Changeset 108 for palm/trunk/DOC/app/chapter_4.1.html
- Timestamp:
- Aug 24, 2007 3:10:38 PM (18 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
TabularUnified palm/trunk/DOC/app/chapter_4.1.html ¶
r103 r108 1 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2 <html><head> 3 <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1"><title>PALM chapter 4.1</title></head> 4 <body><h3><a name="chapter4.1"></a>4.1 2 <html> 3 <head> 4 5 6 7 8 9 10 11 <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1"> 12 13 14 15 16 17 18 <title>PALM chapter 4.1</title> 19 </head> 20 21 22 <body> 23 24 25 26 <h3><a name="chapter4.1"></a>4.1 5 27 Initialization parameters</h3> 6 <br><table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2"> <tbody> 7 <tr> <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td> 8 <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td> 9 <td style="vertical-align: top;"> <p><b><font size="4">Default</font></b> <br> <b><font size="4">value</font></b></p> </td> 10 <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td> 11 </tr> <tr> <td style="vertical-align: top;"> 12 <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p> 13 </td> <td style="vertical-align: top;">L</td> 14 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> <td style="vertical-align: top;"> <p style="font-style: normal;">Near-surface adjustment of the 15 mixing length to the Prandtl-layer law. </p> <p>Usually 28 29 30 31 32 <br> 33 34 35 36 <table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2"> 37 38 39 40 <tbody> 41 42 43 44 45 <tr> 46 47 48 49 <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td> 50 51 52 53 54 <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td> 55 56 57 58 59 <td style="vertical-align: top;"> 60 61 62 63 <p><b><font size="4">Default</font></b> <br> 64 65 66 67 <b><font size="4">value</font></b></p> 68 69 70 71 </td> 72 73 74 75 76 <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td> 77 78 79 80 81 </tr> 82 83 84 85 <tr> 86 87 88 89 <td style="vertical-align: top;"> 90 91 92 93 <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p> 94 95 96 97 98 </td> 99 100 101 102 <td style="vertical-align: top;">L</td> 103 104 105 106 107 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> 108 109 110 111 <td style="vertical-align: top;"> 112 113 114 115 <p style="font-style: normal;">Near-surface adjustment of the 116 mixing length to the Prandtl-layer law. </p> 117 118 119 120 121 122 123 124 <p>Usually 16 125 the mixing length in LES models l<sub>LES</sub> 17 126 depends (as in PALM) on the grid size and is possibly restricted … … 25 134 mixing length at 26 135 the bottom boundary and considers the fact that eddy sizes 27 decrease in the vicinity of the wall. </p> <p style="font-style: normal;"><b>Warning:</b> So 136 decrease in the vicinity of the wall. </p> 137 138 139 140 141 142 143 144 <p style="font-style: normal;"><b>Warning:</b> So 28 145 far, there is 29 146 no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> ! </p> 30 <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the 147 148 149 150 151 152 153 154 <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the 31 155 Prandtl-layer being 32 156 switched on (see <a href="#prandtl_layer">prandtl_layer</a>) 33 <span style="font-style: italic;">'(u*)** 2+neumann'</span>157 <span style="font-style: italic;">'(u*)** 2+neumann'</span> 34 158 should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>), 35 159 otherwise the near-surface value of the TKE is not in agreement with … … 37 161 should provide the same value for K<sub>m</sub>). A warning 38 162 is given, 39 if this is not the case.</p> </td> </tr> <tr> 40 <td style="vertical-align: top;"> <p><a name="alpha_surface"></a><b>alpha_surface</b></p> 41 </td> <td style="vertical-align: top;">R<br> </td> 42 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> </td> 43 <td style="vertical-align: top;"> <p style="font-style: normal;">Inclination of the model domain 44 with respect to the horizontal (in degrees). </p> <p style="font-style: normal;">By means of <b>alpha_surface</b> 163 if this is not the case.</p> 164 165 166 167 </td> 168 169 170 171 </tr> 172 173 174 175 <tr> 176 177 178 179 180 <td style="vertical-align: top;"> 181 182 183 184 <p><a name="alpha_surface"></a><b>alpha_surface</b></p> 185 186 187 188 189 </td> 190 191 192 193 <td style="vertical-align: top;">R<br> 194 195 196 197 </td> 198 199 200 201 202 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> 203 204 205 206 </td> 207 208 209 210 211 <td style="vertical-align: top;"> 212 213 214 215 <p style="font-style: normal;">Inclination of the model domain 216 with respect to the horizontal (in degrees). </p> 217 218 219 220 221 222 223 224 <p style="font-style: normal;">By means of <b>alpha_surface</b> 45 225 the model domain can be inclined in x-direction with respect to the 46 226 horizontal. In this way flows over inclined surfaces (e.g. drainage 47 227 flows, gravity flows) can be simulated. In case of <b>alpha_surface 48 </b>/= <span style="font-style: italic;">0</span>228 </b>/= <span style="font-style: italic;">0</span> 49 229 the buoyancy term 50 230 appears both in 51 231 the equation of motion of the u-component and of the w-component.<br> 52 </p> <p style="font-style: normal;">An inclination 232 233 234 235 236 </p> 237 238 239 240 241 242 243 244 <p style="font-style: normal;">An inclination 53 245 is only possible in 54 246 case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a> 55 247 and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p> 56 <p>Runs with inclined surface still require additional 248 249 250 251 252 253 254 255 <p>Runs with inclined surface still require additional 57 256 user-defined code as well as modifications to the default code. Please 58 257 ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM 59 developer group</a>.</p> </td> </tr> 60 <tr> <td style="vertical-align: top;"> <p><a name="bc_e_b"></a><b>bc_e_b</b></p> </td> 61 <td style="vertical-align: top;">C * 20</td> <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 62 <td style="vertical-align: top;"> <p style="font-style: normal;">Bottom boundary condition of the 63 TKE. </p> <p><b>bc_e_b</b> may be 258 developer group</a>.</p> 259 260 261 262 </td> 263 264 265 266 </tr> 267 268 269 270 271 <tr> 272 273 274 275 <td style="vertical-align: top;"> 276 277 278 279 <p><a name="bc_e_b"></a><b>bc_e_b</b></p> 280 281 282 283 </td> 284 285 286 287 288 <td style="vertical-align: top;">C * 20</td> 289 290 291 292 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 293 294 295 296 297 <td style="vertical-align: top;"> 298 299 300 301 <p style="font-style: normal;">Bottom boundary condition of the 302 TKE. </p> 303 304 305 306 307 308 309 310 <p><b>bc_e_b</b> may be 64 311 set to <span style="font-style: italic;">'neumann'</span> 65 312 or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>. 66 <b>bc_e_b</b>313 <b>bc_e_b</b> 67 314 = <span style="font-style: italic;">'neumann'</span> 68 315 yields to … … 76 323 is reset 77 324 to <span style="font-style: italic;">'neumann'</span>. 78 </p> <p style="font-style: normal;">At the top 325 </p> 326 327 328 329 330 331 332 333 <p style="font-style: normal;">At the top 79 334 boundary a Neumann 80 boundary condition is generally used: (e(nz+1) = e(nz)).</p> </td> 81 </tr> <tr> <td style="vertical-align: top;"> 82 <p><a name="bc_lr"></a><b>bc_lr</b></p> 83 </td> <td style="vertical-align: top;">C * 20</td> 84 <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td> 85 <td style="vertical-align: top;">Boundary 86 condition along x (for all quantities).<br> <br> 87 By default, a cyclic boundary condition is used along x.<br> <br> 88 <span style="font-weight: bold;">bc_lr</span> may 335 boundary condition is generally used: (e(nz+1) = e(nz)).</p> 336 337 338 339 </td> 340 341 342 343 344 </tr> 345 346 347 348 <tr> 349 350 351 352 <td style="vertical-align: top;"> 353 354 355 356 <p><a name="bc_lr"></a><b>bc_lr</b></p> 357 358 359 360 361 </td> 362 363 364 365 <td style="vertical-align: top;">C * 20</td> 366 367 368 369 370 <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td> 371 372 373 374 375 <td style="vertical-align: top;">Boundary 376 condition along x (for all quantities).<br> 377 378 379 380 <br> 381 382 383 384 385 By default, a cyclic boundary condition is used along x.<br> 386 387 388 389 <br> 390 391 392 393 394 <span style="font-weight: bold;">bc_lr</span> may 89 395 also be 90 396 assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span> … … 93 399 right, outflow to the left). This requires the multi-grid method to be 94 400 used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>) 95 and it also requires cyclic boundary conditions along y (see <a href="#bc_ns">bc_ns</a>).<br> <br> 401 and it also requires cyclic boundary conditions along y (see <a href="#bc_ns">bc_ns</a>).<br> 402 403 404 405 <br> 406 407 408 409 96 410 In case of these non-cyclic lateral boundaries, a Dirichlet condition 97 411 is used at the inflow for all quantities (initial vertical profiles - … … 101 415 gradient) condition is used for the scalars. For perturbation 102 416 pressure Neumann (zero gradient) conditions are assumed both at the 103 inflow and at the outflow.<br> <br> 417 inflow and at the outflow.<br> 418 419 420 421 <br> 422 423 424 425 104 426 When using non-cyclic lateral boundaries, a filter is applied to the 105 427 velocity field in the vicinity of the outflow in order to suppress any 106 428 reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a> 107 429 and <a href="#outflow_damping_width">outflow_damping_width</a>).<br> 108 <br> 430 431 432 433 434 <br> 435 436 437 438 109 439 In order to maintain a turbulent state of the flow, it may be 110 440 neccessary to continuously impose perturbations on the horizontal … … 115 445 and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>. 116 446 The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>, 117 <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,447 <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>, 118 448 and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>. 119 449 The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br> 120 <br> 450 451 452 453 454 <br> 455 456 457 458 121 459 In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver 122 at_all_substeps</a> = .T. should be used.<br> <br> <span style="font-weight: bold;">Note:</span><br> 460 at_all_substeps</a> = .T. should be used.<br> 461 462 463 464 <br> 465 466 467 468 <span style="font-weight: bold;">Note:</span><br> 469 470 471 472 123 473 Using non-cyclic lateral boundaries requires very sensitive adjustments 124 474 of the inflow (vertical profiles) and the bottom boundary conditions, 125 475 e.g. a surface heating should not be applied near the inflow boundary 126 476 because this may significantly disturb the inflow. Please check the 127 model results very carefully.</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="bc_ns"></a><b>bc_ns</b></p> 128 </td> <td style="vertical-align: top;">C * 20</td> 129 <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td> 130 <td style="vertical-align: top;">Boundary 131 condition along y (for all quantities).<br> <br> 132 By default, a cyclic boundary condition is used along y.<br> <br> 133 <span style="font-weight: bold;">bc_ns</span> may 477 model results very carefully.</td> 478 479 480 481 </tr> 482 483 484 485 <tr> 486 487 488 489 <td style="vertical-align: top;"> 490 491 492 493 <p><a name="bc_ns"></a><b>bc_ns</b></p> 494 495 496 497 498 </td> 499 500 501 502 <td style="vertical-align: top;">C * 20</td> 503 504 505 506 507 <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td> 508 509 510 511 512 <td style="vertical-align: top;">Boundary 513 condition along y (for all quantities).<br> 514 515 516 517 <br> 518 519 520 521 522 By default, a cyclic boundary condition is used along y.<br> 523 524 525 526 <br> 527 528 529 530 531 <span style="font-weight: bold;">bc_ns</span> may 134 532 also be 135 533 assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span> … … 139 537 method to be used for solving the Poisson equation for perturbation 140 538 pressure (see <a href="chapter_4.2.html#psolver">psolver</a>) 141 and it also requires cyclic boundary conditions along x (see<br> <a href="#bc_lr">bc_lr</a>).<br> <br> 539 and it also requires cyclic boundary conditions along x (see<br> 540 541 542 543 <a href="#bc_lr">bc_lr</a>).<br> 544 545 546 547 <br> 548 549 550 551 142 552 In case of these non-cyclic lateral boundaries, a Dirichlet condition 143 553 is used at the inflow for all quantities (initial vertical profiles - … … 147 557 gradient) condition is used for the scalars. For perturbation 148 558 pressure Neumann (zero gradient) conditions are assumed both at the 149 inflow and at the outflow.<br> <br> 559 inflow and at the outflow.<br> 560 561 562 563 <br> 564 565 566 567 150 568 For further details regarding non-cyclic lateral boundary conditions 151 see <a href="#bc_lr">bc_lr</a>.</td> </tr> 152 <tr> <td style="vertical-align: top;"> <p><a name="bc_p_b"></a><b>bc_p_b</b></p> </td> 153 <td style="vertical-align: top;">C * 20</td> <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 154 <td style="vertical-align: top;"> <p style="font-style: normal;">Bottom boundary condition of the 155 perturbation pressure. </p> <p>Allowed values 569 see <a href="#bc_lr">bc_lr</a>.</td> 570 571 572 573 </tr> 574 575 576 577 578 <tr> 579 580 581 582 <td style="vertical-align: top;"> 583 584 585 586 <p><a name="bc_p_b"></a><b>bc_p_b</b></p> 587 588 589 590 </td> 591 592 593 594 595 <td style="vertical-align: top;">C * 20</td> 596 597 598 599 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 600 601 602 603 604 <td style="vertical-align: top;"> 605 606 607 608 <p style="font-style: normal;">Bottom boundary condition of the 609 perturbation pressure. </p> 610 611 612 613 614 615 616 617 <p>Allowed values 156 618 are <span style="font-style: italic;">'dirichlet'</span>, 157 <span style="font-style: italic;">'neumann'</span>619 <span style="font-style: italic;">'neumann'</span> 158 620 and <span style="font-style: italic;">'neumann+inhomo'</span>. 159 <span style="font-style: italic;">'dirichlet'</span>621 <span style="font-style: italic;">'dirichlet'</span> 160 622 sets 161 623 p(k=0)=0.0, <span style="font-style: italic;">'neumann'</span> … … 168 630 1209)). This condition is only permitted with the Prandtl-layer 169 631 switched on (<a href="#prandtl_layer">prandtl_layer</a>), 170 otherwise the run is terminated. </p> <p>Since 632 otherwise the run is terminated. </p> 633 634 635 636 637 638 639 640 <p>Since 171 641 at the bottom boundary of the model the vertical 172 642 velocity … … 177 647 conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>) 178 648 usually yields no consistent solution for the perturbation pressure and 179 should be avoided.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="bc_p_t"></a><b>bc_p_t</b></p> 180 </td> <td style="vertical-align: top;">C * 20</td> 181 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 182 <td style="vertical-align: top;"> <p style="font-style: normal;">Top boundary condition of the 183 perturbation pressure. </p> <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span> 649 should be avoided.</p> 650 651 652 653 </td> 654 655 656 657 </tr> 658 659 660 661 <tr> 662 663 664 665 <td style="vertical-align: top;"> 666 667 668 669 <p><a name="bc_p_t"></a><b>bc_p_t</b></p> 670 671 672 673 674 </td> 675 676 677 678 <td style="vertical-align: top;">C * 20</td> 679 680 681 682 683 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 684 685 686 687 688 <td style="vertical-align: top;"> 689 690 691 692 <p style="font-style: normal;">Top boundary condition of the 693 perturbation pressure. </p> 694 695 696 697 698 699 700 701 <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span> 184 702 (p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span> 185 (p(k=nz+1)=p(k=nz)). </p> <p>Simultaneous use 703 (p(k=nz+1)=p(k=nz)). </p> 704 705 706 707 708 709 710 711 <p>Simultaneous use 186 712 of Neumann boundary conditions both at the 187 713 top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>) … … 189 715 should be avoided. Since at the bottom boundary the Neumann 190 716 condition is a good choice (see <a href="#bc_p_b">bc_p_b</a>), 191 a Dirichlet condition should be set at the top boundary.</p> </td> 192 </tr> <tr> <td style="vertical-align: top;"> 193 <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p> 194 </td> <td style="vertical-align: top;">C*20</td> 195 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 196 <td style="vertical-align: top;"> <p style="font-style: normal;">Bottom boundary condition of the 197 potential temperature. </p> <p>Allowed values 717 a Dirichlet condition should be set at the top boundary.</p> 718 719 720 721 </td> 722 723 724 725 726 </tr> 727 728 729 730 <tr> 731 732 733 734 <td style="vertical-align: top;"> 735 736 737 738 <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p> 739 740 741 742 743 </td> 744 745 746 747 <td style="vertical-align: top;">C*20</td> 748 749 750 751 752 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 753 754 755 756 757 <td style="vertical-align: top;"> 758 759 760 761 <p style="font-style: normal;">Bottom boundary condition of the 762 potential temperature. </p> 763 764 765 766 767 768 769 770 <p>Allowed values 198 771 are <span style="font-style: italic;">'dirichlet'</span> 199 772 (pt(k=0) = const. = <a href="#pt_surface">pt_surface</a> … … 202 775 and <span style="font-style: italic;">'neumann'</span> 203 776 (pt(k=0)=pt(k=1)). <br> 777 778 779 780 204 781 When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b> 205 782 = <span style="font-style: italic;">'neumann'</span> 206 783 must be used, because otherwise the resolved scale may contribute to 207 784 the surface flux so that a constant value cannot be guaranteed.</p> 208 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p> 209 </td> <td style="vertical-align: top;">C * 20</td> 210 <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td> 211 <td style="vertical-align: top;"> <p style="font-style: normal;">Top boundary condition of the 212 potential temperature. </p> <p>Allowed are the 785 786 787 788 789 790 791 <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable, <a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p> 792 793 794 795 796 </td> 797 798 799 800 </tr> 801 802 803 804 <tr> 805 806 807 808 <td style="vertical-align: top;"> 809 810 811 812 <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p> 813 814 815 816 817 </td> 818 819 820 821 <td style="vertical-align: top;">C * 20</td> 822 823 824 825 826 <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td> 827 828 829 830 831 <td style="vertical-align: top;"> 832 833 834 835 <p style="font-style: normal;">Top boundary condition of the 836 potential temperature. </p> 837 838 839 840 841 842 843 844 <p>Allowed are the 213 845 values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1) 214 846 does not change during the run), <span style="font-style: italic;">'neumann'</span> … … 218 850 calculated from the initial 219 851 temperature profile (see <a href="#pt_surface">pt_surface</a>, 220 <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)852 <a href="#pt_vertical_gradient">pt_vertical_gradient</a>) 221 853 by bc_pt_t_val = (pt_init(k=nz+1) - 222 854 pt_init(k=nz)) / dzu(nz+1).<br> 855 856 857 858 223 859 Using this value (assumed constant during the 224 860 run) the temperature boundary values are calculated as </p> 225 <ul> <p style="font-style: normal;">pt(k=nz+1) = 861 862 863 864 865 866 867 868 <ul> 869 870 871 872 873 874 875 876 <p style="font-style: normal;">pt(k=nz+1) = 226 877 pt(k=nz) + 227 bc_pt_t_val * dzu(nz+1)</p> </ul> <p style="font-style: normal;">(up to k=nz the prognostic 878 bc_pt_t_val * dzu(nz+1)</p> 879 880 881 882 883 884 885 886 </ul> 887 888 889 890 891 892 893 894 <p style="font-style: normal;">(up to k=nz the prognostic 228 895 equation for the temperature is solved).