Changeset 1645 for palm/trunk
- Timestamp:
- Sep 1, 2015 11:24:37 AM (9 years ago)
- Location:
- palm/trunk/TUTORIAL/SOURCE
- Files:
-
- 10 added
- 24 deleted
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
palm/trunk/TUTORIAL/SOURCE/exercise_interface.tex
r1515 r1645 71 71 \frametitle{Exercise 3: User Interface} 72 72 \begin{itemize} 73 \item Carry out a run for a convective boundary layer where a surface heat flux is given for a limited rectangular area only.73 \item Carry out a run for a convective boundary layer where a surface heat flux is given for a limited rectangular area: 74 74 75 75 \tikzstyle{green} = [rectangle, draw, fill=green!70, minimum size=51pt, font=\tiny] … … 81 81 \uncover<2->{\node [green] (green) {};} 82 82 \uncover<3->{\node [red, rotate=90] (red) {};} 83 \uncover<4->{\node [textd] (textd) { d};}83 \uncover<4->{\node [textd] (textd) {$d$};} 84 84 \uncover<4->{\draw [latex-,line width=0.8pt] (red.south) -- (textd.east);} 85 85 \uncover<4->{\draw [latex-,line width=0.8pt] (red.north) -- (textd.west);} … … 87 87 \end{center} 88 88 89 \item<5-> It should be possible to control the area width dby a user-defined parameter in the parameter file. All other parameters should be chosen as in the example run ({\texttt{\scriptsize example\_cbl}}).89 \item<5-> It should be possible to control the area width $d$ by a user-defined parameter in the parameter file. All other parameters should be chosen as in the example run ({\texttt{\scriptsize example\_cbl}}). 90 90 \item<6-> Create horizontal and vertical cross sections of variables in order to analyze the flow field. 91 \item<7-> Create mean vertical profiles of temperature and resolved/subgrid-scale heatflux for the total domain but also for the limited rectangular area and the total domain without the limited area. Also create time series for these three domains.\\92 This can be done by using the \textbf{statistic region concept} already implemented in PALM.91 92 \only<7->{\scriptsize \textit{Recommendations: Create mean vertical profiles of temperature and resolved/subgrid-scale heatflux for the total domain but also for the limited rectangular area and the total domain without the limited area. Also create time series for these three domains. This can be done by using the \textbf{statistic region concept} already implemented in PALM.}} 93 93 94 94 \end{itemize} … … 101 101 \begin{itemize} 102 102 \item<1-> By default, mean horizontal profiles are calculated and output for the total domain. 103 \item<2-> The user can define up to nine so-called statistic regions, which can be arbitrary subsets of the total domain and PALM will calculate and output mean profiles for these regions too.103 \item<2-> The user can define up to nine so-called statistic regions, which can be arbitrary subsets of the total domain and PALM will calculate and output mean profiles for these regions, too. 104 104 \end{itemize} 105 105 \vspace{1em} 106 106 \onslide<3->\textbf{Procedure:} 107 107 \begin{enumerate} 108 \item<3-> Set the number of statistic regions you additionally want to define by assigning a value to the {\texttt{\scriptsize {\&}inipar}}-parameter {\texttt{\scriptsize statistic\_regions}}.108 \item<3-> Set the number of statistic regions you additionally want to define by assigning a value to the {\texttt{\scriptsize {\&}inipar}}-parameter {\texttt{\scriptsize \textcolor{blue}{statistic\_regions}}}. 