Changeset 1543


Ignore:
Timestamp:
Jan 28, 2015 5:13:38 PM (10 years ago)
Author:
hoffmann
Message:

small changes in exercise on bulk cloud physics

File:
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/exercise_cumulus.tex

    r1537 r1543  
    8282   \frametitle{Hints I}
    8383
    84    The setup of this exercise is based on the LES-intercomparison BOMEX (Siebesma et al., 2003, JAS):
     84   The setup of this exercise is based on the LES-intercomparison BOMEX (Siebesma et al., 2003, J. Atmos. Sci.):
    8585%   \only<2>{\begin{center}
    8686%      \includegraphics[width=0.7\textwidth]{exercise_cumulus_figures/ptq.pdf}
     
    145145     
    146146      \texttt{initial\_temperature\_difference = 0.4}
    147       \item<5-> Think parallel: Mind that the domain of each PE extends only from \texttt{nxlg} to \texttt{nxrg} and \texttt{nysg} to \texttt{nyng}!
     147      \item<5-> Think parallel: Mind that the domain of each PE extends only from \texttt{nxlg} to \texttt{nxrg} and \texttt{nysg} to \texttt{nyng}! (Note that the just mentioned dimensions include ghost points)
    148148    \end{itemize}
    149149\end{frame}
     
    155155   \begin{itemize}
    156156      \scriptsize
    157             \item<2-> PALM offers two bulk cloud physics schemes: A very simple, one-moment scheme by Kessler (1969, MM) and a state-of-the-art two-moment scheme by Seifert and Beheng (2006, MAP).
     157            \item<2-> PALM offers two bulk cloud physics schemes: A very simple, one-moment scheme by Kessler (1969, Meteor. Monogr.) and a state-of-the-art two-moment scheme by Seifert and Beheng (2006, Meteor. Atmos. Phys.).
    158158           
    159159            \item<3-> You will use the saturation adjustment scheme, as applied in the Kessler-scheme, for parameterizing condensation. (Note that this kind of scheme is used in the vast majority of today's bulk cloud physics parameterizations.)
     
    245245\begin{frame}
    246246   \frametitle{$yz$-cross sections at $t \approx \unit[500]{s}$}
    247 %   The bubble of warm air rises, but has not reached its condensation level.
    248    \begin{center}
    249       \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/500.pdf}
     247%   The bubble of warm air rises, but has not reached its condensation level.
     248   \vspace{-5mm}
     249   \begin{center}
     250      \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/500.pdf}
    250251   \end{center}
    251252\end{frame}
     
    255256   \frametitle{$yz$-cross sections at $t \approx \unit[800]{s}$}
    256257%   Condensation starts, and the cloud appears as the the visible top of the rising bubble.
    257    \begin{center}
    258       \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/800.pdf}
     258   \vspace{-5mm}
     259   \begin{center}
     260      \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/800.pdf}
    259261   \end{center}
    260262\end{frame}
     
    264266   \frametitle{$yz$-cross sections at $t \approx \unit[1200]{s}$}
    265267%   The cloud is vigorously growing.
    266    \begin{center}
    267       \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/1200.pdf}
     268   \vspace{-5mm}
     269   \begin{center}
     270      \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/1200.pdf}
    268271   \end{center}
    269272\end{frame}
     
    273276   \frametitle{$yz$-cross sections at $t \approx \unit[1500]{s}$}
    274277%   The cloud dilutes and dissipates due to turbulent entrainment of environmental air.
    275    \begin{center}
    276       \includegraphics[width=1.0\textwidth]{exercise_cumulus_figures/1500.pdf}
     278   \vspace{-5mm}
     279   \begin{center}
     280      \includegraphics[angle=90,width=1.0\textwidth]{exercise_cumulus_figures/1500.pdf}
    277281   \end{center}
    278282\end{frame}
     
    295299   {\footnotesize }
    296300   \begin{itemize}
    297    \item See frames 9 -- 12: The clouds develops from a rising bubble of warm air ($t \approx \unit[500]{s}$). Reaching the condensation level ($t \approx \unit[800]{s}$), the cloud appears as the bubbles visible top. Afterwards, the cloud starts to grow more vigorously by the release of latent heat ($t \approx \unit[1200]{s}$). In the end of the cloud's life-cycle, the cloud dissipates by turbulent entrainment of environmental air and the subsequent evaporation of the cloud ($t \approx \unit[1500]{s}$).
     301   \item See frames 9 -- 12: The clouds develops from a rising bubble of warm air ($t \approx \unit[500]{s}$). Reaching the condensation level ($t \approx \unit[800]{s}$), the cloud appears as the bubble's visible top. Afterwards, the cloud starts to grow more vigorously by the release of latent heat ($t \approx \unit[1200]{s}$). In the end of the cloud's life-cycle, the cloud dissipates by turbulent entrainment of environmental air and the subsequent evaporation of the cloud ($t \approx \unit[1500]{s}$).
    298302   \end{itemize}
    299303\end{frame}
Note: See TracChangeset for help on using the changeset viewer.