<br> 896 897 898 899 229 900 When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>), 230 <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span>901 <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span> 231 902 must be used, because otherwise the resolved scale may contribute to 232 the top flux so that a constant value cannot be guaranteed.</p> </td> 233 </tr> <tr> <td style="vertical-align: top;"> 234 <p><a name="bc_q_b"></a><b>bc_q_b</b></p> 235 </td> <td style="vertical-align: top;">C * 20</td> 236 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 237 <td style="vertical-align: top;"> <p style="font-style: normal;">Bottom boundary condition of the 238 specific humidity / total water content. </p> <p>Allowed 903 the top flux so that a constant value cannot be guaranteed.</p> 904 905 906 907 </td> 908 909 910 911 912 </tr> 913 914 915 916 <tr> 917 918 919 920 <td style="vertical-align: top;"> 921 922 923 924 <p><a name="bc_q_b"></a><b>bc_q_b</b></p> 925 926 927 928 929 </td> 930 931 932 933 <td style="vertical-align: top;">C * 20</td> 934 935 936 937 938 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 939 940 941 942 943 <td style="vertical-align: top;"> 944 945 946 947 <p style="font-style: normal;">Bottom boundary condition of the 948 specific humidity / total water content. </p> 949 950 951 952 953 954 955 956 <p>Allowed 239 957 values are <span style="font-style: italic;">'dirichlet'</span> 240 958 (q(k=0) = const. = <a href="#q_surface">q_surface</a> … … 243 961 and <span style="font-style: italic;">'neumann'</span> 244 962 (q(k=0)=q(k=1)). <br> 963 964 965 966 245 967 When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b> 246 968 = <span style="font-style: italic;">'neumann'</span> 247 969 must be used, because otherwise the resolved scale may contribute to 248 970 the surface flux so that a constant value cannot be guaranteed.</p> 249 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="bc_q_t"></a><b>bc_q_t</b></p> 250 </td> <td style="vertical-align: top;"><span style="font-style: italic;">C 251 * 20</span></td> <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 252 <td style="vertical-align: top;"> <p style="font-style: normal;">Top boundary condition of the 253 specific humidity / total water content. </p> <p>Allowed 971 972 973 974 975 </td> 976 977 978 979 </tr> 980 981 982 983 <tr> 984 985 986 987 <td style="vertical-align: top;"> 988 989 990 991 <p><a name="bc_q_t"></a><b>bc_q_t</b></p> 992 993 994 995 996 </td> 997 998 999 1000 <td style="vertical-align: top;"><span style="font-style: italic;">C 1001 * 20</span></td> 1002 1003 1004 1005 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 1006 1007 1008 1009 1010 <td style="vertical-align: top;"> 1011 1012 1013 1014 <p style="font-style: normal;">Top boundary condition of the 1015 specific humidity / total water content. </p> 1016 1017 1018 1019 1020 1021 1022 1023 <p>Allowed 254 1024 are the values <span style="font-style: italic;">'dirichlet'</span> 255 1025 (q(k=nz) and q(k=nz+1) do … … 259 1029 from the 260 1030 initial humidity profile (see <a href="#q_surface">q_surface</a>, 261 <a href="#q_vertical_gradient">q_vertical_gradient</a>)1031 <a href="#q_vertical_gradient">q_vertical_gradient</a>) 262 1032 by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br> 1033 1034 1035 1036 263 1037 Using this value (assumed constant during the run) the humidity 264 1038 boundary values 265 are calculated as </p> <ul> <p style="font-style: normal;">q(k=nz+1) =q(k=nz) + 266 bc_q_t_val * dzu(nz+1)</p> </ul> <p style="font-style: normal;">(up tp k=nz the prognostic 267 equation for q is solved). </p> </td> </tr> <tr> 268 <td style="vertical-align: top;"> <p><a name="bc_s_b"></a><b>bc_s_b</b></p> </td> 269 <td style="vertical-align: top;">C * 20</td> <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 270 <td style="vertical-align: top;"> <p style="font-style: normal;">Bottom boundary condition of the 271 scalar concentration. </p> <p>Allowed values 1039 are calculated as </p> 1040 1041 1042 1043 1044 1045 1046 1047 <ul> 1048 1049 1050 1051 1052 1053 1054 1055 <p style="font-style: normal;">q(k=nz+1) =q(k=nz) + 1056 bc_q_t_val * dzu(nz+1)</p> 1057 1058 1059 1060 1061 1062 1063 1064 </ul> 1065 1066 1067 1068 1069 1070 1071 1072 <p style="font-style: normal;">(up tp k=nz the prognostic 1073 equation for q is solved). </p> 1074 1075 1076 1077 </td> 1078 1079 1080 1081 </tr> 1082 1083 1084 1085 <tr> 1086 1087 1088 1089 1090 <td style="vertical-align: top;"> 1091 1092 1093 1094 <p><a name="bc_s_b"></a><b>bc_s_b</b></p> 1095 1096 1097 1098 </td> 1099 1100 1101 1102 1103 <td style="vertical-align: top;">C * 20</td> 1104 1105 1106 1107 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 1108 1109 1110 1111 1112 <td style="vertical-align: top;"> 1113 1114 1115 1116 <p style="font-style: normal;">Bottom boundary condition of the 1117 scalar concentration. </p> 1118 1119 1120 1121 1122 1123 1124 1125 <p>Allowed values 272 1126 are <span style="font-style: italic;">'dirichlet'</span> 273 1127 (s(k=0) = const. = <a href="#s_surface">s_surface</a> … … 277 1131 (s(k=0) = 278 1132 s(k=1)). <br> 1133 1134 1135 1136 279 1137 When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b> 280 1138 = <span style="font-style: italic;">'neumann'</span> 281 1139 must be used, because otherwise the resolved scale may contribute to 282 1140 the surface flux so that a constant value cannot be guaranteed.</p> 283 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="bc_s_t"></a><b>bc_s_t</b></p> 284 </td> <td style="vertical-align: top;">C * 20</td> 285 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 286 <td style="vertical-align: top;"> <p style="font-style: normal;">Top boundary condition of the 287 scalar concentration. </p> <p>Allowed are the 1141 1142 1143 1144 1145 </td> 1146 1147 1148 1149 </tr> 1150 1151 1152 1153 <tr> 1154 1155 1156 1157 <td style="vertical-align: top;"> 1158 1159 1160 1161 <p><a name="bc_s_t"></a><b>bc_s_t</b></p> 1162 1163 1164 1165 1166 </td> 1167 1168 1169 1170 <td style="vertical-align: top;">C * 20</td> 1171 1172 1173 1174 1175 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 1176 1177 1178 1179 1180 <td style="vertical-align: top;"> 1181 1182 1183 1184 <p style="font-style: normal;">Top boundary condition of the 1185 scalar concentration. </p> 1186 1187 1188 1189 1190 1191 1192 1193 <p>Allowed are the 288 1194 values <span style="font-style: italic;">'dirichlet'</span> 289 1195 (s(k=nz) and s(k=nz+1) do … … 294 1200 from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>) 295 1201 by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br> 1202 1203 1204 1205 296 1206 Using this value (assumed constant during the run) the concentration 297 1207 boundary values 298 are calculated as </p> <ul> <p style="font-style: normal;">s(k=nz+1) = s(k=nz) + 299 bc_s_t_val * dzu(nz+1)</p> </ul> <p style="font-style: normal;">(up to k=nz the prognostic 1208 are calculated as </p> 1209 1210 1211 1212 1213 1214 1215 1216 <ul> 1217 1218 1219 1220 1221 1222 1223 1224 <p style="font-style: normal;">s(k=nz+1) = s(k=nz) + 1225 bc_s_t_val * dzu(nz+1)</p> 1226 1227 1228 1229 1230 1231 1232 1233 </ul> 1234 1235 1236 1237 1238 1239 1240 1241 <p style="font-style: normal;">(up to k=nz the prognostic 300 1242 equation for the scalar concentration is 301 solved).</p> </td> </tr> <tr><td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td><td style="vertical-align: top;">C * 20</td><td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td><td style="vertical-align: top;"><p style="font-style: normal;">Top boundary condition of the salinity. </p> <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p><p style="font-style: normal;">Allowed are the 1243 solved).</p> 1244 1245 1246 1247 </td> 1248 1249 1250 1251 </tr> 1252 1253 1254 1255 <tr> 1256 1257 1258 1259 <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td> 1260 1261 1262 1263 <td style="vertical-align: top;">C * 20</td> 1264 1265 1266 1267 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> 1268 1269 1270 1271 <td style="vertical-align: top;"> 1272 1273 1274 1275 <p style="font-style: normal;">Top boundary condition of the salinity. </p> 1276 1277 1278 1279 1280 1281 1282 1283 <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p> 1284 1285 1286 1287 1288 1289 1290 <p style="font-style: normal;">Allowed are the 302 1291 values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1) 303 1292 does not change during the run) and <span style="font-style: italic;">'neumann'</span> 304 (sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>. <br><br> 1293 (sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>. <br> 1294 1295 1296 1297 <br> 1298 1299 1300 1301 305 1302 When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>), 306 <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span>1303 <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span> 307 1304 must be used, because otherwise the resolved scale may contribute to 308 the top flux so that a constant value cannot be guaranteed.</p></td></tr><tr> <td style="vertical-align: top;"> <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p> 309 </td> <td style="vertical-align: top;">C * 20</td> 310 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 311 <td style="vertical-align: top;"> <p style="font-style: normal;">Bottom boundary condition of the 312 horizontal velocity components u and v. </p> <p>Allowed 1305 the top flux so that a constant value cannot be guaranteed.</p> 1306 1307 1308 1309 </td> 1310 1311 1312 1313 </tr> 1314 1315 1316 1317 <tr> 1318 1319 1320 1321 <td style="vertical-align: top;"> 1322 1323 1324 1325 <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p> 1326 1327 1328 1329 1330 </td> 1331 1332 1333 1334 <td style="vertical-align: top;">C * 20</td> 1335 1336 1337 1338 1339 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 1340 1341 1342 1343 1344 <td style="vertical-align: top;"> 1345 1346 1347 1348 <p style="font-style: normal;">Bottom boundary condition of the 1349 horizontal velocity components u and v. </p> 1350 1351 1352 1353 1354 1355 1356 1357 <p>Allowed 313 1358 values are <span style="font-style: italic;">'dirichlet' </span>and 314 <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>1359 <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b> 315 1360 = <span style="font-style: italic;">'dirichlet'</span> 316 1361 yields the … … 319 1364 (below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 * 320 1365 dz. u=v=0 at the bottom is guaranteed using mirror boundary 321 condition: </p> <ul> <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = - 322 v(k=1)</p> </ul> <p style="font-style: normal;">The 1366 condition: </p> 1367 1368 1369 1370 1371 1372 1373 1374 <ul> 1375 1376 1377 1378 1379 1380 1381 1382 <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = - 1383 v(k=1)</p> 1384 1385 1386 1387 1388 1389 1390 1391 </ul> 1392 1393 1394 1395 1396 1397 1398 1399 <p style="font-style: normal;">The 323 1400 Neumann boundary condition 324 1401 yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) = … … 326 1403 With Prandtl - layer switched on, the free-slip condition is not 327 1404 allowed (otherwise the run will be terminated)<font color="#000000">.</font></p> 328 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p> 329 </td> <td style="vertical-align: top;">C * 20</td> 330 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 331 <td style="vertical-align: top;"> <p style="font-style: normal;">Top boundary condition of the 332 horizontal velocity components u and v. </p> <p>Allowed 1405 1406 1407 1408 1409 </td> 1410 1411 1412 1413 </tr> 1414 1415 1416 1417 <tr> 1418 1419 1420 1421 <td style="vertical-align: top;"> 1422 1423 1424 1425 <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p> 1426 1427 1428 1429 1430 </td> 1431 1432 1433 1434 <td style="vertical-align: top;">C * 20</td> 1435 1436 1437 1438 1439 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> 1440 1441 1442 1443 1444 <td style="vertical-align: top;"> 1445 1446 1447 1448 <p style="font-style: normal;">Top boundary condition of the 1449 horizontal velocity components u and v. </p> 1450 1451 1452 1453 1454 1455 1456 1457 <p>Allowed 333 1458 values are <span style="font-style: italic;">'dirichlet'</span> 334 1459 and <span style="font-style: italic;">'neumann'</span>. … … 338 1463 Neumann condition yields the free-slip condition with u(k=nz+1) = 339 1464 u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations 340 for the velocities are solved).</p> </td> </tr> <tr><td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td style="vertical-align: top;"><p>Kinematic salinity flux near the surface (in psu m/s). </p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).<p>The 1465 for the velocities are solved).</p> 1466 1467 1468 1469 1470 1471 1472 <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a> is internally set ('neumann') and does not need to be prescribed.</p> 1473 1474 1475 1476 </td> 1477 1478 1479 1480 </tr> 1481 1482 1483 1484 <tr> 1485 1486 1487 1488 <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td> 1489 1490 1491 1492 <td style="vertical-align: top;">R</td> 1493 1494 1495 1496 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> 1497 1498 1499 1500 <td style="vertical-align: top;"> 1501 1502 1503 1504 <p>Kinematic salinity flux near the surface (in psu m/s). </p> 1505 1506 1507 1508 This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>). 1509 1510 1511 1512 <p>The 341 1513 respective salinity flux value is used 342 1514 as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann 343 condition must be used for the salinity, which is currently the only available condition.<br> </p> </td></tr><tr> 344 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td> 345 <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> <td>Height 346 of a single building in m.<br> <br> <span style="font-weight: bold;">building_height</span> must 1515 condition must be used for the salinity, which is currently the only available condition.<br> 1516 1517 1518 1519 </p> 1520 1521 1522 1523 </td> 1524 1525 1526 1527 </tr> 1528 1529 1530 1531 <tr> 1532 1533 1534 1535 1536 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td> 1537 1538 1539 1540 1541 <td style="vertical-align: top;">R</td> 1542 1543 1544 1545 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> 1546 1547 1548 1549 <td>Height 1550 of a single building in m.<br> 1551 1552 1553 1554 <br> 1555 1556 1557 1558 <span style="font-weight: bold;">building_height</span> must 347 1559 be less than the height of the model domain. This parameter requires 348 1560 the use of <a href="#topography">topography</a> 349 1561 = <span style="font-style: italic;">'single_building'</span>.</td> 350 </tr> <tr> <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td> 351 <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> <td><span style="font-style: italic;"></span>Width of a single 352 building in m.<br> <br> 1562 1563 1564 1565 1566 </tr> 1567 1568 1569 1570 <tr> 1571 1572 1573 1574 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td> 1575 1576 1577 1578 1579 <td style="vertical-align: top;">R</td> 1580 1581 1582 1583 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> 1584 1585 1586 1587 <td><span style="font-style: italic;"></span>Width of a single 1588 building in m.<br> 1589 1590 1591 1592 <br> 1593 1594 1595 1596 353 1597 Currently, <span style="font-weight: bold;">building_length_x</span> 354 1598 must be at least <span style="font-style: italic;">3 355 1599 * </span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">( </span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a> 356 </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>.1600 </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>. 357 1601 This parameter requires the use of <a href="#topography">topography</a> 358 1602 = <span style="font-style: italic;">'single_building'</span>.</td> 359 </tr> <tr> <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td> 360 <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> <td>Depth 361 of a single building in m.<br> <br> 1603 1604 1605 1606 1607 </tr> 1608 1609 1610 1611 <tr> 1612 1613 1614 1615 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td> 1616 1617 1618 1619 1620 <td style="vertical-align: top;">R</td> 1621 1622 1623 1624 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> 1625 1626 1627 1628 <td>Depth 1629 of a single building in m.<br> 1630 1631 1632 1633 <br> 1634 1635 1636 1637 362 1638 Currently, <span style="font-weight: bold;">building_length_y</span> 363 1639 must be at least <span style="font-style: italic;">3 … … 365 1641 the use of <a href="#topography">topography</a> 366 1642 = <span style="font-style: italic;">'single_building'</span>.</td> 367 </tr> <tr> <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td> 368 <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td> 369 <td>x-coordinate of the left building wall (distance between the 1643 1644 1645 1646 1647 </tr> 1648 1649 1650 1651 <tr> 1652 1653 1654 1655 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td> 1656 1657 1658 1659 1660 <td style="vertical-align: top;">R</td> 1661 1662 1663 1664 <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td> 1665 1666 1667 1668 1669 <td>x-coordinate of the left building wall (distance between the 370 1670 left building wall and the left border of the model domain) in m.<br> 371 <br> 1671 1672 1673 1674 1675 <br> 1676 1677 1678 1679 372 1680 Currently, <span style="font-weight: bold;">building_wall_left</span> 373 1681 must be at least <span style="font-style: italic;">1 … … 376 1684 This parameter requires the use of <a href="#topography">topography</a> 377 1685 = <span style="font-style: italic;">'single_building'</span>.<br> 378 <br> 1686 1687 1688 1689 1690 <br> 1691 1692 1693 1694 379 1695 The default value <span style="font-weight: bold;">building_wall_left</span> 380 1696 = <span style="font-style: italic;">( ( <a href="#nx">nx</a> + 381 1697 1 ) * <a href="#dx">dx</a> - <a href="#building_length_x">building_length_x</a> ) / 2</span> 382 centers the building in x-direction. </td> </tr> <tr> 383 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td> 384 <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td> 385 <td>y-coordinate of the South building wall (distance between the 1698 centers the building in x-direction. </td> 1699 1700 1701 1702 </tr> 1703 1704 1705 1706 <tr> 1707 1708 1709 1710 1711 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td> 1712 1713 1714 1715 1716 <td style="vertical-align: top;">R</td> 1717 1718 1719 1720 <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td> 1721 1722 1723 1724 1725 <td>y-coordinate of the South building wall (distance between the 386 1726 South building wall and the South border of the model domain) in m.<br> 387 <br> 1727 1728 1729 1730 1731 <br> 1732 1733 1734 1735 388 1736 Currently, <span style="font-weight: bold;">building_wall_south</span> 389 1737 must be at least <span style="font-style: italic;">1 … … 392 1740 This parameter requires the use of <a href="#topography">topography</a> 393 1741 = <span style="font-style: italic;">'single_building'</span>.<br> 394 <br> 1742 1743 1744 1745 1746 <br> 1747 1748 1749 1750 395 1751 The default value <span style="font-weight: bold;">building_wall_south</span> 396 1752 = <span style="font-style: italic;">( ( <a href="#ny">ny</a> + 397 1753 1 ) * <a href="#dy">dy</a> - <a href="#building_length_y">building_length_y</a> ) / 2</span> 398 centers the building in y-direction. </td> </tr> <tr> 399 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br> 400 </td> <td style="vertical-align: top;">L<br> </td> 401 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br> </td> 402 <td style="vertical-align: top;">Parameter to switch on 403 usage of cloud droplets.