Ignore:
Timestamp:
Jul 4, 2013 12:38:18 PM (11 years ago)
Author:
kanani
Message:

typos removed

File:
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/exercise_cbl.tex

    r954 r1198  
    7373   \begin{itemize}
    7474      \scriptsize
    75            \item<6-> domain size: about $\unit[2000 \times 2000 \times 1000]{m}$ ($x$/$y$/$z$)
     75           \item<6-> domain size: about $\unit[2000 \times 2000 \times 1000]{m^3}$ ($x$/$y$/$z$)
    7676           \item<7-> grid size: $\unit[50]{m}$ equidistant
    7777           \item<8-> simulated time:    $\unit[3600]{s}$
     
    7979           \item<10-> heatflux at top: $\unit[0.1]{K\ m\ s^{-1}}$
    8080           \item<11-> initial temperature: $\unit[300]{K}$ everywhere
    81            \item<12-> initial velocity: zero, everywhere
     81           \item<12-> initial velocity: zero everywhere
    8282   \end{itemize} 
    8383\end{frame}
     
    8888   
    8989   \begin{itemize}
    90    \item<1-> How does the flow field looks like after 60 minutes simulated time? (what kind of output do you need to answer this?)
    91    \item<2-> How do the horizontally and temporally averaged vertical temperature and heat flux profile look like?
     90   \item<1-> How does the flow field look like after 60 minutes of simulated time? (What kind of output do you need to answer this?)
     91   \item<2-> How do the horizontally and temporally averaged vertical temperature and heat flux profiles look like?
    9292   \item<3-> Is it really a large-eddy simulation, i.e. are the subgrid-scale fluxes much smaller than the resolved-scale fluxes? (How long should the averaging time interval be?)
    9393   \item<4-> How do the total kinetic energy and the maximum velocity components change in time? Has the flow become stationary?
     
    108108      \begin{itemize}
    109109         \scriptsize
    110          \item[-]<2-> Is controled by grid size (\textcolor{blue}{\texttt{dx}}, \textcolor{blue}{\texttt{dy}}, \textcolor{blue}{\texttt{dz}}) and number of grid points (\textcolor{blue}{\texttt{nx}}, \textcolor{blue}{\texttt{ny}}, \textcolor{blue}{\texttt{nz}}). Since the first grid point along one of the directions has index 0, the total number of grid points used are \textcolor{blue}{\texttt{nx}}+1, \textcolor{blue}{\texttt{ny}}+1, \textcolor{blue}{\texttt{nz}}+1. The total domain size in case of cyclic horizontal boundary conditions is (\textcolor{blue}{\texttt{nx}}+1)*\textcolor{blue}{\texttt{dx}}, (\textcolor{blue}{\texttt{ny}}+1)*\textcolor{blue}{\texttt{dy}}.
     110         \item[-]<2-> Is controlled by grid size (\textcolor{blue}{\texttt{dx}}, \textcolor{blue}{\texttt{dy}}, \textcolor{blue}{\texttt{dz}}) and number of grid points (\textcolor{blue}{\texttt{nx}}, \textcolor{blue}{\texttt{ny}}, \textcolor{blue}{\texttt{nz}}). Since the first grid point along each of the directions has index 0, the total number of grid points used are \textcolor{blue}{\texttt{nx}}+1, \textcolor{blue}{\texttt{ny}}+1, \textcolor{blue}{\texttt{nz}}+1. The total domain size in case of cyclic horizontal boundary conditions is (\textcolor{blue}{\texttt{nx}}+1)*\textcolor{blue}{\texttt{dx}}, (\textcolor{blue}{\texttt{ny}}+1)*\textcolor{blue}{\texttt{dy}}.
    111111      \end{itemize}
    112112     
     
    170170   \frametitle{Further Hints}
    171171
    172    \onslide<2-> You will find some more detailed information to solve this exercise in the PALM-online-documentation under (attention: the documentation is for atmospheric convection with free upper lid):\\
     172   \onslide<2-> You will find some more detailed information to solve this exercise in the PALM-online-documentation under:\\
    173173   \ \\
    174174   \small\url{http://palm.muk.uni-hannover.de/wiki/doc/app/examples/cbl}\\
     175   \ \\
     176   \normalsize (Attention: This documentation is for atmospheric convection with free upper lid.)
    175177   \ \\
    176178   \ \\
Note: See TracChangeset for help on using the changeset viewer.