup for a turbulent inflow is described in <a href="chapter_3.9.html">chapter 3.9</a>.</td></tr><tr> 14955 14673 14956 14674
Note: See TracChangeset
for help on using the changeset viewer.