<br> <br> 1754 centers the building in y-direction. </td> 1755 1756 1757 1758 </tr> 1759 1760 1761 1762 <tr> 1763 1764 1765 1766 1767 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br> 1768 1769 1770 1771 1772 </td> 1773 1774 1775 1776 <td style="vertical-align: top;">L<br> 1777 1778 1779 1780 </td> 1781 1782 1783 1784 1785 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br> 1786 1787 1788 1789 </td> 1790 1791 1792 1793 1794 <td style="vertical-align: top;">Parameter to switch on 1795 usage of cloud droplets.<br> 1796 1797 1798 1799 <br> 1800 1801 1802 1803 404 1804 Cloud droplets require to use the particle package (<span style="font-weight: bold;">mrun</span>-option <span style="font-family: monospace;">-p particles</span>), 405 1805 so in this case a particle corresponds to a droplet. The droplet … … 408 1808 The real number of initial droplets in a grid cell is equal to the 409 1809 initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a> 410 <span lang="en-GB"><font face="Thorndale, serif">and411 </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)1810 <span lang="en-GB"><font face="Thorndale, serif">and 1811 </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>) 412 1812 times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br> 413 <br> 1813 1814 1815 1816 1817 <br> 1818 1819 1820 1821 414 1822 In case of using cloud droplets, the default condensation scheme in 415 1823 PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a> 416 1824 must be set <span style="font-style: italic;">.F.</span>.<br> 417 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="cloud_physics"></a><b>cloud_physics</b></p> 418 </td> <td style="vertical-align: top;">L<br> </td> 419 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> <td style="vertical-align: top;"> <p>Parameter to switch 1825 1826 1827 1828 1829 </td> 1830 1831 1832 1833 </tr> 1834 1835 1836 1837 <tr> 1838 1839 1840 1841 <td style="vertical-align: top;"> 1842 1843 1844 1845 <p><a name="cloud_physics"></a><b>cloud_physics</b></p> 1846 1847 1848 1849 1850 </td> 1851 1852 1853 1854 <td style="vertical-align: top;">L<br> 1855 1856 1857 1858 </td> 1859 1860 1861 1862 1863 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> 1864 1865 1866 1867 <td style="vertical-align: top;"> 1868 1869 1870 1871 <p>Parameter to switch 420 1872 on the condensation scheme. </p> 1873 1874 1875 1876 421 1877 For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations 422 1878 for the … … 428 1884 unsaturated (0%-or-100%-scheme). A simple precipitation scheme can 429 1885 additionally be switched on with parameter <a href="#precipitation">precipitation</a>. 430 Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br> <b><br> 1886 Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br> 1887 1888 1889 1890 <b><br> 1891 1892 1893 1894 431 1895 cloud_physics =</b> <span style="font-style: italic;">.TRUE. 432 </span>requires <a href="#humidity">humidity</a>1896 </span>requires <a href="#humidity">humidity</a> 433 1897 =<span style="font-style: italic;"> .TRUE.</span> .<br> 1898 1899 1900 1901 434 1902 Detailed information about the condensation scheme is given in the 435 1903 description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud 436 physics module</a> (pdf-file, only in German).<br> <br> 1904 physics module</a> (pdf-file, only in German).<br> 1905 1906 1907 1908 <br> 1909 1910 1911 1912 437 1913 This condensation scheme is not allowed if cloud droplets are simulated 438 1914 explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br> 439 </td> </tr> <tr> <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td> 440 <td style="vertical-align: top;">L</td> <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> <td>Conservation 441 of volume flow in x- and y-direction.<br> <br> <span style="font-weight: bold;">conserve_volume_flow</span> 1915 1916 1917 1918 1919 </td> 1920 1921 1922 1923 </tr> 1924 1925 1926 1927 <tr> 1928 1929 1930 1931 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td> 1932 1933 1934 1935 1936 <td style="vertical-align: top;">L</td> 1937 1938 1939 1940 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> 1941 1942 1943 1944 <td>Conservation 1945 of volume flow in x- and y-direction.<br> 1946 1947 1948 1949 <br> 1950 1951 1952 1953 <span style="font-weight: bold;">conserve_volume_flow</span> 442 1954 = <span style="font-style: italic;">.TRUE.</span> 443 1955 guarantees that the volume flow through the xz- or yz-cross-section of 444 1956 the total model domain remains constant (equal to the initial value at 445 1957 t=0) throughout the run.<br> 446 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p> 447 </td> <td style="vertical-align: top;">L</td> 448 <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td> <td style="vertical-align: top;"> <p>Cuts off of 1958 1959 1960 1961 1962 </td> 1963 1964 1965 1966 </tr> 1967 1968 1969 1970 <tr> 1971 1972 1973 1974 <td style="vertical-align: top;"> 1975 1976 1977 1978 <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p> 1979 1980 1981 1982 1983 </td> 1984 1985 1986 1987 <td style="vertical-align: top;">L</td> 1988 1989 1990 1991 1992 <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td> 1993 1994 1995 1996 <td style="vertical-align: top;"> 1997 1998 1999 2000 <p>Cuts off of 449 2001 so-called overshoots, which can occur with the 450 upstream-spline scheme. </p> <p><font color="#000000">The cubic splines tend to overshoot in 2002 upstream-spline scheme. </p> 2003 2004 2005 2006 2007 2008 2009 2010 <p><font color="#000000">The cubic splines tend to overshoot in 451 2011 case of discontinuous changes of variables between neighbouring grid 452 2012 points.</font><font color="#ff0000"> </font><font color="#000000">This … … 459 2019 respective adjacent grid points. This interval can be adjusted 460 2020 seperately for every prognostic variable (see initialization parameters 461 <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,2021 <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>, 462 2022 etc.). This might be necessary in case that the 463 2023 default interval has a non-tolerable effect on the model 464 results. </p> <p>Overshoots may also be removed 2024 results. </p> 2025 2026 2027 2028 2029 2030 2031 2032 <p>Overshoots may also be removed 465 2033 using the parameters <a href="#ups_limit_e">ups_limit_e</a>, 466 <a href="#ups_limit_pt">ups_limit_pt</a>,2034 <a href="#ups_limit_pt">ups_limit_pt</a>, 467 2035 etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p> 468 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p> 469 </td> <td style="vertical-align: top;">R</td> 470 <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td> 471 <td style="vertical-align: top;"> <p>Height where 2036 2037 2038 2039 2040 </td> 2041 2042 2043 2044 </tr> 2045 2046 2047 2048 <tr> 2049 2050 2051 2052 <td style="vertical-align: top;"> 2053 2054 2055 2056 <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p> 2057 2058 2059 2060 2061 </td> 2062 2063 2064 2065 <td style="vertical-align: top;">R</td> 2066 2067 2068 2069 2070 <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td> 2071 2072 2073 2074 2075 <td style="vertical-align: top;"> 2076 2077 2078 2079 <p>Height where 472 2080 the damping layer begins in the 1d-model 473 (in m). </p> <p>This parameter is used to 2081 (in m). </p> 2082 2083 2084 2085 2086 2087 2088 2089 <p>This parameter is used to 474 2090 switch on a damping layer for the 475 2091 1d-model, which is generally needed for the damping of inertia … … 482 2098 The values of K<sub>m</sub> are limited to 10 m**2/s at 483 2099 maximum. <br> 2100 2101 2102 2103 484 2104 This parameter only comes into effect if the 1d-model is switched on 485 2105 for 486 2106 the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a> 487 2107 = <span style="font-style: italic;">'set_1d-model_profiles'</span>. 488 <br> </p> </td> </tr> <tr> <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br> 489 </td> <td style="vertical-align: top;">C*20<br> 490 </td> <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;"> <span style="font-style: italic;">model'</span><br> </td> 491 <td style="vertical-align: top;">Calculation method for 2108 <br> 2109 2110 2111 2112 </p> 2113 2114 2115 2116 </td> 2117 2118 2119 2120 </tr> 2121 2122 2123 2124 <tr> 2125 2126 2127 2128 <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br> 2129 2130 2131 2132 2133 </td> 2134 2135 2136 2137 <td style="vertical-align: top;">C*20<br> 2138 2139 2140 2141 2142 </td> 2143 2144 2145 2146 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;"> 2147 2148 2149 2150 <span style="font-style: italic;">model'</span><br> 2151 2152 2153 2154 </td> 2155 2156 2157 2158 2159 <td style="vertical-align: top;">Calculation method for 492 2160 the energy dissipation term in the TKE equation of the 1d-model.<br> 493 <br> 2161 2162 2163 2164 2165 <br> 2166 2167 2168 2169 494 2170 By default the dissipation is calculated as in the 3d-model using diss 495 = (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br> <br> 2171 = (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br> 2172 2173 2174 2175 <br> 2176 2177 2178 2179 496 2180 Setting <span style="font-weight: bold;">dissipation_1d</span> 497 2181 = <span style="font-style: italic;">'detering'</span> 498 2182 forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br> 499 </td> </tr> 500 <tr> <td style="vertical-align: top;"> <p><a name="dt"></a><b>dt</b></p> </td> 501 <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td> 502 <td style="vertical-align: top;"> <p>Time step for 503 the 3d-model (in s). </p> <p>By default, (i.e. 2183 2184 2185 2186 2187 </td> 2188 2189 2190 2191 </tr> 2192 2193 2194 2195 2196 <tr> 2197 2198 2199 2200 <td style="vertical-align: top;"> 2201 2202 2203 2204 <p><a name="dt"></a><b>dt</b></p> 2205 2206 2207 2208 </td> 2209 2210 2211 2212 2213 <td style="vertical-align: top;">R</td> 2214 2215 2216 2217 <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td> 2218 2219 2220 2221 2222 <td style="vertical-align: top;"> 2223 2224 2225 2226 <p>Time step for 2227 the 3d-model (in s). </p> 2228 2229 2230 2231 2232 2233 2234 2235 <p>By default, (i.e. 504 2236 if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>) 505 2237 the value of the time step is calculating after each time step 506 2238 (following the time step criteria) and 507 used for the next step.</p> <p>If the user assigns <b>dt</b> 2239 used for the next step.</p> 2240 2241 2242 2243 2244 2245 2246 2247 <p>If the user assigns <b>dt</b> 508 2248 a value, then the time step is 509 2249 fixed to this value throughout the whole run (whether it fulfills the … … 511 2251 criteria or not). However, changes are allowed for restart runs, 512 2252 because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run 513 parameter</a>. </p> <p>In case that the 514 calculated time step meets the condition<br> </p> <ul> 515 <p><b>dt</b> < 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max 516 = 20.0)</p> </ul> <p>the simulation will be 2253 parameter</a>. </p> 2254 2255 2256 2257 2258 2259 2260 2261 <p>In case that the 2262 calculated time step meets the condition<br> 2263 2264 2265 2266 </p> 2267 2268 2269 2270 2271 2272 2273 2274 <ul> 2275 2276 2277 2278 2279 2280 2281 2282 <p><b>dt</b> < 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max 2283 = 20.0)</p> 2284 2285 2286 2287 2288 2289 2290 2291 </ul> 2292 2293 2294 2295 2296 2297 2298 2299 <p>the simulation will be 517 2300 aborted. Such situations usually arise 518 2301 in case of any numerical problem / instability which causes a 519 non-realistic increase of the wind speed. </p> <p>A 2302 non-realistic increase of the wind speed. </p> 2303 2304 2305 2306 2307 2308 2309 2310 <p>A 520 2311 small time step due to a large mean horizontal windspeed 521 2312 speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>), 522 in order to spare CPU time.<br> </p> <p>If the 2313 in order to spare CPU time.<br> 2314 2315 2316 2317 </p> 2318 2319 2320 2321 2322 2323 2324 2325 <p>If the 523 2326 leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>) 524 2327 a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a> … … 538 2341 does not change at all. By doing so, permanent time step changes as 539 2342 well as large 540 sudden changes (increases) in the time step are avoided.</p> </td> 541 </tr> <tr> <td style="vertical-align: top;"> 542 <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p> 543 </td> <td style="vertical-align: top;">R</td> 544 <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td> 545 <td style="vertical-align: top;"> <p>Temporal 2343 sudden changes (increases) in the time step are avoided.</p> 2344 2345 2346 2347 </td> 2348 2349 2350 2351 2352 </tr> 2353 2354 2355 2356 <tr> 2357 2358 2359 2360 <td style="vertical-align: top;"> 2361 2362 2363 2364 <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p> 2365 2366 2367 2368 2369 </td> 2370 2371 2372 2373 <td style="vertical-align: top;">R</td> 2374 2375 2376 2377 2378 <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td> 2379 2380 2381 2382 2383 <td style="vertical-align: top;"> 2384 2385 2386 2387 <p>Temporal 546 2388 interval of vertical profile output of the 1D-model 547 (in s). </p> <p>Data are written in ASCII 2389 (in s). </p> 2390 2391 2392 2393 2394 2395 2396 2397 <p>Data are written in ASCII 548 2398 format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>. 549 2399 This parameter is only in effect if the 1d-model has been switched on … … 551 2401 initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a> 552 2402 = <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p> 553 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p> 554 </td> <td style="vertical-align: top;">R</td> 555 <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td> <td style="vertical-align: top;"> <p>Temporal interval of 2403 2404 2405 2406 2407 </td> 2408 2409 2410 2411 </tr> 2412 2413 2414 2415 <tr> 2416 2417 2418 2419 <td style="vertical-align: top;"> 2420 2421 2422 2423 <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p> 2424 2425 2426 2427 2428 </td> 2429 2430 2431 2432 <td style="vertical-align: top;">R</td> 2433 2434 2435 2436 2437 <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td> 2438 2439 2440 2441 <td style="vertical-align: top;"> 2442 2443 2444 2445 <p>Temporal interval of 556 2446 runtime control output of the 1d-model 557 (in s). </p> <p>Data are written in ASCII 2447 (in s). </p> 2448 2449 2450 2451 2452 2453 2454 2455 <p>Data are written in ASCII 558 2456 format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>. 559 2457 This parameter is only in effect if the 1d-model is switched on for the 560 2458 initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a> 561 2459 = <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p> 562 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="dx"></a><b>dx</b></p> 563 </td> <td style="vertical-align: top;">R</td> 564 <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td> <td style="vertical-align: top;"> <p>Horizontal grid 565 spacing along the x-direction (in m). </p> <p>Along 566 x-direction only a constant grid spacing is allowed.</p> </td> 567 </tr> <tr> <td style="vertical-align: top;"> 568 <p><a name="dy"></a><b>dy</b></p> 569 </td> <td style="vertical-align: top;">R</td> 570 <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td> <td style="vertical-align: top;"> <p>Horizontal grid 571 spacing along the y-direction (in m). </p> <p>Along y-direction only a constant grid spacing is allowed.</p> </td> 572 </tr> <tr> <td style="vertical-align: top;"> 573 <p><a name="dz"></a><b>dz</b></p> 574 </td> <td style="vertical-align: top;">R</td> 575 <td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p>Vertical grid 576 spacing (in m). </p> <p>This parameter must be 2460 2461 2462 2463 2464 </td> 2465 2466 2467 2468 </tr> 2469 2470 2471 2472 <tr> 2473 2474 2475 2476 <td style="vertical-align: top;"> 2477 2478 2479 2480 <p><a name="dx"></a><b>dx</b></p> 2481 2482 2483 2484 2485 </td> 2486 2487 2488 2489 <td style="vertical-align: top;">R</td> 2490 2491 2492 2493 2494 <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td> 2495 2496 2497 2498 <td style="vertical-align: top;"> 2499 2500 2501 2502 <p>Horizontal grid 2503 spacing along the x-direction (in m). </p> 2504 2505 2506 2507 2508 2509 2510 2511 <p>Along 2512 x-direction only a constant grid spacing is allowed.</p> 2513 2514 2515 2516 2517 2518 2519 <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> 2520 and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> 2521 2522 2523 2524 </td> 2525 2526 2527 2528 2529 </tr> 2530 2531 2532 2533 <tr> 2534 2535 2536 2537 <td style="vertical-align: top;"> 2538 2539 2540 2541 <p><a name="dy"></a><b>dy</b></p> 2542 2543 2544 2545 2546 </td> 2547 2548 2549 2550 <td style="vertical-align: top;">R</td> 2551 2552 2553 2554 2555 <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td> 2556 2557 2558 2559 <td style="vertical-align: top;"> 2560 2561 2562 2563 <p>Horizontal grid 2564 spacing along the y-direction (in m). </p> 2565 2566 2567 2568 2569 2570 2571 2572 <p>Along y-direction only a constant grid spacing is allowed.</p> 2573 2574 2575 2576 2577 2578 2579 <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> 2580 and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> 2581 2582 2583 2584 </td> 2585 2586 2587 2588 2589 </tr> 2590 2591 2592 2593 <tr> 2594 2595 2596 2597 <td style="vertical-align: top;"> 2598 2599 2600 2601 <p><a name="dz"></a><b>dz</b></p> 2602 2603 2604 2605 2606 </td> 2607 2608 2609 2610 <td style="vertical-align: top;">R</td> 2611 2612 2613 2614 2615 <td style="vertical-align: top;"><br> 2616 2617 2618 2619 </td> 2620 2621 2622 2623 <td style="vertical-align: top;"> 2624 2625 2626 2627 <p>Vertical grid 2628 spacing (in m). </p> 2629 2630 2631 2632 2633 2634 2635 2636 <p>This parameter must be 577 2637 assigned by the user, because no 578 default value is given.<br> </p> <p>By default, the 2638 default value is given.<br> 2639 2640 2641 2642 </p> 2643 2644 2645 2646 2647 2648 2649 2650 <p>By default, the 579 2651 model uses constant grid spacing along z-direction, but it can be 580 2652 stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a> 581 2653 and <a href="#dz_stretch_factor">dz_stretch_factor</a>. 582 In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br> </p> <p>Assuming 2654 In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br> 2655 2656 2657 2658 </p> 2659 2660 2661 2662 2663 2664 2665 2666 <p>Assuming 583 2667 a constant <span style="font-weight: bold;">dz</span>, 584 2668 the scalar levels (zu) are calculated directly by: </p> 585 <ul> <p>zu(0) = - dz * 0.5 <br> 586 zu(1) = dz * 0.5</p> </ul> <p>The w-levels lie 587 half between them: </p> <ul> <p>zw(k) = 588 ( zu(k) + zu(k+1) ) * 0.5</p> </ul> </td> </tr> 589 <tr><td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td><td style="vertical-align: top;">Allowed maximum vertical grid 590 spacing (in m).<br><br>If the vertical grid is stretched 2669 2670 2671 2672 2673 2674 2675 2676 <ul> 2677 2678 2679 2680 2681 2682 2683 2684 <p>zu(0) = - dz * 0.5 <br> 2685 2686 2687 2688 2689 zu(1) = dz * 0.5</p> 2690 2691 2692 2693 2694 2695 2696 2697 </ul> 2698 2699 2700 2701 2702 2703 2704 2705 <p>The w-levels lie 2706 half between them: </p> 2707 2708 2709 2710 2711 2712 2713 2714 <ul> 2715 2716 2717 2718 2719 2720 2721 2722 <p>zw(k) = 2723 ( zu(k) + zu(k+1) ) * 0.5</p> 2724 2725 2726 2727 2728 2729 2730 2731 </ul> 2732 2733 2734 2735 </td> 2736 2737 2738 2739 </tr> 2740 2741 2742 2743 2744 <tr> 2745 2746 2747 2748 <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td> 2749 2750 2751 2752 <td style="vertical-align: top;">R</td> 2753 2754 2755 2756 <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td> 2757 2758 2759 2760 <td style="vertical-align: top;">Allowed maximum vertical grid 2761 spacing (in m).<br> 2762 2763 2764 2765 <br> 2766 2767 2768 2769 If the vertical grid is stretched 591 2770 (see <a href="#dz_stretch_factor">dz_stretch_factor</a> 592 2771 and <a href="#dz_stretch_level">dz_stretch_level</a>), 593 <span style="font-weight: bold;">dz_max</span> can 594 be used to limit the vertical grid spacing.