- Timestamp:
- Jan 28, 2015 5:13:38 PM (10 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
palm/trunk/TUTORIAL/SOURCE/exercise_cumulus.tex
r1537 r1543 82 82 \frametitle{Hints I} 83 83 84 The setup of this exercise is based on the LES-intercomparison BOMEX (Siebesma et al., 2003, J AS):84 The setup of this exercise is based on the LES-intercomparison BOMEX (Siebesma et al., 2003, J. Atmos. Sci.): 85 85 % \only<2>{\begin{center} 86 86 % \includegraphics[width=0.7\textwidth]{exercise_cumulus_figures/ptq.pdf} … … 145 145 146 146 \texttt{initial\_temperature\_difference = 0.4} 147 \item<5-> Think parallel: Mind that the domain of each PE extends only from \texttt{nxlg} to \texttt{nxrg} and \texttt{nysg} to \texttt{nyng}! 147 \item<5-> Think parallel: Mind that the domain of each PE extends only from \texttt{nxlg} to \texttt{nxrg} and \texttt{nysg} to \texttt{nyng}! (Note that the just mentioned dimensions include ghost points) 148 148 \end{itemize} 149 149 \end{frame} … … 155 155 \begin{itemize} 156 156 \scriptsize 157 \item<2-> PALM offers two bulk cloud physics schemes: A very simple, one-moment scheme by Kessler (1969, M M) and a state-of-the-art two-moment scheme by Seifert and Beheng (2006, MAP).157 \item<2-> PALM offers two bulk cloud physics schemes: A very simple, one-moment scheme by Kessler (1969, Meteor. Monogr.) and a state-of-the-art two-moment scheme by Seifert and Beheng (2006, Meteor. Atmos. Phys.). 158 158 159 159 \item<3-> You will use the saturation adjustment scheme, as applied in the Kessler-scheme, for parameterizing condensation. (Note that this kind of scheme is used in the vast majority of today's bulk cloud physics parameterizations.) … … 245 245 \begin{frame} 246 246 \frametitle{$yz$-cross sections at $t \approx \unit[500]{s}$} 247 % The bubble of warm air rises, but has not reached its condensation level. 248 \begin{center} 249 \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/500.pdf} 247 % The bubble of warm air rises, but has not reached its condensation level. 248 \vspace{-5mm} 249 \begin{center} 250 \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/500.pdf} 250 251 \end{center} 251 252 \end{frame} … … 255 256 \frametitle{$yz$-cross sections at $t \approx \unit[800]{s}$} 256 257 % Condensation starts, and the cloud appears as the the visible top of the rising bubble. 257 \begin{center} 258 \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/800.pdf} 258 \vspace{-5mm} 259 \begin{center} 260 \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/800.pdf} 259 261 \end{center} 260 262 \end{frame} … … 264 266 \frametitle{$yz$-cross sections at $t \approx \unit[1200]{s}$} 265 267 % The cloud is vigorously growing. 266 \begin{center} 267 \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/1200.pdf} 268 \vspace{-5mm} 269 \begin{center} 270 \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/1200.pdf} 268 271 \end{center} 269 272 \end{frame} … … 273 276 \frametitle{$yz$-cross sections at $t \approx \unit[1500]{s}$} 274 277 % The cloud dilutes and dissipates due to turbulent entrainment of environmental air. 275 \begin{center} 276 \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/1500.pdf} 278 \vspace{-5mm} 279 \begin{center} 280 \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/1500.pdf} 277 281 \end{center} 278 282 \end{frame} … … 295 299 {\footnotesize } 296 300 \begin{itemize} 297 \item See frames 9 -- 12: The clouds develops from a rising bubble of warm air ($t \approx \unit[500]{s}$). Reaching the condensation level ($t \approx \unit[800]{s}$), the cloud appears as the bubble s visible top. Afterwards, the cloud starts to grow more vigorously by the release of latent heat ($t \approx \unit[1200]{s}$). In the end of the cloud's life-cycle, the cloud dissipates by turbulent entrainment of environmental air and the subsequent evaporation of the cloud ($t \approx \unit[1500]{s}$).301 \item See frames 9 -- 12: The clouds develops from a rising bubble of warm air ($t \approx \unit[500]{s}$). Reaching the condensation level ($t \approx \unit[800]{s}$), the cloud appears as the bubble's visible top. Afterwards, the cloud starts to grow more vigorously by the release of latent heat ($t \approx \unit[1200]{s}$). In the end of the cloud's life-cycle, the cloud dissipates by turbulent entrainment of environmental air and the subsequent evaporation of the cloud ($t \approx \unit[1500]{s}$). 298 302 \end{itemize} 299 303 \end{frame}
Note: See TracChangeset
for help on using the changeset viewer.