109 109 \item<4-> Within the user-interface ({\texttt{\scriptsize user\_init}}), set the masking array {\texttt{\scriptsize rmask}}. It is an {\texttt{\scriptsize INTEGER}} array with array-bounds 110 110 \begin{center} 111 {\texttt{\scriptsize rmask(nysg:nyng,nxlg:nxrg,0: 9)}}111 {\texttt{\scriptsize rmask(nysg:nyng,nxlg:nxrg,0:\textcolor{blue}{statistic\_regions})}} 112 112 \end{center} 113 The last index represents the respective statistic region (index {\texttt{\scriptsize 0}} stands for total domain). Assign a 1 to each array element (grid point) which shall belong to the respective statistic region.\\ 114 {\texttt{\scriptsize rmask}} is pre-set as: 113 The last index represents the respective statistic region (index {\texttt{\scriptsize 0}} stands for total domain). Assign a 1 to each array element (grid point) which shall belong to the respective statistic region. {\texttt{\scriptsize rmask}} is pre-set as: 115 114 \begin{center} 116 {\texttt{\scriptsize rmask(:,:,0: 9) = 1}}115 {\texttt{\scriptsize rmask(:,:,0:\textcolor{blue}{statistic\_regions}) = 1}} 117 116 \end{center} 118 117 \end{enumerate} … … 129 128 {\texttt{\scriptsize shf $=$ shf * rmask(:,:,1)}} 130 129 \end{center} 131 sets the surface heatflux to zero at all those array elements (grid points),where {\texttt{\scriptsize rmask(...,1)}} is zero.130 This sets the surface heatflux to zero at all those array elements (grid points) where {\texttt{\scriptsize rmask(...,1)}} is zero. 132 131 \item<3-> In case of using the default netCDF format, the profile data for the additional statistic regions are added to the default local file {\texttt{\scriptsize DATA\_1D\_PR\_NETCDF}}. 133 \item<4-> The developing mean flow is quasi two-dimensional (in the xz-plane). You can easily get plots of the mean flow by averaging results along the y-axis. The standard output provides such averages. See description of parameter {\texttt{\scriptsize \textcolor{blue}{section\_xz}}} on how to get averages along y.132 \item<4-> The developing mean flow is quasi two-dimensional (in the $xz$-plane). You can easily get plots of the mean flow by averaging results along the $y$-axis. The standard output provides such averages. See description of parameter {\texttt{\scriptsize \textcolor{blue}{section\_xz}}} on how to get averages along $y$. 134 133 \end{itemize} 135 134 \end{frame} … … 137 136 % Folie 5 138 137 \begin{frame} 139 \frametitle{ If You Finished the Exercise Very Fast:}138 \frametitle{Bonus (if you finished the exercise very fast):} 140 139 \begin{itemize} 141 \item<1-> Repeat the simulation, but now for a geostrophic wind of 0.5 m/s 142 \item<2-> The resulting flow will be (should be) quite similar to the flow over an arctic lead. 140 \item<1-> Repeat the simulation, but now for a geostrophic wind of 0.5 m s$^{-1}$ 141 142 (Consider the wind direction!) 143 \item<1-> The resulting flow will be quite similar to the flow over an arctic lead 143 144 \end{itemize} 145 \begin{columns} 146 \begin{column}{8cm} 147 \includegraphics[angle=0,width=0.95\textwidth]{exercise_interface_figures/arctic_lead_nasa_2013.jpg} 148 \end{column} 149 \begin{column}{3cm} 150 \tiny 151 \vspace{-4.8cm} 152 $\Leftarrow$ Image curtesy: NASA, 2013 153 \end{column} 154 \end{columns} 144 155 \end{frame} 145 156 … … 150 161 % Folie 7 151 162 \begin{frame} 152 \frametitle{ XY cross-sections}153 \ begin{center}154 \includegraphics[width=0.415\textwidth]{exercise_interface_figures/xy_shf.eps}155 \includegraphics[ angle=90,width=0.60\textwidth]{exercise_interface_figures/xy_w.eps}\\163 \frametitle{xy cross-sections: vertical velocity