</td></tr><tr> 595 <td style="vertical-align: top;"> <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p> 596 </td> <td style="vertical-align: top;">R</td> 597 <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td> <td style="vertical-align: top;"> <p>Stretch factor for a 2772 <span style="font-weight: bold;">dz_max</span> can 2773 be used to limit the vertical grid spacing.</td> 2774 2775 2776 2777 </tr> 2778 2779 2780 2781 <tr> 2782 2783 2784 2785 2786 <td style="vertical-align: top;"> 2787 2788 2789 2790 <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p> 2791 2792 2793 2794 2795 </td> 2796 2797 2798 2799 <td style="vertical-align: top;">R</td> 2800 2801 2802 2803 2804 <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td> 2805 2806 2807 2808 <td style="vertical-align: top;"> 2809 2810 2811 2812 <p>Stretch factor for a 598 2813 vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>). 599 </p> <p>The stretch factor should not exceed a value of 2814 </p> 2815 2816 2817 2818 2819 2820 2821 2822 <p>The stretch factor should not exceed a value of 600 2823 approx. 1.10 - 601 2824 1.12, otherwise the discretization errors due to the stretched grid not 602 negligible any more. (refer Kalnay de Rivas)</p> </td> </tr> 603 <tr> <td style="vertical-align: top;"> <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p> 604 </td> <td style="vertical-align: top;">R</td> 605 <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br> </td> 606 <td style="vertical-align: top;"> <p>Height level 607 above which the grid is to be stretched 608 vertically (in m). </p> <p>The vertical grid 2825 negligible any more. (refer Kalnay de Rivas)</p> 2826 2827 2828 2829 </td> 2830 2831 2832 2833 </tr> 2834 2835 2836 2837 2838 <tr> 2839 2840 2841 2842 <td style="vertical-align: top;"> 2843 2844 2845 2846 <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p> 2847 2848 2849 2850 2851 </td> 2852 2853 2854 2855 <td style="vertical-align: top;">R</td> 2856 2857 2858 2859 2860 <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br> 2861 2862 2863 2864 </td> 2865 2866 2867 2868 2869 <td style="vertical-align: top;"> 2870 2871 2872 2873 <p>Height level 2874 above/below which the grid is to be stretched 2875 vertically (in m). </p> 2876 2877 2878 2879 2880 2881 2882 2883 <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m) <span style="font-weight: bold;">above </span>which the grid is to be stretched 2884 vertically. The vertical grid 609 2885 spacings <a href="#dz">dz</a> 610 above this level are calculated as </p> <ul> <p><b>dz</b>(k+1) 2886 above this level are calculated as </p> 2887 2888 2889 2890 2891 2892 2893 2894 <ul> 2895 2896 2897 2898 2899 2900 2901 2902 <p><b>dz</b>(k+1) 611 2903 = <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p> 612 </ul> <p>and used as spacings for the scalar levels (zu). 2904 2905 2906 2907 2908 2909 2910 2911 </ul> 2912 2913 2914 2915 2916 2917 2918 2919 <p>and used as spacings for the scalar levels (zu). 613 2920 The 614 w-levels are then defined as: </p> <ul> <p>zw(k) 615 = ( zu(k) + zu(k+1) ) * 0.5</p> </ul> </td> </tr> 616 <tr> <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td> 617 <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> <td>Minimum 2921 w-levels are then defined as: </p> 2922 2923 2924 2925 2926 2927 2928 2929 <ul> 2930 2931 2932 2933 2934 2935 2936 2937 <p>zw(k) 2938 = ( zu(k) + zu(k+1) ) * 0.5. 2939 2940 2941 2942 </p> 2943 2944 2945 </ul> 2946 2947 2948 <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched 2949 vertically. The vertical grid 2950 spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as 2951 2952 2953 2954 </p> 2955 2956 2957 <ul> 2958 2959 2960 <p><b>dz</b>(k-1) 2961 = <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p> 2962 2963 2964 </ul> 2965 2966 2967 2968 </td> 2969 2970 2971 2972 </tr> 2973 2974 2975 2976 2977 <tr> 2978 2979 2980 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td> 2981 2982 2983 <td style="vertical-align: top;">R</td> 2984 2985 2986 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> 2987 2988 2989 <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br> 2990 2991 2992 2993 2994 <br> 2995 2996 2997 2998 This 2999 option prescribes an initial subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if <a href="#km_constant">km_constant</a> is not set.</td> 3000 3001 3002 </tr> 3003 3004 3005 <tr> 3006 3007 3008 3009 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td> 3010 3011 3012 3013 3014 <td style="vertical-align: top;">R</td> 3015 3016 3017 3018 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> 3019 3020 3021 3022 <td>Minimum 618 3023 subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br> 619 <br>This 3024 3025 3026 3027 3028 <br> 3029 3030 3031 3032 This 620 3033 option adds artificial viscosity to the flow by ensuring that 621 3034 the 622 subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td> </tr> 623 <tr> <td style="vertical-align: top;"> <p><a name="end_time_1d"></a><b>end_time_1d</b></p> 624 </td> <td style="vertical-align: top;">R</td> 625 <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br> </td> 626 <td style="vertical-align: top;"> <p>Time to be 627 simulated for the 1d-model (in s). </p> <p>The 3035 subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td> 3036 3037 3038 3039 </tr> 3040 3041 3042 3043 3044 <tr> 3045 3046 3047 3048 <td style="vertical-align: top;"> 3049 3050 3051 3052 <p><a name="end_time_1d"></a><b>end_time_1d</b></p> 3053 3054 3055 3056 3057 </td> 3058 3059 3060 3061 <td style="vertical-align: top;">R</td> 3062 3063 3064 3065 3066 <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br> 3067 3068 3069 3070 </td> 3071 3072 3073 3074 3075 <td style="vertical-align: top;"> 3076 3077 3078 3079 <p>Time to be 3080 simulated for the 1d-model (in s). </p> 3081 3082 3083 3084 3085 3086 3087 3088 <p>The 628 3089 default value corresponds to a simulated time of 10 days. 629 3090 Usually, after such a period the inertia oscillations have completely … … 633 3094 initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a> 634 3095 = <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p> 635 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="fft_method"></a><b>fft_method</b></p> 636 </td> <td style="vertical-align: top;">C * 20</td> 637 <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;"> <span style="font-style: italic;">specific'</span></td> 638 <td style="vertical-align: top;"> <p>FFT-method to 639 be used.<br> </p> <p><br> 3096 3097 3098 3099 3100 </td> 3101 3102 3103 3104 </tr> 3105 3106 3107 3108 <tr> 3109 3110 3111 3112 <td style="vertical-align: top;"> 3113 3114 3115 3116 <p><a name="fft_method"></a><b>fft_method</b></p> 3117 3118 3119 3120 3121 </td> 3122 3123 3124 3125 <td style="vertical-align: top;">C * 20</td> 3126 3127 3128 3129 3130 <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;"> 3131 3132 3133 3134 <span style="font-style: italic;">specific'</span></td> 3135 3136 3137 3138 3139 <td style="vertical-align: top;"> 3140 3141 3142 3143 <p>FFT-method to 3144 be used.<br> 3145 3146 3147 3148 </p> 3149 3150 3151 3152 3153 3154 3155 3156 <p><br> 3157 3158 3159 3160 640 3161 The fast fourier transformation (FFT) is used for solving the 641 3162 perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>) 642 3163 and for calculating power spectra (see optional software packages, 643 3164 section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p> 644 <p><br> 3165 3166 3167 3168 3169 3170 3171 3172 <p><br> 3173 3174 3175 3176 645 3177 By default, system-specific, optimized routines from external 646 3178 vendor libraries are used. However, these are available only on certain 647 3179 computers and there are more or less severe restrictions concerning the 648 number of gridpoints to be used with them.<br> </p> <p>There 3180 number of gridpoints to be used with them.<br> 3181 3182 3183 3184 </p> 3185 3186 3187 3188 3189 3190 3191 3192 <p>There 649 3193 are two other PALM internal methods available on every 650 3194 machine (their respective source code is part of the PALM source code):</p> 651 <p>1.: The <span style="font-weight: bold;">Temperton</span>-method 3195 3196 3197 3198 3199 3200 3201 3202 <p>1.: The <span style="font-weight: bold;">Temperton</span>-method 652 3203 from Clive Temperton (ECWMF) which is computationally very fast and 653 3204 switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>. 654 3205 The number of horizontal gridpoints (nx+1, ny+1) to be used with this 655 method must be composed of prime factors 2, 3 and 5.<br> </p> 3206 method must be composed of prime factors 2, 3 and 5.<br> 3207 3208 3209 3210 </p> 3211 3212 3213 3214 656 3215 2.: The <span style="font-weight: bold;">Singleton</span>-method 657 3216 which is very slow but has no restrictions concerning the number of 658 3217 gridpoints to be used with, switched on with <b>fft_method</b> 659 3218 = <span style="font-style: italic;">'singleton-algorithm'</span>. 660 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p> 661 </td> <td style="vertical-align: top;">L</td> 662 <td style="vertical-align: top;"><i>.F.</i></td> 663 <td style="vertical-align: top;">Application of a 3219 </td> 3220 3221 3222 3223 </tr> 3224 3225 3226 3227 <tr> 3228 3229 3230 3231 <td style="vertical-align: top;"> 3232 3233 3234 3235 <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p> 3236 3237 3238 3239 3240 </td> 3241 3242 3243 3244 <td style="vertical-align: top;">L</td> 3245 3246 3247 3248 3249 <td style="vertical-align: top;"><i>.F.</i></td> 3250 3251 3252 3253 3254 <td style="vertical-align: top;">Application of a 664 3255 Galilei-transformation to the 665 3256 coordinate 666 system of the model.<br><p>With <b>galilei_transformation</b> 3257 system of the model.<br> 3258 3259 3260 3261 3262 3263 3264 <p>With <b>galilei_transformation</b> 667 3265 = <i>.T.,</i> a so-called 668 3266 Galilei-transformation is switched on which ensures that the coordinate … … 680 3278 each case, the distance the coordinate system has been moved is written 681 3279 to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>. 682 </p> <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a> 3280 </p> 3281 3282 3283 3284 3285 3286 3287 3288 <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a> 683 3289 and <a href="#bc_ns">bc_ns</a>), the specification 684 3290 of a gestrophic 685 3291 wind that is not constant with height 686 3292 as well as e.g. stationary inhomogeneities at the bottom boundary do 687 not allow the use of this transformation.</p> </td> </tr> 688 <tr> <td style="vertical-align: top;"> <p><a name="grid_matching"></a><b>grid_matching</b></p> 689 </td> <td style="vertical-align: top;">C * 6</td> 690 <td style="vertical-align: top;"><span style="font-style: italic;">'match'</span></td> <td style="vertical-align: top;">Variable to adjust the 3293 not allow the use of this transformation.</p> 3294 3295 3296 3297 </td> 3298 3299 3300 3301 </tr> 3302 3303 3304 3305 3306 <tr> 3307 3308 3309 3310 <td style="vertical-align: top;"> 3311 3312 3313 3314 <p><a name="grid_matching"></a><b>grid_matching</b></p> 3315 3316 3317 3318 3319 </td> 3320 3321 3322 3323 <td style="vertical-align: top;">C * 6</td> 3324 3325 3326 3327 3328 <td style="vertical-align: top;"><span style="font-style: italic;">'match'</span></td> 3329 3330 3331 3332 <td style="vertical-align: top;">Variable to adjust the 691 3333 subdomain 692 sizes in parallel runs.<br> <br> 3334 sizes in parallel runs.<br> 3335 3336 3337 3338 <br> 3339 3340 3341 3342 693 3343 For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>, 694 3344 the subdomains are forced to have an identical … … 699 3349 and <a href="#nz">nz</a>). 700 3350 Advantage of this method is that all PEs bear the same computational 701 load.<br> <br> 3351 load.<br> 3352 3353 3354 3355 <br> 3356 3357 3358 3359 702 3360 There is no such restriction by default, because then smaller 703 3361 subdomains are allowed on those processors which … … 707 3365 the grid point numbers used. Information about the respective settings 708 3366 are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br> 709 <br> 3367 3368 3369 3370 3371 <br> 3372 3373 3374 3375 710 3376 When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>) 711 3377 only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span> 712 is allowed.<br> <br> <b>Note:</b><br> 3378 is allowed.<br> 3379 3380 3381 3382 <br> 3383 3384 3385 3386 <b>Note:</b><br> 3387 3388 3389 3390 713 3391 In some cases for small processor numbers there may be a very bad load 714 3392 balancing among the 715 processors which may reduce the performance of the code.</td> </tr> 716 <tr> <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br> 717 begin</b></td> <td style="vertical-align: top;">I</td> 718 <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;"> <span style="font-style: italic;">nx/2 or ny/2)</span></td> 719 <td style="vertical-align: top;">Lower 3393 processors which may reduce the performance of the code.</td> 3394 3395 3396 3397 </tr> 3398 3399 3400 3401 3402 <tr> 3403 3404 3405 3406 <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br> 3407 3408 3409 3410 3411 begin</b></td> 3412 3413 3414 3415 <td style="vertical-align: top;">I</td> 3416 3417 3418 3419 3420 <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;"> 3421 3422 3423 3424 <span style="font-style: italic;">nx/2 or ny/2)</span></td> 3425 3426 3427 3428 3429 <td style="vertical-align: top;">Lower 720 3430 limit of the horizontal range for which random perturbations are to be 721 imposed on the horizontal velocity field (gridpoints).<br> <br> 3431 imposed on the horizontal velocity field (gridpoints).<br> 3432 3433 3434 3435 <br> 3436 3437 3438 3439 722 3440 If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a> 723 3441 or <a href="#bc_ns">bc_ns</a>), … … 726 3444 horizontal velocity field. Perturbations must be switched on with 727 3445 parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td> 728 </tr> <tr> <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br> 729 end</b></td> <td style="vertical-align: top;">I</td> 730 <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;"> <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;"> <span style="font-style: italic;">3/4*ny)</span></td> <td style="vertical-align: top;">Upper 3446 3447 3448 3449 3450 </tr> 3451 3452 3453 3454 <tr> 3455 3456 3457 3458 <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br> 3459 3460 3461 3462 3463 end</b></td> 3464 3465 3466 3467 <td style="vertical-align: top;">I</td> 3468 3469 3470 3471 3472 <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;"> 3473 3474 3475 3476 <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;"> 3477 3478 3479 3480 <span style="font-style: italic;">3/4*ny)</span></td> 3481 3482 3483 3484 <td style="vertical-align: top;">Upper 731 3485 limit of the horizontal range for which random perturbations are 732 to be imposed on the horizontal velocity field (gridpoints).<br> <br> 3486 to be imposed on the horizontal velocity field (gridpoints).<br> 3487 3488 3489 3490 <br> 3491 3492 3493 3494 733 3495 If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a> 734 3496 or <a href="#bc_ns">bc_ns</a>), … … 737 3499 horizontal 738 3500 velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td> 739 </tr> <tr> <td style="vertical-align: top;"> 740 <p><a name="initializing_actions"></a><b>initializing_actions</b></p> 741 </td> <td style="vertical-align: top;">C * 100</td> 742 <td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p style="font-style: normal;">Initialization actions 743 to be carried out. </p> <p style="font-style: normal;">This parameter does not have a 3501 3502 3503 3504 3505 </tr> 3506 3507 3508 3509 <tr> 3510 3511 3512 3513 <td style="vertical-align: top;"> 3514 3515 3516 3517 <p><a name="initializing_actions"></a><b>initializing_actions</b></p> 3518 3519 3520 3521 3522 </td> 3523 3524 3525 3526 <td style="vertical-align: top;">C * 100</td> 3527 3528 3529 3530 3531 <td style="vertical-align: top;"><br> 3532 3533 3534 3535 </td> 3536 3537 3538 3539 <td style="vertical-align: top;"> 3540 3541 3542 3543 <p style="font-style: normal;">Initialization actions 3544 to be carried out. </p> 3545 3546 3547 3548 3549 3550 3551 3552 <p style="font-style: normal;">This parameter does not have a 744 3553 default value and therefore must be assigned with each model run. For 745 3554 restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span> 746 3555 must be set. For the initial run of a job chain the following values 747 are allowed: </p> <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span> 748 </p> <ul> <p>A horizontal wind profile consisting 3556 are allowed: </p> 3557 3558 3559 3560 3561 3562 3563 3564 <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span> 3565 </p> 3566 3567 3568 3569 3570 3571 3572 3573 <ul> 3574 3575 3576 3577 3578 3579 3580 3581 <p>A horizontal wind profile consisting 749 3582 of linear sections (see <a href="#ug_surface">ug_surface</a>, 750 <a href="#ug_vertical_gradient">ug_vertical_gradient</a>,751 <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>3583 <a href="#ug_vertical_gradient">ug_vertical_gradient</a>, 3584 <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a> 752 3585 and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>, 753 <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,3586 <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>, 754 3587 respectively) as well as a vertical temperature (humidity) profile 755 3588 consisting of 756 3589 linear sections (see <a href="#pt_surface">pt_surface</a>, 757 <a href="#pt_vertical_gradient">pt_vertical_gradient</a>,758 <a href="#q_surface">q_surface</a>3590 <a href="#pt_vertical_gradient">pt_vertical_gradient</a>, 3591 <a href="#q_surface">q_surface</a> 759 3592 and <a href="#q_vertical_gradient">q_vertical_gradient</a>) 760 3593 are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub> 761 3594 and K<sub>h</sub> are set to very small values because 762 3595 otherwise no TKE 763 would be generated.</p> </ul> <p style="font-style: italic;">'set_1d-model_profiles' </p> 764 <ul> <p>The arrays of the 3d-model are initialized with 3596 would be generated.</p> 3597 3598 3599 3600 3601 3602 3603 3604 </ul> 3605 3606 3607 3608 3609 3610 3611 3612 <p style="font-style: italic;">'set_1d-model_profiles' </p> 3613 3614 3615 3616 3617 3618 3619 3620 <ul> 3621 3622 3623 3624 3625 3626 3627 3628 <p>The arrays of the 3d-model are initialized with 765 3629 the 766 3630 (stationary) solution of the 1d-model. These are the variables e, kh, … … 770 3634 1d-model. For steering of the 1d-model a set of parameters with suffix 771 3635 "_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>, 772 <a href="#damp_level_1d">damp_level_1d</a>) 773 is available.</p> </ul> <p><span style="font-style: italic;">'by_user'</span></p><p style="margin-left: 40px;">The initialization of the arrays 3636 <a href="#damp_level_1d">damp_level_1d</a>) 3637 is available.</p> 3638 3639 3640 3641 3642 3643 3644 3645 </ul> 3646 3647 3648 3649 3650 3651 3652 3653 <p><span style="font-style: italic;">'by_user'</span></p> 3654 3655 3656 3657 3658 3659 3660 <p style="margin-left: 40px;">The initialization of the arrays 774 3661 of the 3d-model is under complete control of the user and has to be 775 3662 done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a> 776 of the user-interface.<span style="font-style: italic;"></span></p><p><span style="font-style: italic;">'initialize_vortex'</span> 777 </p> <div style="margin-left: 40px;">The initial 3663 of the user-interface.<span style="font-style: italic;"></span></p> 3664 3665 3666 3667 3668 3669 3670 <p><span style="font-style: italic;">'initialize_vortex'</span> 3671 </p> 3672 3673 3674 3675 3676 3677 3678 3679 <div style="margin-left: 40px;">The initial 778 3680 velocity field of the 779 3681 3d-model corresponds to a … … 790 3692 extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a> 791 3693 and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a> 792 (see init_rankine.f90). </div> <p><span style="font-style: italic;">'initialize_ptanom'</span> 793 </p> <ul> <p>A 2d-Gauss-like shape disturbance 3694 (see init_rankine.f90). </div> 3695 3696 3697 3698 3699 3700 3701 3702 <p><span style="font-style: italic;">'initialize_ptanom'</span> 3703 </p> 3704 3705 3706 3707 3708 3709 3710 3711 <ul> 3712 3713 3714 3715 3716 3717 3718 3719 <p>A 2d-Gauss-like shape disturbance 794 3720 (x,y) is added to the 795 3721 initial temperature field with radius 10.0 * <a href="#dx">dx</a> … … 804 3730 requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the 805 3731 source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p> 806 </ul> <p style="font-style: normal;">Values may be 3732 3733 3734 3735 3736 3737 3738 3739 </ul> 3740 3741 3742 3743 3744 3745 3746 3747 <p style="font-style: normal;">Values may be 807 3748 combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles 808 3749 initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>, 809 <span style="font-style: italic;">'set_1d-model_profiles'</span>3750 <span style="font-style: italic;">'set_1d-model_profiles'</span> 810 3751 , and <span style="font-style: italic;">'by_user'</span> 811 must not be given at the same time.</p> <p style="font-style: italic;"> </p> </td> </tr> 812 <tr> <td style="vertical-align: top;"> <p><a name="km_constant"></a><b>km_constant</b></p> 813 </td> <td style="vertical-align: top;">R</td> 814 <td style="vertical-align: top;"><i>variable<br> 815 (computed from TKE)</i></td> <td style="vertical-align: top;"> <p>Constant eddy 3752 must not be given at the same time.</p> 3753 3754 3755 3756 3757 3758 3759 3760 <p style="font-style: italic;"> </p> 3761 3762 3763 3764 </td> 3765 3766 3767 3768 </tr> 3769 3770 3771 3772 3773 <tr> 3774 3775 3776 3777 <td style="vertical-align: top;"> 3778 3779 3780 3781 <p><a name="km_constant"></a><b>km_constant</b></p> 3782 3783 3784 3785 3786 </td> 3787 3788 3789 3790 <td style="vertical-align: top;">R</td> 3791 3792 3793 3794 3795 <td style="vertical-align: top;"><i>variable<br> 3796 3797 3798 3799 3800 (computed from TKE)</i></td> 3801 3802 3803 3804 <td style="vertical-align: top;"> 3805 3806 3807 3808 <p>Constant eddy 816 3809 diffusivities are used (laminar 817 simulations). </p> <p>If this parameter is 3810 simulations). </p> 3811 3812 3813 3814 3815 3816 3817 3818 <p>If this parameter is 818 3819 specified, both in the 1d and in the 819 3820 3d-model constant values for the eddy diffusivities are used in … … 822 3823 The prognostic equation for the subgrid-scale TKE is switched off. 823 3824 Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>) 824 switched off.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="km_damp_max"></a><b>km_damp_max</b></p> 825 </td> <td style="vertical-align: top;">R</td> 826 <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx 827 or dy)</span></td> <td style="vertical-align: top;">Maximum 3825 switched off.</p> 3826 3827 3828 3829 </td> 3830 3831 3832 3833 </tr> 3834 3835 3836 3837 <tr> 3838 3839 3840 3841 <td style="vertical-align: top;"> 3842 3843 3844 3845 <p><a name="km_damp_max"></a><b>km_damp_max</b></p> 3846 3847 3848 3849 3850 </td> 3851 3852 3853 3854 <td style="vertical-align: top;">R</td> 3855 3856 3857 3858 3859 <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx 3860 or dy)</span></td> 3861 3862 3863 3864 <td style="vertical-align: top;">Maximum 828 3865 diffusivity used for filtering the velocity field in the vicinity of 829 the outflow (in m<sup>2</sup>/s).<br> <br> 3866 the outflow (in m<sup>2</sup>/s).<br> 3867 3868 3869 3870 <br> 3871 3872 3873 3874 830 3875 When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a> 831 3876 or <a href="#bc_ns">bc_ns</a>), … … 837 3882 parallel to the outflow boundary are filtered (e.g. v and w, if the 838 3883 outflow is along x). Damping is applied from the bottom to the top of 839 the domain.<br> <br> 3884 the domain.<br> 3885 3886 3887 3888 <br> 3889 3890 3891 3892 840 3893 The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a> 841 3894 which defines the number of gridpoints (counted from the outflow … … 846 3899 up to the outflow boundary. If at a certain grid point the eddy 847 3900 diffusivity calculated from the flow field is larger than as described 848 above, it is used instead.<br> <br> 3901 above, it is used instead.<br> 3902 3903 3904 3905 <br> 3906 3907 3908 3909 849 3910 The default value of <span style="font-weight: bold;">km_damp_max</span> 850 has been empirically proven to be sufficient.</td> </tr> <tr> 851 <td style="vertical-align: top;"> <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p> 852 </td> <td style="vertical-align: top;">R</td> 853 <td style="vertical-align: top;"><i>0.0</i></td> 854 <td style="vertical-align: top;"> <p>Filter factor 855 for the so-called Long-filter.<br> </p> <p><br> 3911 has been empirically proven to be sufficient.</td> 3912 3913 3914 3915 </tr> 3916 3917 3918 3919 <tr> 3920 3921 3922 3923 3924 <td style="vertical-align: top;"> 3925 3926 3927 3928 <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p> 3929 3930 3931 3932 3933 </td> 3934 3935 3936 3937 <td style="vertical-align: top;">R</td> 3938 3939 3940 3941 3942 <td style="vertical-align: top;"><i>0.0</i></td> 3943 3944 3945 3946 3947 <td style="vertical-align: top;"> 3948 3949 3950 3951 <p>Filter factor 3952 for the so-called Long-filter.<br> 3953 3954 3955 3956 </p> 3957 3958 3959 3960 3961 3962 3963 3964 <p><br> 3965 3966 3967 3968 856 3969 This filter very efficiently 857 3970 eliminates 2-delta-waves sometimes cauesed by the upstream-spline … … 861 3974 = <i>0.01</i> 862 3975 sufficiently removes the small-scale waves without affecting the 863 longer waves.<br> </p> <p>By default, the filter is 3976 longer waves.<br> 3977 3978 3979 3980 </p> 3981 3982 3983 3984 3985 3986 3987 3988 <p>By default, the filter is 864 3989 switched off (= <i>0.0</i>). 865 3990 It is exclusively applied to the tendencies calculated by the … … 870 3995 2-delta-waves is reduced. There, the amplitude of these waves is only 871 3996 reduced by approx. 50%, otherwise by nearly 100%. <br> 3997 3998 3999 4000 872 4001 Filter factors with values > <i>0.01</i> also 873 4002 reduce the amplitudes 874 4003 of waves with wavelengths longer than 2-delta (see the paper by Mahrer 875 4004 and 876 Pielke, quoted above). </p> </td> </tr> <tr><td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td><td style="vertical-align: top;">C*16</td><td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td><td>Method used to optimize loops for solving the prognostic equations .<br><br>By 4005 Pielke, quoted above). </p> 4006 4007 4008 4009 </td> 4010 4011 4012 4013 </tr> 4014 4015 4016 4017 <tr> 4018 4019 4020 4021 <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td> 4022 4023 4024 4025 <td style="vertical-align: top;">C*16</td> 4026 4027 4028 4029 <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td> 4030 4031 4032 4033 <td>Method used to optimize loops for solving the prognostic equations .<br> 4034 4035 4036 4037 <br> 4038 4039 4040 4041 By 877 4042 default, the optimization method depends on the host on which PALM is 878 4043 running. On machines with vector-type CPUs, single 3d-loops are used to 879 4044 calculate each tendency term of each prognostic equation, while on all 880 4045 other machines, all prognostic equations are solved within one big loop 881 over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br><br>The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td></tr><tr> 882 <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br> 883 </td> <td style="vertical-align: top;">C*20<br> 884 </td> <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;"> <span style="font-style: italic;">model'</span><br> </td> 885 <td style="vertical-align: top;">Mixing length used in the 886 1d-model.<br> <br> 4046 over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br> 4047 4048 4049 4050 <br> 4051 4052 4053 4054 The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td> 4055 4056 4057 4058 </tr> 4059 4060 4061 4062 <tr> 4063 4064 4065 4066 4067 <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br> 4068 4069 4070 4071 4072 </td> 4073 4074 4075 4076 <td style="vertical-align: top;">C*20<br> 4077 4078 4079 4080 4081 </td> 4082 4083 4084 4085 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;"> 4086 4087 4088 4089 <span style="font-style: italic;">model'</span><br> 4090 4091 4092 4093 </td> 4094 4095 4096 4097 4098 <td style="vertical-align: top;">Mixing length used in the 4099 1d-model.<br> 4100 4101 4102 4103 <br> 4104 4105 4106 4107 887 4108 By default the mixing length is calculated as in the 3d-model (i.e. it 888 depends on the grid spacing).<br> <br> 4109 depends on the grid spacing).<br> 4110 4111 4112 4113 <br> 4114 4115 4116 4117 889 4118 By setting <span style="font-weight: bold;">mixing_length_1d</span> 890 4119 = <span style="font-style: italic;">'blackadar'</span>, 891 4120 the so-called Blackadar mixing length is used (l = kappa * z / ( 1 + 892 4121 kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br> 893 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="humidity"></a><b>humidity</b></p> 894 </td> <td style="vertical-align: top;">L</td> 895 <td style="vertical-align: top;"><i>.F.</i></td> 896 <td style="vertical-align: top;"> <p>Parameter to 4122 4123 4124 4125 4126 </td> 4127 4128 4129 4130 </tr> 4131 4132 4133 4134 <tr> 4135 4136 4137 4138 <td style="vertical-align: top;"> 4139 4140 4141 4142 <p><a name="humidity"></a><b>humidity</b></p> 4143 4144 4145 4146 4147 </td> 4148 4149 4150 4151 <td style="vertical-align: top;">L</td> 4152 4153 4154 4155 4156 <td style="vertical-align: top;"><i>.F.</i></td> 4157 4158 4159 4160 4161 <td style="vertical-align: top;"> 4162 4163 4164 4165 <p>Parameter to 897 4166 switch on the prognostic equation for specific 898 humidity q.<br> </p> <p>The initial vertical 4167 humidity q.<br> 4168 4169 4170 4171 </p> 4172 4173 4174 4175 4176 4177 4178 4179 <p>The initial vertical 899 4180 profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a> 900 4181 and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>. 901 4182 Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a> 902 4183 and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br> 903 </p> 4184 4185 4186 4187 4188 </p> 4189 4190 4191 4192 904 4193 If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a> 905 4194 = .TRUE.), q becomes the total liquid water content (sum of specific 906 humidity and liquid water content).</td> </tr> 907 <tr> <td style="vertical-align: top;"> <p><a name="momentum_advec"></a><b>momentum_advec</b></p> 908 </td> <td style="vertical-align: top;">C * 10</td> 909 <td style="vertical-align: top;"><i>'pw-scheme'</i></td> 910 <td style="vertical-align: top;"> <p>Advection 911 scheme to be used for the momentum equations.<br> <br> 4195 humidity and liquid water content).</td> 4196 4197 4198 4199 </tr> 4200 4201 4202 4203 4204 <tr> 4205 4206 4207 4208 <td style="vertical-align: top;"> 4209 4210 4211 4212 <p><a name="momentum_advec"></a><b>momentum_advec</b></p> 4213 4214 4215 4216 4217 </td> 4218 4219 4220 4221 <td style="vertical-align: top;">C * 10</td> 4222 4223 4224 4225 4226 <td style="vertical-align: top;"><i>'pw-scheme'</i></td> 4227 4228 4229 4230 4231 <td style="vertical-align: top;"> 4232 4233 4234 4235 <p>Advection 4236 scheme to be used for the momentum equations.<br> 4237 4238 4239 4240 <br> 4241 4242 4243 4244 912 4245 The user can choose between the following schemes:<br> 913 <br> <br> <span style="font-style: italic;">'pw-scheme'</span><br> 914 </p> <div style="margin-left: 40px;">The scheme of 4246 4247 4248 4249 4250 <br> 4251 4252 4253 4254 <br> 4255 4256 4257 4258 <span style="font-style: italic;">'pw-scheme'</span><br> 4259 4260 4261 4262 4263 </p> 4264 4265 4266 4267 4268 4269 4270 4271 <div style="margin-left: 40px;">The scheme of 915 4272 Piascek and 916 4273 Williams (1970, J. Comp. Phys., 6, 917 4274 392-405) with central differences in the form C3 is used.<br> 4275 4276 4277 4278 918 4279 If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a> 919 4280 = <span style="font-style: italic;">'leapfrog+euler'</span> 920 4281 the 921 4282 advection scheme is - for the Euler-timestep - automatically switched 922 to an upstream-scheme.<br> </div> <p> </p> <p><span style="font-style: italic;">'ups-scheme'</span><br> 923 </p> <div style="margin-left: 40px;">The 4283 to an upstream-scheme.<br> 4284 4285 4286 4287 </div> 4288 4289 4290 4291 4292 4293 4294 4295 <p> </p> 4296 4297 4298 4299 4300 4301 4302 4303 <p><span style="font-style: italic;">'ups-scheme'</span><br> 4304 4305 4306 4307 4308 </p> 4309 4310 4311 4312 4313 4314 4315 4316 <div style="margin-left: 40px;">The 924 4317 upstream-spline scheme is 925 4318 used … … 938 4331 because otherwise the scalar variables would 939 4332 be subject to large numerical diffusion due to the upstream 940 scheme. </div> <p style="margin-left: 40px;">Since 4333 scheme. </div> 4334 4335 4336 4337 4338 4339 4340 4341 <p style="margin-left: 40px;">Since 941 4342 the cubic splines used tend 942 4343 to overshoot under 943 4344 certain circumstances, this effect must be adjusted by suitable 944 4345 filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>, 945 <a href="#long_filter_factor">long_filter_factor</a>,946 <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).4346 <a href="#long_filter_factor">long_filter_factor</a>, 4347 <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>). 947 4348 This is always neccessary for runs with stable stratification, 948 4349 even if this stratification appears only in parts of the model domain.<br> 949 </p> <div style="margin-left: 40px;">With stable 4350 4351 4352 4353 4354 </p> 4355 4356 4357 4358 4359 4360 4361 4362 <div style="margin-left: 40px;">With stable 950 4363 stratification the 951 4364 upstream-spline scheme also 952 4365 produces gravity waves with large amplitude, which must be 953 4366 suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br> 954 <br> <span style="font-weight: bold;">Important: </span>The 4367 4368 4369 4370 4371 <br> 4372 4373 4374 4375 <span style="font-weight: bold;">Important: </span>The 955 4376 upstream-spline scheme is not implemented for humidity and passive 956 4377 scalars (see <a href="#humidity">humidity</a> … … 960 4381 very long execution times! The scheme is also not allowed for 961 4382 non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a> 962 and <a href="#bc_ns">bc_ns</a>).</div> </td> 963 </tr> <tr> <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br> 964 </td> <td style="vertical-align: top;">C*20<br> 965 (10)<br> </td> <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;"> <span style="font-style: italic;">sion for all</span><br style="font-style: italic;"> <span style="font-style: italic;">output quan-</span><br style="font-style: italic;"> <span style="font-style: italic;">tities</span><br> </td> 966 <td style="vertical-align: top;">Defines the accuracy of 967 the NetCDF output.<br> <br> 4383 and <a href="#bc_ns">bc_ns</a>).</div> 4384 4385 4386 4387 </td> 4388 4389 4390 4391 4392 </tr> 4393 4394 4395 4396 <tr> 4397 4398 4399 4400 <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br> 4401 4402 4403 4404 4405 </td> 4406 4407 4408 4409 <td style="vertical-align: top;">C*20<br> 4410 4411 4412 4413 4414 (10)<br> 4415 4416 4417 4418 </td> 4419 4420 4421 4422 <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;"> 4423 4424 4425 4426 <span style="font-style: italic;">sion for all</span><br style="font-style: italic;"> 4427 4428 4429 4430 <span style="font-style: italic;">output quan-</span><br style="font-style: italic;"> 4431 4432 4433 4434 <span style="font-style: italic;">tities</span><br> 4435 4436 4437 4438 </td> 4439 4440 4441 4442 4443 <td style="vertical-align: top;">Defines the accuracy of 4444 the NetCDF output.<br> 4445 4446 4447 4448 <br> 4449 4450 4451 4452 968 4453 By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>) 969 4454 have single precision (4 byte) accuracy. Double precision (8 970 4455 byte) can be choosen alternatively.<br> 4456 4457 4458 4459 971 4460 Accuracy for the different output data (cross sections, 3d-volume data, 972 spectra, etc.) can be set independently.<br> <span style="font-style: italic;">'<out>_NF90_REAL4'</span> 4461 spectra, etc.) can be set independently.<br> 4462 4463 4464 4465 <span style="font-style: italic;">'<out>_NF90_REAL4'</span> 973 4466 (single precision) or <span style="font-style: italic;">'<out>_NF90_REAL8'</span> 974 4467 (double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>, 975 4468 where the string <span style="font-style: italic;">'<out>' 976 </span>can be chosen out of the following list:<br> <br> 977 <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2"> <tbody> 978 <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br> </td> 979 <td style="vertical-align: top;">horizontal cross section<br> 980 </td> </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br> </td> 981 <td style="vertical-align: top;">vertical (xz) cross 982 section<br> </td> </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br> </td> 983 <td style="vertical-align: top;">vertical (yz) cross 984 section<br> </td> </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br> </td> 985 <td style="vertical-align: top;">all cross sections<br> 986 </td> </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br> </td> 987 <td style="vertical-align: top;">volume data<br> </td> 988 </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br> </td> 989 <td style="vertical-align: top;">vertical profiles<br> 990 </td> </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br> </td> 991 <td style="vertical-align: top;">time series, particle 992 time series<br> </td> </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br> </td> 993 <td style="vertical-align: top;">spectra<br> </td> 994 </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br> </td> 995 <td style="vertical-align: top;">particles<br> </td> 996 </tr> <tr> <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br> </td> 997 <td style="vertical-align: top;">all output quantities<br> 998 </td> </tr> </tbody> </table> <br> <span style="font-weight: bold;">Example:</span><br> 4469 </span>can be chosen out of the following list:<br> 4470 4471 4472 4473 <br> 4474 4475 4476 4477 4478 4479 4480 4481 <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2"> 4482 4483 4484 4485 <tbody> 4486 4487 4488 4489 4490 <tr> 4491 4492 4493 4494 <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br> 4495 4496 4497 4498 </td> 4499 4500 4501 4502 4503 <td style="vertical-align: top;">horizontal cross section<br> 4504 4505 4506 4507 4508 </td> 4509 4510 4511 4512 </tr> 4513 4514 4515 4516 <tr> 4517 4518 4519 4520 <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br> 4521 4522 4523 4524 </td> 4525 4526 4527 4528 4529 <td style="vertical-align: top;">vertical (xz) cross 4530 section<br> 4531 4532 4533 4534 </td> 4535 4536 4537 4538 </tr> 4539 4540 4541 4542 <tr> 4543 4544 4545 4546 <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br> 4547 4548 4549 4550 </td> 4551 4552 4553 4554 4555 <td style="vertical-align: top;">vertical (yz) cross 4556 section<br> 4557 4558 4559 4560 </td> 4561 4562 4563 4564 </tr> 4565 4566 4567 4568 <tr> 4569 4570 4571 4572 <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br> 4573 4574 4575 4576 </td> 4577 4578 4579 4580 4581 <td style="vertical-align: top;">all cross sections<br> 4582 4583 4584 4585 4586 </td> 4587 4588 4589 4590 </tr> 4591 4592 4593 4594 <tr> 4595 4596 4597 4598 <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br> 4599 4600 4601 4602 </td> 4603 4604 4605 4606 4607 <td style="vertical-align: top;">volume data<br> 4608 4609 4610 4611 </td> 4612 4613 4614 4615 4616 </tr> 4617 4618 4619 4620 <tr> 4621 4622 4623 4624 <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br> 4625 4626 4627 4628 </td> 4629 4630 4631 4632 4633 <td style="vertical-align: top;">vertical profiles<br> 4634 4635 4636 4637 4638 </td> 4639 4640 4641 4642 </tr> 4643 4644 4645 4646 <tr> 4647 4648 4649 4650 <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br> 4651 4652 4653 4654 </td> 4655 4656 4657 4658 4659 <td style="vertical-align: top;">time series, particle 4660 time series<br> 4661 4662 4663 4664 </td> 4665 4666 4667 4668 </tr> 4669 4670 4671 4672 <tr> 4673 4674 4675 4676 <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br> 4677 4678 4679 4680 </td> 4681 4682 4683 4684 4685 <td style="vertical-align: top;">spectra<br> 4686 4687 4688 4689 </td> 4690 4691 4692 4693 4694 </tr> 4695 4696 4697 4698 <tr> 4699 4700 4701 4702 <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br> 4703 4704 4705 4706 </td> 4707 4708 4709 4710 4711 <td style="vertical-align: top;">particles<br> 4712 4713 4714 4715 </td> 4716 4717 4718 4719 4720 </tr> 4721 4722 4723 4724 <tr> 4725 4726 4727 4728 <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br> 4729 4730 4731 4732 </td> 4733 4734 4735 4736 4737 <td style="vertical-align: top;">all output quantities<br> 4738 4739 4740 4741 4742 </td> 4743 4744 4745 4746 </tr> 4747 4748 4749 4750 4751 4752 4753 4754 </tbody> 4755 4756 4757 4758 </table> 4759 4760 4761 4762 <br> 4763 4764 4765 4766 <span style="font-weight: bold;">Example:</span><br> 4767 4768 4769 4770 999 4771 If all cross section data and the particle data shall be output in 1000 4772 double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span> 1001 has to be assigned.