and surface heat flux} 164 \vspace{-0.15cm} 165 \begin{center} 166 \includegraphics[width=0.9\textwidth]{exercise_interface_figures/interface_shf.pdf} 156 167 \end{center} 157 168 \end{frame} … … 159 170 % Folie 8 160 171 \begin{frame} 161 \frametitle{vertical profiles (I)}162 \begin{center} 163 \includegraphics[angle= 90,width=0.8\textwidth]{exercise_interface_figures/pr_pt0.eps}172 \frametitle{vertical profiles: potential temperature} 173 \begin{center} 174 \includegraphics[angle=0,width=1.0\textwidth]{exercise_interface_figures/interface_pt.pdf} 164 175 \end{center} 165 176 \end{frame} … … 167 178 % Folie 9 168 179 \begin{frame} 169 \frametitle{XZ cross-sections after 1h (averaged)} 170 \begin{center} 171 \includegraphics[angle=90,width=0.8\textwidth]{exercise_interface_figures/xz_w_avg.eps}\\ 180 \frametitle{xz cross-sections: vertical velocity} 181 \vspace{-0.15cm} 182 \begin{center} 183 \includegraphics[angle=0,width=0.9\textwidth]{exercise_interface_figures/interface_w_av.pdf}\\ 172 184 \end{center} 173 185 \end{frame} … … 175 187 % Folie 10 176 188 \begin{frame} 177 \frametitle{ XZ cross-sections after 1h (instantaneous)}178 \begin{center} 179 \includegraphics[angle= 90,width=0.8\textwidth]{exercise_interface_figures/xz_w_y1000.eps}\\189 \frametitle{vertical profiles: resolved vertical heat flux} 190 \begin{center} 191 \includegraphics[angle=0,width=1.0\textwidth]{exercise_interface_figures/interface_wpt_res.pdf} 180 192 \end{center} 181 193 \end{frame} … … 183 195 % Folie 11 184 196 \begin{frame} 185 \frametitle{vertical profiles (II)}186 \begin{center} 187 \includegraphics[angle= 90,width=0.75\textwidth]{exercise_interface_figures/pr_wpt_resolved.eps}197 \frametitle{vertical profiles: subgrid scale vertical heat flux} 198 \begin{center} 199 \includegraphics[angle=0,width=1.0\textwidth]{exercise_interface_figures/interface_wpt_sgs.pdf} 188 200 \end{center} 189 201 \end{frame} … … 191 203 % Folie 12 192 204 \begin{frame} 193 \frametitle{time series (I)}194 \begin{center} 195 \includegraphics[angle= 90,width=0.7\textwidth]{exercise_interface_figures/ts_pt0.eps}\\205 \frametitle{time series: potential temperature and vertical heat flux} 206 \begin{center} 207 \includegraphics[angle=0,width=0.85\textwidth]{exercise_interface_figures/interface_ts.pdf}\\ 196 208 \end{center} 197 209 \end{frame} … … 199 211 % Folie 13 200 212 \begin{frame} 201 \frametitle{time series (II)} 202 \begin{center} 203 \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/ts_wpt0.eps}\\ 204 \end{center} 205 \end{frame} 206 207 % Folie 14 208 \begin{frame} 209 \frametitle{time series (III)} 210 \begin{center} 211 \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/ts_wpt0_sgs.eps}\\ 212 \end{center} 213 \end{frame} 214 215 % Folie 15 216 \begin{frame} 217 \frametitle{XZ cross-sections (b) - averaged} 218 \begin{center} 219 \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/xz_w_avg_wind.eps} 220 \end{center} 221 \end{frame} 222 223 % Folie 16 224 \begin{frame} 225 \frametitle{XZ cross-sections (b) - instantaneous} 226 \begin{center} 227 \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/xz_w_y250_wind.eps}\\ 228 \end{center} 229 \end{frame} 230 213 \frametitle{Bonus: xz cross-sections: vertical velocity} 214 \vspace{-0.15cm} 215 \begin{center} 216 \includegraphics[angle=0,width=0.9\textwidth]{exercise_interface_figures/interface_lead.pdf} 217 \end{center} 218 \end{frame} 231 219 232 220 \end{document}
Note: See TracChangeset
for help on using the changeset viewer.