<br> </td> </tr> 1002 <tr> <td style="vertical-align: top;"> <p><a name="npex"></a><b>npex</b></p> </td> 1003 <td style="vertical-align: top;">I</td> <td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p>Number of processors 4773 has to be assigned.<br> 4774 4775 4776 4777 </td> 4778 4779 4780 4781 </tr> 4782 4783 4784 4785 4786 <tr> 4787 4788 4789 4790 <td style="vertical-align: top;"> 4791 4792 4793 4794 <p><a name="npex"></a><b>npex</b></p> 4795 4796 4797 4798 </td> 4799 4800 4801 4802 4803 <td style="vertical-align: top;">I</td> 4804 4805 4806 4807 <td style="vertical-align: top;"><br> 4808 4809 4810 4811 </td> 4812 4813 4814 4815 <td style="vertical-align: top;"> 4816 4817 4818 4819 <p>Number of processors 1004 4820 along x-direction of the virtual 1005 4821 processor 1006 net. </p> <p>For parallel runs, the total 4822 net. </p> 4823 4824 4825 4826 4827 4828 4829 4830 <p>For parallel runs, the total 1007 4831 number of processors to be used 1008 4832 is given by … … 1027 4851 differ extremely, the 1028 4852 processor net should be manually adjusted using adequate values for <span style="font-weight: bold;">npex</span> and <span style="font-weight: bold;">npey</span>. </p> 1029 <p><b>Important:</b> The value of <span style="font-weight: bold;">npex</span> * <span style="font-weight: bold;">npey</span> must exactly 4853 4854 4855 4856 4857 4858 4859 4860 <p><b>Important:</b> The value of <span style="font-weight: bold;">npex</span> * <span style="font-weight: bold;">npey</span> must exactly 1030 4861 correspond to the 1031 4862 value assigned by the <span style="font-weight: bold;">mrun</span>-option 1032 <tt>-X</tt>.4863 <tt>-X</tt>. 1033 4864 Otherwise the model run will abort with a corresponding error 1034 4865 message. <br> 4866 4867 4868 4869 1035 4870 Additionally, the specification of <span style="font-weight: bold;">npex</span> 1036 4871 and <span style="font-weight: bold;">npey</span> … … 1038 4873 override the default setting for the domain decomposition (1d or 2d) 1039 4874 which may have a significant (negative) effect on the code performance. 1040 </p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="npey"></a><b>npey</b></p> 1041 </td> <td style="vertical-align: top;">I</td> 1042 <td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p>Number of processors 4875 </p> 4876 4877 4878 4879 </td> 4880 4881 4882 4883 </tr> 4884 4885 4886 4887 <tr> 4888 4889 4890 4891 <td style="vertical-align: top;"> 4892 4893 4894 4895 <p><a name="npey"></a><b>npey</b></p> 4896 4897 4898 4899 4900 </td> 4901 4902 4903 4904 <td style="vertical-align: top;">I</td> 4905 4906 4907 4908 4909 <td style="vertical-align: top;"><br> 4910 4911 4912 4913 </td> 4914 4915 4916 4917 <td style="vertical-align: top;"> 4918 4919 4920 4921 <p>Number of processors 1043 4922 along y-direction of the virtual 1044 4923 processor 1045 net. </p> <p>For further information see <a href="#npex">npex</a>.</p> </td> </tr> 1046 <tr> <td style="vertical-align: top;"> <p><a name="nsor_ini"></a><b>nsor_ini</b></p> 1047 </td> <td style="vertical-align: top;">I</td> 1048 <td style="vertical-align: top;"><i>100</i></td> 1049 <td style="vertical-align: top;"> <p>Initial number 1050 of iterations with the SOR algorithm. </p> <p>This 4924 net. </p> 4925 4926 4927 4928 4929 4930 4931 4932 <p>For further information see <a href="#npex">npex</a>.</p> 4933 4934 4935 4936 </td> 4937 4938 4939 4940 </tr> 4941 4942 4943 4944 4945 <tr> 4946 4947 4948 4949 <td style="vertical-align: top;"> 4950 4951 4952 4953 <p><a name="nsor_ini"></a><b>nsor_ini</b></p> 4954 4955 4956 4957 4958 </td> 4959 4960 4961 4962 <td style="vertical-align: top;">I</td> 4963 4964 4965 4966 4967 <td style="vertical-align: top;"><i>100</i></td> 4968 4969 4970 4971 4972 <td style="vertical-align: top;"> 4973 4974 4975 4976 <p>Initial number 4977 of iterations with the SOR algorithm. </p> 4978 4979 4980 4981 4982 4983 4984 4985 <p>This 1051 4986 parameter is only effective if the SOR algorithm was 1052 4987 selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a> … … 1063 4998 test runs should determine whether sufficient convergence of the 1064 4999 solution is obtained with the default value and if necessary the value 1065 of <b>nsor_ini</b> should be changed.</p> </td> 1066 </tr> <tr> <td style="vertical-align: top;"> 1067 <p><a name="nx"></a><b>nx</b></p> 1068 </td> <td style="vertical-align: top;">I</td> 1069 <td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p>Number of grid 1070 points in x-direction. </p> <p>A value for this 5000 of <b>nsor_ini</b> should be changed.</p> 5001 5002 5003 5004 </td> 5005 5006 5007 5008 5009 </tr> 5010 5011 5012 5013 <tr> 5014 5015 5016 5017 <td style="vertical-align: top;"> 5018 5019 5020 5021 <p><a name="nx"></a><b>nx</b></p> 5022 5023 5024 5025 5026 </td> 5027 5028 5029 5030 <td style="vertical-align: top;">I</td> 5031 5032 5033 5034 5035 <td style="vertical-align: top;"><br> 5036 5037 5038 5039 </td> 5040 5041 5042 5043 <td style="vertical-align: top;"> 5044 5045 5046 5047 <p>Number of grid 5048 points in x-direction. </p> 5049 5050 5051 5052 5053 5054 5055 5056 <p>A value for this 1071 5057 parameter must be assigned. Since the lower 1072 5058 array bound in PALM 1073 5059 starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>. 1074 5060 In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)* 1075 <a href="#dx">dx</a>.</p> <p>For 5061 <a href="#dx">dx</a>.</p> 5062 5063 5064 5065 5066 5067 5068 5069 <p>For 1076 5070 parallel runs, in case of <a href="#grid_matching">grid_matching</a> 1077 5071 = <span style="font-style: italic;">'strict'</span>, 1078 <b>nx+1</b> must5072 <b>nx+1</b> must 1079 5073 be an integral multiple 1080 5074 of the processor numbers (see <a href="#npex">npex</a> 1081 5075 and <a href="#npey">npey</a>) 1082 5076 along x- as well as along y-direction (due to data 1083 transposition restrictions).</p> </td> </tr> <tr> 1084 <td style="vertical-align: top;"> <p><a name="ny"></a><b>ny</b></p> 1085 </td> <td style="vertical-align: top;">I</td> 1086 <td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p>Number of grid 1087 points in y-direction. </p> <p>A value for this 5077 transposition restrictions).</p> 5078 5079 5080 5081 5082 5083 5084 <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> 5085 and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> 5086 5087 5088 5089 </td> 5090 5091 5092 5093 </tr> 5094 5095 5096 5097 <tr> 5098 5099 5100 5101 5102 <td style="vertical-align: top;"> 5103 5104 5105 5106 <p><a name="ny"></a><b>ny</b></p> 5107 5108 5109 5110 5111 </td> 5112 5113 5114 5115 <td style="vertical-align: top;">I</td> 5116 5117 5118 5119 5120 <td style="vertical-align: top;"><br> 5121 5122 5123 5124 </td> 5125 5126 5127 5128 <td style="vertical-align: top;"> 5129 5130 5131 5132 <p>Number of grid 5133 points in y-direction. </p> 5134 5135 5136 5137 5138 5139 5140 5141 <p>A value for this 1088 5142 parameter must be assigned. Since the lower 1089 5143 array bound in PALM starts with i = 0, the actual number of grid points … … 1091 5145 conditions along 1092 5146 y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p> 1093 <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a> 5147 5148 5149 5150 5151 5152 5153 5154 <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a> 1094 5155 = <span style="font-style: italic;">'strict'</span>, 1095 <b>ny+1</b> must5156 <b>ny+1</b> must 1096 5157 be an integral multiple 1097 5158 of the processor numbers (see <a href="#npex">npex</a> 1098 5159 and <a href="#npey">npey</a>) 1099 5160 along y- as well as along x-direction (due to data 1100 transposition restrictions).</p> </td> </tr> <tr> 1101 <td style="vertical-align: top;"> <p><a name="nz"></a><b>nz</b></p> 1102 </td> <td style="vertical-align: top;">I</td> 1103 <td style="vertical-align: top;"><br> </td> <td style="vertical-align: top;"> <p>Number of grid 1104 points in z-direction. </p> <p>A value for this 5161 transposition restrictions).</p> 5162 5163 5164 5165 5166 5167 5168 <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> 5169 and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> 5170 5171 5172 5173 </td> 5174 5175 5176 5177 </tr> 5178 5179 5180 5181 <tr> 5182 5183 5184 5185 5186 <td style="vertical-align: top;"> 5187 5188 5189 5190 <p><a name="nz"></a><b>nz</b></p> 5191 5192 5193 5194 5195 </td> 5196 5197 5198 5199 <td style="vertical-align: top;">I</td> 5200 5201 5202 5203 5204 <td style="vertical-align: top;"><br> 5205 5206 5207 5208 </td> 5209 5210 5211 5212 <td style="vertical-align: top;"> 5213 5214 5215 5216 <p>Number of grid 5217 points in z-direction. </p> 5218 5219 5220 5221 5222 5223 5224 5225 <p>A value for this 1105 5226 parameter must be assigned. Since the lower 1106 5227 array bound in PALM … … 1115 5236 and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b> 1116 5237 for all 1117 other quantities. </p> <p>For parallel 5238 other quantities. </p> 5239 5240 5241 5242 5243 5244 5245 5246 <p>For parallel 1118 5247 runs, in case of <a href="#grid_matching">grid_matching</a> 1119 5248 = <span style="font-style: italic;">'strict'</span>, 1120 <b>nz</b> must5249 <b>nz</b> must 1121 5250 be an integral multiple of 1122 5251 the number of processors in x-direction (due to data transposition 1123 restrictions).</p> </td> </tr> <tr><td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;">Parameter to switch on ocean runs.<br><br>By default PALM is configured to simulate atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows simulation of ocean turbulent flows. Setting this switch has several effects:<br><br><ul><li>An additional prognostic equation for salinity is solved.</li><li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li><li>Potential 5252 restrictions).</p> 5253 5254 5255 5256 </td> 5257 5258 5259 5260 </tr> 5261 5262 5263 5264 <tr> 5265 5266 5267 5268 <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td> 5269 5270 5271 5272 <td style="vertical-align: top;">L</td> 5273 5274 5275 5276 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> 5277 5278 5279 5280 <td style="vertical-align: top;">Parameter to switch on ocean runs.<br> 5281 5282 5283 5284 <br> 5285 5286 5287 5288 By default PALM is configured to simulate atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows simulation of ocean turbulent flows. Setting this switch has several effects:<br> 5289 5290 5291 5292 <br> 5293 5294 5295 5296 5297 5298 5299 <ul> 5300 5301 5302 5303 <li>An additional prognostic equation for salinity is solved.</li> 5304 5305 5306 5307 <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li> 5308 5309 5310 5311 <li>Potential 1124 5312 density is calculated from the equation of state for seawater after 1125 5313 each timestep, using the algorithm proposed by Jackett et al. (2006, J. 1126 Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br>So far, only the initial hydrostatic pressure is entered into this equation.</li><li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li><li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li><li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li><li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li></ul><br>Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br><br>Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br><br><span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<br><br><span style="font-weight: bold;">Current limitations:</span><br>Using 1127 a vertical grid stretching is not recommended since it would still 1128 stretch the grid towards the top boundary of the model (sea surface) 1129 instead of the bottom boundary.</td></tr><tr> <td style="vertical-align: top;"> <p><a name="omega"></a><b>omega</b></p> 1130 </td> <td style="vertical-align: top;">R</td> 1131 <td style="vertical-align: top;"><i>7.29212E-5</i></td> 1132 <td style="vertical-align: top;"> <p>Angular 5314 Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br> 5315 5316 5317 5318 So far, only the initial hydrostatic pressure is entered into this equation.</li> 5319 5320 5321 5322 <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li> 5323 5324 5325 5326 <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li> 5327 5328 5329 5330 <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li> 5331 5332 5333 5334 <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li> 5335 5336 5337 5338 5339 5340 5341 </ul> 5342 5343 5344 5345 <br> 5346 5347 5348 5349 Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br> 5350 5351 5352 5353 <br> 5354 5355 5356 5357 Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br> 5358 5359 5360 5361 <br> 5362 5363 5364 5365 <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br> 5366 </td> 5367 5368 5369 5370 </tr> 5371 5372 5373 5374 <tr> 5375 5376 5377 5378 <td style="vertical-align: top;"> 5379 5380 5381 5382 <p><a name="omega"></a><b>omega</b></p> 5383 5384 5385 5386 5387 </td> 5388 5389 5390 5391 <td style="vertical-align: top;">R</td> 5392 5393 5394 5395 5396 <td style="vertical-align: top;"><i>7.29212E-5</i></td> 5397 5398 5399 5400 5401 <td style="vertical-align: top;"> 5402 5403 5404 5405 <p>Angular 1133 5406 velocity of the rotating system (in rad s<sup>-1</sup>). 1134 </p> <p>The angular velocity of the earth is set by 5407 </p> 5408 5409 5410 5411 5412 5413 5414 5415 <p>The angular velocity of the earth is set by 1135 5416 default. The 1136 5417 values 1137 of the Coriolis parameters are calculated as: </p> <ul> 1138 <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>) 1139 <br>f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p> 1140 </ul> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p> 1141 </td> <td style="vertical-align: top;">I</td> 1142 <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20, 5418 of the Coriolis parameters are calculated as: </p> 5419 5420 5421 5422 5423 5424 5425 5426 <ul> 5427 5428 5429 5430 5431 5432 5433 5434 <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>) 5435 <br> 5436 5437 5438 5439 f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p> 5440 5441 5442 5443 5444 5445 5446 5447 </ul> 5448 5449 5450 5451 </td> 5452 5453 5454 5455 </tr> 5456 5457 5458 5459 <tr> 5460 5461 5462 5463 <td style="vertical-align: top;"> 5464 5465 5466 5467 <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p> 5468 5469 5470 5471 5472 </td> 5473 5474 5475 5476 <td style="vertical-align: top;">I</td> 5477 5478 5479 5480 5481 <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20, 1143 5482 nx/2</span> or <span style="font-style: italic;">ny/2)</span></td> 1144 <td style="vertical-align: top;">Width of 5483 5484 5485 5486 5487 <td style="vertical-align: top;">Width of 1145 5488 the damping range in the vicinity of the outflow (gridpoints).<br> 1146 <br> 5489 5490 5491 5492 5493 <br> 5494 5495 5496 5497 1147 5498 When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a> 1148 5499 or <a href="chapter_4.1.html#bc_ns">bc_ns</a>), … … 1153 5504 in gridpoints counted from the respective outflow boundary. For further 1154 5505 details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>, 1155 which defines the magnitude of the damping.</td> </tr> 1156 <tr> <td style="vertical-align: top;"> <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p> 1157 </td> <td style="vertical-align: top;">R</td> 1158 <td style="vertical-align: top;"><i>0.0</i></td> 1159 <td style="vertical-align: top;"> <p>Allowed limit 5506 which defines the magnitude of the damping.</td> 5507 5508 5509 5510 </tr> 5511 5512 5513 5514 5515 <tr> 5516 5517 5518 5519 <td style="vertical-align: top;"> 5520 5521 5522 5523 <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p> 5524 5525 5526 5527 5528 </td> 5529 5530 5531 5532 <td style="vertical-align: top;">R</td> 5533 5534 5535 5536 5537 <td style="vertical-align: top;"><i>0.0</i></td> 5538 5539 5540 5541 5542 <td style="vertical-align: top;"> 5543 5544 5545 5546 <p>Allowed limit 1160 5547 for the overshooting of subgrid-scale TKE in 1161 5548 case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>). 1162 </p> <p>By deafult, if cut-off of overshoots is switched 5549 </p> 5550 5551 5552 5553 5554 5555 5556 5557 <p>By deafult, if cut-off of overshoots is switched 1163 5558 on for the 1164 5559 upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>), … … 1166 5561 is given a non-zero value, overshoots with the respective 1167 5562 amplitude (both upward and downward) are allowed. </p> 1168 <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p> 1169 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p> 1170 </td> <td style="vertical-align: top;">R</td> 1171 <td style="vertical-align: top;"><i>0.0</i></td> 1172 <td style="vertical-align: top;"> <p>Allowed limit 5563 5564 5565 5566 5567 5568 5569 5570 <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p> 5571 5572 5573 5574 5575 </td> 5576 5577 5578 5579 </tr> 5580 5581 5582 5583 <tr> 5584 5585 5586 5587 <td style="vertical-align: top;"> 5588 5589 5590 5591 <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p> 5592 5593 5594 5595 5596 </td> 5597 5598 5599 5600 <td style="vertical-align: top;">R</td> 5601 5602 5603 5604 5605 <td style="vertical-align: top;"><i>0.0</i></td> 5606 5607 5608 5609 5610 <td style="vertical-align: top;"> 5611 5612 5613 5614 <p>Allowed limit 1173 5615 for the overshooting of potential temperature in 1174 5616 case that the upstream-spline scheme is switched on (in K). </p> 1175 <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 1176 </p> <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p> 1177 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p> 1178 </td> <td style="vertical-align: top;">R</td> 1179 <td style="vertical-align: top;"><i>0.0</i></td> 1180 <td style="vertical-align: top;">Allowed limit for the 5617 5618 5619 5620 5621 5622 5623 5624 <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 5625 </p> 5626 5627 5628 5629 5630 5631 5632 5633 <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p> 5634 5635 5636 5637 5638 </td> 5639 5640 5641 5642 </tr> 5643 5644 5645 5646 <tr> 5647 5648 5649 5650 <td style="vertical-align: top;"> 5651 5652 5653 5654 <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p> 5655 5656 5657 5658 5659 </td> 5660 5661 5662 5663 <td style="vertical-align: top;">R</td> 5664 5665 5666 5667 5668 <td style="vertical-align: top;"><i>0.0</i></td> 5669 5670 5671 5672 5673 <td style="vertical-align: top;">Allowed limit for the 1181 5674 overshooting of 1182 5675 the u-component of velocity in case that the upstream-spline scheme is 1183 switched on (in m/s). <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 1184 </p> <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p> 1185 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p> 1186 </td> <td style="vertical-align: top;">R</td> 1187 <td style="vertical-align: top;"><i>0.0</i></td> 1188 <td style="vertical-align: top;"> <p>Allowed limit 5676 switched on (in m/s). 5677 5678 5679 5680 <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 5681 </p> 5682 5683 5684 5685 5686 5687 5688 5689 <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p> 5690 5691 5692 5693 5694 </td> 5695 5696 5697 5698 </tr> 5699 5700 5701 5702 <tr> 5703 5704 5705 5706 <td style="vertical-align: top;"> 5707 5708 5709 5710 <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p> 5711 5712 5713 5714 5715 </td> 5716 5717 5718 5719 <td style="vertical-align: top;">R</td> 5720 5721 5722 5723 5724 <td style="vertical-align: top;"><i>0.0</i></td> 5725 5726 5727 5728 5729 <td style="vertical-align: top;"> 5730 5731 5732 5733 <p>Allowed limit 1189 5734 for the overshooting of the v-component of 1190 5735 velocity in case that the upstream-spline scheme is switched on 1191 (in m/s). </p> <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 1192 </p> <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p> 1193 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p> 1194 </td> <td style="vertical-align: top;">R</td> 1195 <td style="vertical-align: top;"><i>0.0</i></td> 1196 <td style="vertical-align: top;"> <p>Allowed limit 5736 (in m/s). </p> 5737 5738 5739 5740 5741 5742 5743 5744 <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 5745 </p> 5746 5747 5748 5749 5750 5751 5752 5753 <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p> 5754 5755 5756 5757 5758 </td> 5759 5760 5761 5762 </tr> 5763 5764 5765 5766 <tr> 5767 5768 5769 5770 <td style="vertical-align: top;"> 5771 5772 5773 5774 <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p> 5775 5776 5777 5778 5779 </td> 5780 5781 5782 5783 <td style="vertical-align: top;">R</td> 5784 5785 5786 5787 5788 <td style="vertical-align: top;"><i>0.0</i></td> 5789 5790 5791 5792 5793 <td style="vertical-align: top;"> 5794 5795 5796 5797 <p>Allowed limit 1197 5798 for the overshooting of the w-component of 1198 5799 velocity in case that the upstream-spline scheme is switched on 1199 (in m/s). </p> <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 1200 </p> <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p> 1201 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="passive_scalar"></a><b>passive_scalar</b></p> 1202 </td> <td style="vertical-align: top;">L</td> 1203 <td style="vertical-align: top;"><i>.F.</i></td> 1204 <td style="vertical-align: top;"> <p>Parameter to 5800 (in m/s). </p> 5801 5802 5803 5804 5805 5806 5807 5808 <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. 5809 </p> 5810 5811 5812 5813 5814 5815 5816 5817 <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p> 5818 5819 5820 5821 5822 </td> 5823 5824 5825 5826 </tr> 5827 5828 5829 5830 <tr> 5831 5832 5833 5834 <td style="vertical-align: top;"> 5835 5836 5837 5838 <p><a name="passive_scalar"></a><b>passive_scalar</b></p> 5839 5840 5841 5842 5843 </td> 5844 5845 5846 5847 <td style="vertical-align: top;">L</td> 5848 5849 5850 5851 5852 <td style="vertical-align: top;"><i>.F.</i></td> 5853 5854 5855 5856 5857 <td style="vertical-align: top;"> 5858 5859 5860 5861 <p>Parameter to 1205 5862 switch on the prognostic equation for a passive 1206 scalar. <br> </p> <p>The initial vertical profile 5863 scalar. <br> 5864 5865 5866 5867 </p> 5868 5869 5870 5871 5872 5873 5874 5875 <p>The initial vertical profile 1207 5876 of s can be set via parameters <a href="#s_surface">s_surface</a>, 1208 <a href="#s_vertical_gradient">s_vertical_gradient</a>5877 <a href="#s_vertical_gradient">s_vertical_gradient</a> 1209 5878 and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>. 1210 5879 Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a> 1211 5880 and <a href="#surface_scalarflux">surface_scalarflux</a>. 1212 </p> <p><b>Note:</b> <br> 5881 </p> 5882 5883 5884 5885 5886 5887 5888 5889 <p><b>Note:</b> <br> 5890 5891 5892 5893 1213 5894 With <span style="font-weight: bold;">passive_scalar</span> 1214 5895 switched 1215 5896 on, the simultaneous use of humidity (see <a href="#humidity">humidity</a>) 1216 is impossible.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="phi"></a><b>phi</b></p> 1217 </td> <td style="vertical-align: top;">R</td> 1218 <td style="vertical-align: top;"><i>55.0</i></td> 1219 <td style="vertical-align: top;"> <p>Geographical 1220 latitude (in degrees). </p> <p>The value of 5897 is impossible.</p> 5898 5899 5900 5901 </td> 5902 5903 5904 5905 </tr> 5906 5907 5908 5909 <tr> 5910 5911 5912 5913 <td style="vertical-align: top;"> 5914 5915 5916 5917 <p><a name="phi"></a><b>phi</b></p> 5918 5919 5920 5921 5922 </td> 5923 5924 5925 5926 <td style="vertical-align: top;">R</td> 5927 5928 5929 5930 5931 <td style="vertical-align: top;"><i>55.0</i></td> 5932 5933 5934 5935 5936 <td style="vertical-align: top;"> 5937 5938 5939 5940 <p>Geographical 5941 latitude (in degrees). </p> 5942 5943 5944 5945 5946 5947 5948 5949 <p>The value of 1221 5950 this parameter determines the value of the 1222 5951 Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>) 1223 is non-zero.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p> 1224 </td> <td style="vertical-align: top;">L</td> 1225 <td style="vertical-align: top;"><i>.T.</i></td> 1226 <td style="vertical-align: top;"> <p>Parameter to 1227 switch on a Prandtl layer. </p> <p>By default, 5952 is non-zero.</p> 5953 5954 5955 5956 </td> 5957 5958 5959 5960 </tr> 5961 5962 5963 5964 <tr> 5965 5966 5967 5968 <td style="vertical-align: top;"> 5969 5970 5971 5972 <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p> 5973 5974 5975 5976 5977 </td> 5978 5979 5980 5981 <td style="vertical-align: top;">L</td> 5982 5983 5984 5985 5986 <td style="vertical-align: top;"><i>.T.</i></td> 5987 5988 5989 5990 5991 <td style="vertical-align: top;"> 5992 5993 5994 5995 <p>Parameter to 5996 switch on a Prandtl layer. </p> 5997 5998 5999 6000 6001 6002 6003 6004 <p>By default, 1228 6005 a Prandtl layer is switched on at the bottom 1229 6006 boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a> … … 1234 6011 are not allowed. Likewise, laminar 1235 6012 simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>) 1236 are forbidden. </p> <p>With Prandtl-layer 6013 are forbidden. </p> 6014 6015 6016 6017 6018 6019 6020 6021 <p>With Prandtl-layer 1237 6022 switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a> 1238 6023 = '<i>(u*)**2+neumann'</i> must not be used and is … … 1242 6027 boundary condition <a href="#bc_p_b">bc_p_b</a> 1243 6028 = <i>'neumann+inhomo'</i> is not allowed. </p> 1244 <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p> 1245 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="precipitation"></a><b>precipitation</b></p> 1246 </td> <td style="vertical-align: top;">L</td> 1247 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> <td style="vertical-align: top;"> <p>Parameter to switch 1248 on the precipitation scheme.<br> </p> <p>For 6029 6030 6031 6032 6033 6034 6035 6036 <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p> 6037 6038 6039 6040 6041 </td> 6042 6043 6044 6045 </tr> 6046 6047 6048 6049 <tr> 6050 6051 6052 6053 <td style="vertical-align: top;"> 6054 6055 6056 6057 <p><a name="precipitation"></a><b>precipitation</b></p> 6058 6059 6060 6061 6062 </td> 6063 6064 6065 6066 <td style="vertical-align: top;">L</td> 6067 6068 6069 6070 6071 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> 6072 6073 6074 6075 <td style="vertical-align: top;"> 6076 6077 6078 6079 <p>Parameter to switch 6080 on the precipitation scheme.<br> 6081 6082 6083 6084 </p> 6085 6086 6087 6088 6089 6090 6091 6092 <p>For 1249 6093 precipitation processes PALM uses a simplified Kessler 1250 6094 scheme. This scheme only considers the … … 1252 6096 coagulation of cloud drops among themselves. Precipitation begins and 1253 6097 is immediately removed from the flow as soon as the liquid water 1254 content exceeds the critical value of 0.5 g/kg.</p><p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p> </td> </tr> 1255 <tr><td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as 1256 refrence</span></td><td style="vertical-align: top;">Reference 1257 temperature to be used in all buoyancy terms (in K).<br><br>By 6098 content exceeds the critical value of 0.5 g/kg.</p> 6099 6100 6101 6102 6103 6104 6105 <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p> 6106 6107 6108 6109 </td> 6110 6111 6112 6113 </tr> 6114 6115 6116 6117 6118 <tr> 6119 6120 6121 6122 <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td> 6123 6124 6125 6126 <td style="vertical-align: top;">R</td> 6127 6128 6129 6130 <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as 6131 refrence</span></td> 6132 6133 6134 6135 <td style="vertical-align: top;">Reference 6136 temperature to be used in all buoyancy terms (in K).<br> 6137 6138 6139 6140 <br> 6141 6142 6143 6144 By 1258 6145 default, the instantaneous horizontal average over the total model 1259 domain is used.<br><br><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td></tr><tr> <td style="vertical-align: top;"> <p><a name="pt_surface"></a><b>pt_surface</b></p> 1260 </td> <td style="vertical-align: top;">R</td> 1261 <td style="vertical-align: top;"><i>300.0</i></td> 1262 <td style="vertical-align: top;"> <p>Surface 1263 potential temperature (in K). </p> <p>This 6146 domain is used.<br> 6147 6148 6149 6150 <br> 6151 6152 6153 6154 <span style="font-weight: bold;">Attention:</span><br> 6155 6156 6157 6158 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td> 6159 6160 6161 6162 </tr> 6163 6164 6165 6166 <tr> 6167 6168 6169 6170 <td style="vertical-align: top;"> 6171 6172 6173 6174 <p><a name="pt_surface"></a><b>pt_surface</b></p> 6175 6176 6177 6178 6179 </td> 6180 6181 6182 6183 <td style="vertical-align: top;">R</td> 6184 6185 6186 6187 6188 <td style="vertical-align: top;"><i>300.0</i></td> 6189 6190 6191 6192 6193 <td style="vertical-align: top;"> 6194 6195 6196 6197 <p>Surface 6198 potential temperature (in K). </p> 6199 6200 6201 6202 6203 6204 6205 6206 <p>This 1264 6207 parameter assigns the value of the potential temperature 1265 <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value,6208 <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value, 1266 6209 the 1267 6210 initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a> 1268 6211 and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level 1269 </a>. 1270 This profile is also used for the 1d-model as a stationary profile.</p><p><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="#ocean">ocean</a>), 6212 </a>. 6213 This profile is also used for the 1d-model as a stationary profile.</p> 6214 6215 6216 6217 6218 6219 6220 <p><span style="font-weight: bold;">Attention:</span><br> 6221 6222 6223 6224 In case of ocean runs (see <a href="#ocean">ocean</a>), 1271 6225 this parameter gives the temperature value at the sea surface, which is 1272 6226 at k=nzt. The profile is then constructed from the surface down to the 1273 6227 bottom of the model.</p> 1274 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b> 1275 <br> <b>_change</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> </td> 1276 <td style="vertical-align: top;"> <p>Change in 6228 6229 6230 6231 6232 </td> 6233 6234 6235 6236 </tr> 6237 6238 6239 6240 <tr> 6241 6242 6243 6244 <td style="vertical-align: top;"> 6245 6246 6247 6248 <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b> 6249 <br> 6250 6251 6252 6253 <b>_change</b></p> 6254 6255 6256 6257 </td> 6258 6259 6260 6261 <td style="vertical-align: top;">R</td> 6262 6263 6264 6265 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> 6266 6267 6268 6269 </td> 6270 6271 6272 6273 6274 <td style="vertical-align: top;"> 6275 6276 6277 6278 <p>Change in 1277 6279 surface temperature to be made at the beginning of 1278 6280 the 3d run 1279 (in K). </p> <p>If <b>pt_surface_initial_change</b> 6281 (in K). </p> 6282 6283 6284 6285 6286 6287 6288 6289 <p>If <b>pt_surface_initial_change</b> 1280 6290 is set to a non-zero 1281 6291 value, the near surface sensible heat flux is not allowed to be given 1282 6292 simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p> 1283 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p> 1284 </td> <td style="vertical-align: top;">R (10)</td> 1285 <td style="vertical-align: top;"><i>10 * 0.0</i></td> 1286 <td style="vertical-align: top;"> <p>Temperature 6293 6294 6295 6296 6297 </td> 6298 6299 6300 6301 </tr> 6302 6303 6304 6305 <tr> 6306 6307 6308 6309 <td style="vertical-align: top;"> 6310 6311 6312 6313 <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p> 6314 6315 6316 6317 6318 </td> 6319 6320 6321 6322 <td style="vertical-align: top;">R (10)</td> 6323 6324 6325 6326 6327 <td style="vertical-align: top;"><i>10 * 0.0</i></td> 6328 6329 6330 6331 6332 <td style="vertical-align: top;"> 6333 6334 6335 6336 <p>Temperature 1287 6337 gradient(s) of the initial temperature profile (in 1288 6338 K 1289 / 100 m). </p> <p>This temperature gradient 6339 / 100 m). </p> 6340 6341 6342 6343 6344 6345 6346 6347 <p>This temperature gradient 1290 6348 holds starting from the height 1291 6349 level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a> … … 1299 6357 = <i>0.0</i>) can be assigned. The surface temperature is 1300 6358 assigned via <a href="#pt_surface">pt_surface</a>. 1301 </p> <p>Example: </p> <ul> <p><b>pt_vertical_gradient</b> 6359 </p> 6360 6361 6362 6363 6364 6365 6366 6367 <p>Example: </p> 6368 6369 6370 6371 6372 6373 6374 6375 <ul> 6376 6377 6378 6379 6380 6381 6382 6383 <p><b>pt_vertical_gradient</b> 1302 6384 = <i>1.0</i>, <i>0.5</i>, <br> 1303 <b>pt_vertical_gradient_level</b> = <i>500.0</i>, 1304 <i>1000.0</i>,</p> </ul> <p>That 6385 6386 6387 6388 6389 <b>pt_vertical_gradient_level</b> = <i>500.0</i>, 6390 <i>1000.0</i>,</p> 6391 6392 6393 6394 6395 6396 6397 6398 </ul> 6399 6400 6401 6402 6403 6404 6405 6406 <p>That 1305 6407 defines the temperature profile to be neutrally 1306 6408 stratified … … 1310 6412 100 m and for z > 1000.0 m up to the top boundary it is 1311 6413 0.5 K / 100 m (it is assumed that the assigned height levels correspond 1312 with uv levels).</p><p><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 6414 with uv levels).</p> 6415 6416 6417 6418 6419 6420 6421 <p><span style="font-weight: bold;">Attention:</span><br> 6422 6423 6424 6425 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 1313 6426 the profile is constructed like described above, but starting from the 1314 6427 sea surface (k=nzt) down to the bottom boundary of the model. Height 1315 levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b> 1316 <br> <b>_level</b></p> </td> <td style="vertical-align: top;">R (10)</td> <td style="vertical-align: top;"> <p><i>10 *</i> 1317 <span style="font-style: italic;">0.0</span><br> 1318 </p> </td> <td style="vertical-align: top;"> 1319 <p>Height level from which on the temperature gradient defined by 1320 <a href="#pt_vertical_gradient">pt_vertical_gradient</a> 1321 is effective (in m). </p> <p>The height levels have to be assigned in ascending order. The 6428 levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p> 6429 6430 6431 6432 </td> 6433 6434 6435 6436 </tr> 6437 6438 6439 6440 <tr> 6441 6442 6443 6444 <td style="vertical-align: top;"> 6445 6446 6447 6448 <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b> 6449 <br> 6450 6451 6452 6453 <b>_level</b></p> 6454 6455 6456 6457 </td> 6458 6459 6460 6461 <td style="vertical-align: top;">R (10)</td> 6462 6463 6464 6465 <td style="vertical-align: top;"> 6466 6467 6468 6469 <p><i>10 *</i> 6470 <span style="font-style: italic;">0.0</span><br> 6471 6472 6473 6474 6475 </p> 6476 6477 6478 6479 </td> 6480 6481 6482 6483 <td style="vertical-align: top;"> 6484 6485 6486 6487 <p>Height level from which on the temperature gradient defined by 6488 <a href="#pt_vertical_gradient">pt_vertical_gradient</a> 6489 is effective (in m). </p> 6490 6491 6492 6493 6494 6495 6496 6497 <p>The height levels have to be assigned in ascending order. The 1322 6498 default values result in a neutral stratification regardless of the 1323 6499 values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a> 1324 6500 (unless the top boundary of the model is higher than 100000.0 m). 1325 For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order. 1326 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="q_surface"></a><b>q_surface</b></p> 1327 </td> <td style="vertical-align: top;">R</td> 1328 <td style="vertical-align: top;"><i>0.0</i></td> 1329 <td style="vertical-align: top;"> <p>Surface 1330 specific humidity / total water content (kg/kg). </p> <p>This 6501 For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p> 6502 6503 6504 6505 <span style="font-weight: bold;">Attention:</span><br> 6506 6507 6508 6509 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order. 6510 </td> 6511 6512 6513 6514 </tr> 6515 6516 6517 6518 <tr> 6519 6520 6521 6522 <td style="vertical-align: top;"> 6523 6524 6525 6526 <p><a name="q_surface"></a><b>q_surface</b></p> 6527 6528 6529 6530 6531 </td> 6532 6533 6534 6535 <td style="vertical-align: top;">R</td> 6536 6537 6538 6539 6540 <td style="vertical-align: top;"><i>0.0</i></td> 6541 6542 6543 6544 6545 <td style="vertical-align: top;"> 6546 6547 6548 6549 <p>Surface 6550 specific humidity / total water content (kg/kg). </p> 6551 6552 6553 6554 6555 6556 6557 6558 <p>This 1331 6559 parameter assigns the value of the specific humidity q at 1332 6560 the surface (k=0). Starting from this value, the initial … … 1335 6563 and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>. 1336 6564 This profile is also used for the 1d-model as a stationary profile.</p> 1337 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b> 1338 <br> <b>_change</b></p> </td> <td style="vertical-align: top;">R<br> </td> <td style="vertical-align: top;"><i>0.0</i></td> 1339 <td style="vertical-align: top;"> <p>Change in 6565 6566 6567 6568 6569 </td> 6570 6571 6572 6573 </tr> 6574 6575 6576 6577 <tr> 6578 6579 6580 6581 <td style="vertical-align: top;"> 6582 6583 6584 6585 <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b> 6586 <br> 6587 6588 6589 6590 <b>_change</b></p> 6591 6592 6593 6594 </td> 6595 6596 6597 6598 <td style="vertical-align: top;">R<br> 6599 6600 6601 6602 </td> 6603 6604 6605 6606 <td style="vertical-align: top;"><i>0.0</i></td> 6607 6608 6609 6610 6611 <td style="vertical-align: top;"> 6612 6613 6614 6615 <p>Change in 1340 6616 surface specific humidity / total water content to 1341 6617 be made at the beginning 1342 of the 3d run (kg/kg). </p> <p>If <b>q_surface_initial_change</b><i> 1343 </i>is set to a 6618 of the 3d run (kg/kg). </p> 6619 6620 6621 6622 6623 6624 6625 6626 <p>If <b>q_surface_initial_change</b><i> 6627 </i>is set to a 1344 6628 non-zero value the 1345 6629 near surface latent heat flux (water flux) is not allowed to be given 1346 6630 simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p> 1347 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p> 1348 </td> <td style="vertical-align: top;">R (10)</td> 1349 <td style="vertical-align: top;"><i>10 * 0.0</i></td> 1350 <td style="vertical-align: top;"> <p>Humidity 6631 6632 6633 6634 6635 </td> 6636 6637 6638 6639 </tr> 6640 6641 6642 6643 <tr> 6644 6645 6646 6647 <td style="vertical-align: top;"> 6648 6649 6650 6651 <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p> 6652 6653 6654 6655 6656 </td> 6657 6658 6659 6660 <td style="vertical-align: top;">R (10)</td> 6661 6662 6663 6664 6665 <td style="vertical-align: top;"><i>10 * 0.0</i></td> 6666 6667 6668 6669 6670 <td style="vertical-align: top;"> 6671 6672 6673 6674 <p>Humidity 1351 6675 gradient(s) of the initial humidity profile 1352 (in 1/100 m). </p> <p>This humidity gradient 6676 (in 1/100 m). </p> 6677 6678 6679 6680 6681 6682 6683 6684 <p>This humidity gradient 1353 6685 holds starting from the height 1354 6686 level defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a> … … 1363 6695 assigned 1364 6696 via <a href="#q_surface">q_surface</a>. </p> 1365 <p>Example: </p> <ul> <p><b>q_vertical_gradient</b> 6697 6698 6699 6700 6701 6702 6703 6704 <p>Example: </p> 6705 6706 6707 6708 6709 6710 6711 6712 <ul> 6713 6714 6715 6716 6717 6718 6719 6720 <p><b>q_vertical_gradient</b> 1366 6721 = <i>0.001</i>, <i>0.0005</i>, <br> 1367 <b>q_vertical_gradient_level</b> = <i>500.0</i>, 1368 <i>1000.0</i>,</p> </ul> 6722 6723 6724 6725 6726 <b>q_vertical_gradient_level</b> = <i>500.0</i>, 6727 <i>1000.0</i>,</p> 6728 6729 6730 6731 6732 6733 6734 6735 </ul> 6736 6737 6738 6739 1369 6740 That defines the humidity to be constant with height up to z = 1370 6741 500.0 … … 1376 6747 0.0005 / 100 m (it is assumed that the assigned height levels 1377 6748 correspond with uv 1378 levels). </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b> 1379 <br> <b>_level</b></p> </td> <td style="vertical-align: top;">R (10)</td> <td style="vertical-align: top;"> <p><i>10 *</i> 1380 <i>0.0</i></p> </td> <td style="vertical-align: top;"> <p>Height level from 6749 levels). </td> 6750 6751 6752 6753 </tr> 6754 6755 6756 6757 <tr> 6758 6759 6760 6761 <td style="vertical-align: top;"> 6762 6763 6764 6765 <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b> 6766 <br> 6767 6768 6769 6770 <b>_level</b></p> 6771 6772 6773 6774 </td> 6775 6776 6777 6778 <td style="vertical-align: top;">R (10)</td> 6779 6780 6781 6782 <td style="vertical-align: top;"> 6783 6784 6785 6786 <p><i>10 *</i> 6787 <i>0.0</i></p> 6788 6789 6790 6791 </td> 6792 6793 6794 6795 <td style="vertical-align: top;"> 6796 6797 6798 6799 <p>Height level from 1381 6800 which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a> 1382 is effective (in m). </p> <p>The height levels 6801 is effective (in m). </p> 6802 6803 6804 6805 6806 6807 6808 6809 <p>The height levels 1383 6810 are to be assigned in ascending order. The 1384 6811 default values result in a humidity constant with height regardless of … … 1386 6813 (unless the top boundary of the model is higher than 100000.0 m). For 1387 6814 the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p> 1388 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="radiation"></a><b>radiation</b></p> 1389 </td> <td style="vertical-align: top;">L</td> 1390 <td style="vertical-align: top;"><i>.F.</i></td> 1391 <td style="vertical-align: top;"> <p>Parameter to 6815 6816 6817 6818 6819 </td> 6820 6821 6822 6823 </tr> 6824 6825 6826 6827 <tr> 6828 6829 6830 6831 <td style="vertical-align: top;"> 6832 6833 6834 6835 <p><a name="radiation"></a><b>radiation</b></p> 6836 6837 6838 6839 6840 </td> 6841 6842 6843 6844 <td style="vertical-align: top;">L</td> 6845 6846 6847 6848 6849 <td style="vertical-align: top;"><i>.F.</i></td> 6850 6851 6852 6853 6854 <td style="vertical-align: top;"> 6855 6856 6857 6858 <p>Parameter to 1392 6859 switch on longwave radiation cooling at 1393 cloud-tops. </p> <p>Long-wave radiation 6860 cloud-tops. </p> 6861 6862 6863 6864 6865 6866 6867 6868 <p>Long-wave radiation 1394 6869 processes are parameterized by the 1395 6870 effective emissivity, which considers only the absorption and emission 1396 6871 of long-wave radiation at cloud droplets. The radiation scheme can be 1397 6872 used only with <a href="#cloud_physics">cloud_physics</a> 1398 = .TRUE. .</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="random_generator"></a><b>random_generator</b></p> 1399 </td> <td style="vertical-align: top;">C * 20</td> 1400 <td style="vertical-align: top;"> <p><i>'numerical</i><br> 1401 <i>recipes'</i></p> </td> <td style="vertical-align: top;"> <p>Random number 6873 = .TRUE. .</p> 6874 6875 6876 6877 </td> 6878 6879 6880 6881 </tr> 6882 6883 6884 6885 <tr> 6886 6887 6888 6889 <td style="vertical-align: top;"> 6890 6891 6892 6893 <p><a name="random_generator"></a><b>random_generator</b></p> 6894 6895 6896 6897 6898 </td> 6899 6900 6901 6902 <td style="vertical-align: top;">C * 20</td> 6903 6904 6905 6906 6907 <td style="vertical-align: top;"> 6908 6909 6910 6911 <p><i>'numerical</i><br> 6912 6913 6914 6915 6916 <i>recipes'</i></p> 6917 6918 6919 6920 </td> 6921 6922 6923 6924 <td style="vertical-align: top;"> 6925 6926 6927 6928 <p>Random number 1402 6929 generator to be used for creating uniformly 1403 distributed random numbers. <br> </p> <p>It is 6930 distributed random numbers. <br> 6931 6932 6933 6934 </p> 6935 6936 6937 6938 6939 6940 6941 6942 <p>It is 1404 6943 used if random perturbations are to be imposed on the 1405 6944 velocity field or on the surface heat flux field (see <a href="chapter_4.2.html#create_disturbances">create_disturbances</a> … … 1408 6947 This one provides exactly the same order of random numbers on all 1409 6948 different machines and should be used in particular for comparison runs.<br> 1410 <br> 6949 6950 6951 6952 6953 <br> 6954 6955 6956 6957 1411 6958 Besides, a system-specific generator is available ( <b>random_generator</b> 1412 6959 = <i>'system-specific')</i> which should particularly be … … 1414 6961 on vector parallel computers (NEC), because the default generator 1415 6962 cannot be vectorized and therefore significantly drops down the code 1416 performance on these machines.<br> </p> <span style="font-weight: bold;">Note:</span><br> 6963 performance on these machines.<br> 6964 6965 6966 6967 </p> 6968 6969 6970 6971 <span style="font-weight: bold;">Note:</span><br> 6972 6973 6974 6975 1417 6976 Results from two otherwise identical model runs will not be comparable 1418 one-to-one if they used different random number generators.</td> </tr> 1419 <tr> <td style="vertical-align: top;"> <p><a name="random_heatflux"></a><b>random_heatflux</b></p> 1420 </td> <td style="vertical-align: top;">L</td> 1421 <td style="vertical-align: top;"><i>.F.</i></td> 1422 <td style="vertical-align: top;"> <p>Parameter to 6977 one-to-one if they used different random number generators.</td> 6978 6979 6980 6981 </tr> 6982 6983 6984 6985 6986 <tr> 6987 6988 6989 6990 <td style="vertical-align: top;"> 6991 6992 6993 6994 <p><a name="random_heatflux"></a><b>random_heatflux</b></p> 6995 6996 6997 6998 6999 </td> 7000 7001 7002 7003 <td style="vertical-align: top;">L</td> 7004 7005 7006 7007 7008 <td style="vertical-align: top;"><i>.F.</i></td> 7009 7010 7011 7012 7013 <td style="vertical-align: top;"> 7014 7015 7016 7017 <p>Parameter to 1423 7018 impose random perturbations on the internal two-dimensional near 1424 7019 surface heat flux field <span style="font-style: italic;">shf</span>. 1425 <br> </p>If a near surface heat flux is used as bottom 7020 <br> 7021 7022 7023 7024 </p> 7025 7026 7027 7028 If a near surface heat flux is used as bottom 1426 7029 boundary 1427 7030 condition (see <a href="#surface_heatflux">surface_heatflux</a>), … … 1434 7037 values at each mesh point with a normally distributed random number 1435 7038 with a mean value and standard deviation of 1. This is repeated after 1436 every timestep.<br> <br> 7039 every timestep.<br> 7040 7041 7042 7043 <br> 7044 7045 7046 7047 1437 7048 In case of a non-flat <a href="#topography">topography</a>, assigning 1438 <b>random_heatflux</b>7049 <b>random_heatflux</b> 1439 7050 = <i>.T.</i> imposes random perturbations on the 1440 7051 combined heat … … 1442 7053 composed of <a href="#surface_heatflux">surface_heatflux</a> 1443 7054 at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a> 1444 at the topography top face.</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="rif_max"></a><b>rif_max</b></p> 1445 </td> <td style="vertical-align: top;">R</td> 1446 <td style="vertical-align: top;"><i>1.0</i></td> 1447 <td style="vertical-align: top;"> <p>Upper limit of 1448 the flux-Richardson number. </p> <p>With the 7055 at the topography top face.</td> 7056 7057 7058 7059 </tr> 7060 7061 7062 7063 <tr> 7064 7065 7066 7067 <td style="vertical-align: top;"> 7068 7069 7070 7071 <p><a name="rif_max"></a><b>rif_max</b></p> 7072 7073 7074 7075 7076 </td> 7077 7078 7079 7080 <td style="vertical-align: top;">R</td> 7081 7082 7083 7084 7085 <td style="vertical-align: top;"><i>1.0</i></td> 7086 7087 7088 7089 7090 <td style="vertical-align: top;"> 7091 7092 7093 7094 <p>Upper limit of 7095 the flux-Richardson number. </p> 7096 7097 7098 7099 7100 7101 7102 7103 <p>With the 1449 7104 Prandtl layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>), 1450 7105 flux-Richardson numbers (rif) are calculated for z=z<sub>p</sub> … … 1459 7114 for the flux-Richardson number. The condition <b>rif_max</b> 1460 7115 > <b>rif_min</b> 1461 must be met.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="rif_min"></a><b>rif_min</b></p> 1462 </td> <td style="vertical-align: top;">R</td> 1463 <td style="vertical-align: top;"><i>- 5.0</i></td> 1464 <td style="vertical-align: top;"> <p>Lower limit of 1465 the flux-Richardson number. </p> <p>For further 7116 must be met.</p> 7117 7118 7119 7120 </td> 7121 7122 7123 7124 </tr> 7125 7126 7127 7128 <tr> 7129 7130 7131 7132 <td style="vertical-align: top;"> 7133 7134 7135 7136 <p><a name="rif_min"></a><b>rif_min</b></p> 7137 7138 7139 7140 7141 </td> 7142 7143 7144 7145 <td style="vertical-align: top;">R</td> 7146 7147 7148 7149 7150 <td style="vertical-align: top;"><i>- 5.0</i></td> 7151 7152 7153 7154 7155 <td style="vertical-align: top;"> 7156 7157 7158 7159 <p>Lower limit of 7160 the flux-Richardson number. </p> 7161 7162 7163 7164 7165 7166 7167 7168 <p>For further 1466 7169 explanations see <a href="#rif_max">rif_max</a>. 1467 7170 The condition <b>rif_max</b> > <b>rif_min </b>must 1468 be met.</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="roughness_length"></a><b>roughness_length</b></p> 1469 </td> <td style="vertical-align: top;">R</td> 1470 <td style="vertical-align: top;"><i>0.1</i></td> 1471 <td style="vertical-align: top;"> <p>Roughness 1472 length (in m). </p> <p>This parameter is 7171 be met.</p> 7172 7173 7174 7175 </td> 7176 7177 7178 7179 </tr> 7180 7181 7182 7183 <tr> 7184 7185 7186 7187 <td style="vertical-align: top;"> 7188 7189 7190 7191 <p><a name="roughness_length"></a><b>roughness_length</b></p> 7192 7193 7194 7195 7196 </td> 7197 7198 7199 7200 <td style="vertical-align: top;">R</td> 7201 7202 7203 7204 7205 <td style="vertical-align: top;"><i>0.1</i></td> 7206 7207 7208 7209 7210 <td style="vertical-align: top;"> 7211 7212 7213 7214 <p>Roughness 7215 length (in m). </p> 7216 7217 7218 7219 7220 7221 7222 7223 <p>This parameter is 1473 7224 effective only in case that a Prandtl layer 1474 7225 is switched 1475 7226 on (see <a href="#prandtl_layer">prandtl_layer</a>).</p> 1476 </td> </tr> <tr><td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td><td style="vertical-align: top;"> <p>Surface salinity (in psu). </p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).<p>This 7227 7228 7229 7230 7231 </td> 7232 7233 7234 7235 </tr> 7236 7237 7238 7239 <tr> 7240 7241 7242 7243 <td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td> 7244 7245 7246 7247 <td style="vertical-align: top;">R</td> 7248 7249 7250 7251 <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td> 7252 7253 7254 7255 <td style="vertical-align: top;"> 7256 7257 7258 7259 <p>Surface salinity (in psu). </p> 7260 7261 7262 7263 This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>). 7264 7265 7266 7267 <p>This 1477 7268 parameter assigns the value of the salinity <span style="font-weight: bold;">sa</span> at the sea surface (k=nzt)<b>.</b> Starting from this value, 1478 7269 the 1479 7270 initial vertical salinity profile is constructed from the surface down to the bottom of the model (k=0) by using <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a> 1480 7271 and <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level 1481 </a>.</p></td></tr><tr><td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td><td style="vertical-align: top;">R(10)</td><td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td><td style="vertical-align: top;"><p>Salinity gradient(s) of the initial salinity profile (in psu 1482 / 100 m). </p> <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p><p>This salinity gradient 7272 </a>.</p> 7273 7274 7275 7276 </td> 7277 7278 7279 7280 </tr> 7281 7282 7283 7284 <tr> 7285 7286 7287 7288 <td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td> 7289 7290 7291 7292 <td style="vertical-align: top;">R(10)</td> 7293 7294 7295 7296 <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td> 7297 7298 7299 7300 <td style="vertical-align: top;"> 7301 7302 7303 7304 <p>Salinity gradient(s) of the initial salinity profile (in psu 7305 / 100 m). </p> 7306 7307 7308 7309 7310 7311 7312 7313 <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p> 7314 7315 7316 7317 7318 7319 7320 <p>This salinity gradient 1483 7321 holds starting from the height 1484 7322 level defined by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a> … … 1491 7329 = <i>0.0</i>) can be assigned. The surface salinity at k=nzt is 1492 7330 assigned via <a href="chapter_4.1.html#sa_surface">sa_surface</a>. 1493 </p> <p>Example: </p> <ul><p><b>sa_vertical_gradient</b> 7331 </p> 7332 7333 7334 7335 7336 7337 7338 7339 <p>Example: </p> 7340 7341 7342 7343 7344 7345 7346 7347 <ul> 7348 7349 7350 7351 7352 7353 7354 <p><b>sa_vertical_gradient</b> 1494 7355 = <i>1.0</i>, <i>0.5</i>, <br> 1495 <b>sa_vertical_gradient_level</b> = <i>-500.0</i>, 1496 -<i>1000.0</i>,</p></ul> <p>That 7356 7357 7358 7359 7360 <b>sa_vertical_gradient_level</b> = <i>-500.0</i>, 7361 -<i>1000.0</i>,</p> 7362 7363 7364 7365 7366 7367 7368 </ul> 7369 7370 7371 7372 7373 7374 7375 7376 <p>That 1497 7377 defines the salinity to be constant down to z = -500.0 m with a salinity given by <a href="chapter_4.1.html#sa_surface">sa_surface</a>. 1498 7378 For -500.0 m < z <= -1000.0 m the salinity gradient is … … 1500 7380 100 m and for z < -1000.0 m down to the bottom boundary it is 1501 7381 0.5 psu / 100 m (it is assumed that the assigned height levels correspond 1502 with uv levels).</p></td></tr><tr><td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td><td style="vertical-align: top;">R(10)</td><td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td><td style="vertical-align: top;"><p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a> 1503 is effective (in m). </p> <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p><p>The height levels have to be assigned in descending order. The 7382 with uv levels).</p> 7383 7384 7385 7386 </td> 7387 7388 7389 7390 </tr> 7391 7392 7393 7394 <tr> 7395 7396 7397 7398 <td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td> 7399 7400 7401 7402 <td style="vertical-align: top;">R(10)</td> 7403 7404 7405 7406 <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td> 7407 7408 7409 7410 <td style="vertical-align: top;"> 7411 7412 7413 7414 <p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a> 7415 is effective (in m). </p> 7416 7417 7418 7419 7420 7421 7422 7423 <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p> 7424 7425 7426 7427 7428 7429 7430 <p>The height levels have to be assigned in descending order. The 1504 7431 default values result in a constant salinity profile regardless of the 1505 7432 values of <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a> 1506 7433 (unless the bottom boundary of the model is lower than -100000.0 m). 1507 For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p></td></tr><tr> <td style="vertical-align: top;"> <p><a name="scalar_advec"></a><b>scalar_advec</b></p> 1508 </td> <td style="vertical-align: top;">C * 10</td> 1509 <td style="vertical-align: top;"><i>'pw-scheme'</i></td> 1510 <td style="vertical-align: top;"> <p>Advection 1511 scheme to be used for the scalar quantities. </p> <p>The 1512 user can choose between the following schemes:<br> </p> <p><span style="font-style: italic;">'pw-scheme'</span><br> 1513 </p> <div style="margin-left: 40px;">The scheme of 7434 For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p> 7435 7436 7437 7438 </td> 7439 7440 7441 7442 </tr> 7443 7444 7445 7446 <tr> 7447 7448 7449 7450 <td style="vertical-align: top;"> 7451 7452 7453 7454 <p><a name="scalar_advec"></a><b>scalar_advec</b></p> 7455 7456 7457 7458 7459 </td> 7460 7461 7462 7463 <td style="vertical-align: top;">C * 10</td> 7464 7465 7466 7467 7468 <td style="vertical-align: top;"><i>'pw-scheme'</i></td> 7469 7470 7471 7472 7473 <td style="vertical-align: top;"> 7474 7475 7476 7477 <p>Advection 7478 scheme to be used for the scalar quantities. </p> 7479 7480 7481 7482 7483 7484 7485 7486 <p>The 7487 user can choose between the following schemes:<br> 7488 7489 7490 7491 </p> 7492 7493 7494 7495 7496 7497 7498 7499 <p><span style="font-style: italic;">'pw-scheme'</span><br> 7500 7501 7502 7503 7504 </p> 7505 7506 7507 7508 7509 7510 7511 7512 <div style="margin-left: 40px;">The scheme of 1514 7513 Piascek and 1515 7514 Williams (1970, J. Comp. Phys., 6, 1516 7515 392-405) with central differences in the form C3 is used.<br> 7516 7517 7518 7519 1517 7520 If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a> 1518 7521 = <span style="font-style: italic;">'leapfrog+euler'</span> 1519 7522 the 1520 7523 advection scheme is - for the Euler-timestep - automatically switched 1521 to an upstream-scheme. <br> </div> <br> <p><span style="font-style: italic;">'bc-scheme'</span><br> 1522 </p> <div style="margin-left: 40px;">The Bott 7524 to an upstream-scheme. <br> 7525 7526 7527 7528 </div> 7529 7530 7531 7532 <br> 7533 7534 7535 7536 7537 7538 7539 7540 <p><span style="font-style: italic;">'bc-scheme'</span><br> 7541 7542 7543 7544 7545 </p> 7546 7547 7548 7549 7550 7551 7552 7553 <div style="margin-left: 40px;">The Bott 1523 7554 scheme modified by 1524 7555 Chlond (1994, Mon. … … 1539 7570 too inaccurate with this scheme. However, for subdomain analysis (see <a href="#statistic_regions">statistic_regions</a>) 1540 7571 exactly the reverse holds: here <i>'w*pt*BC'</i> and <i>'wptBC'</i> 1541 show very large errors and should not be used.<br> <br> 7572 show very large errors and should not be used.<br> 7573 7574 7575 7576 <br> 7577 7578 7579 7580 1542 7581 This scheme is not allowed for non-cyclic lateral boundary conditions 1543 7582 (see <a href="#bc_lr">bc_lr</a> 1544 and <a href="#bc_ns">bc_ns</a>).<br> <br> 1545 </div> <span style="font-style: italic;">'ups-scheme'</span><br> 1546 <p style="margin-left: 40px;">The upstream-spline-scheme 7583 and <a href="#bc_ns">bc_ns</a>).<br> 7584 7585 7586 7587 <br> 7588 7589 7590 7591 7592 </div> 7593 7594 7595 7596 <span style="font-style: italic;">'ups-scheme'</span><br> 7597 7598 7599 7600 7601 7602 7603 7604 <p style="margin-left: 40px;">The upstream-spline-scheme 1547 7605 is used 1548 7606 (see Mahrer and Pielke, … … 1560 7618 because otherwise the momentum would 1561 7619 be subject to large numerical diffusion due to the upstream 1562 scheme. </p> <p style="margin-left: 40px;">Since 7620 scheme. </p> 7621 7622 7623 7624 7625 7626 7627 7628 <p style="margin-left: 40px;">Since 1563 7629 the cubic splines used tend 1564 7630 to overshoot under 1565 7631 certain circumstances, this effect must be adjusted by suitable 1566 7632 filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>, 1567 <a href="#long_filter_factor">long_filter_factor</a>,1568 <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).7633 <a href="#long_filter_factor">long_filter_factor</a>, 7634 <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>). 1569 7635 This is always neccesssary for runs with stable stratification, 1570 7636 even if this stratification appears only in parts of the model 1571 domain. </p> <p style="margin-left: 40px;">With 7637 domain. </p> 7638 7639 7640 7641 7642 7643 7644 7645 <p style="margin-left: 40px;">With 1572 7646 stable stratification the 1573 7647 upstream-upline scheme also produces gravity waves with large 1574 7648 amplitude, which must be 1575 7649 suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br> 1576 </p> <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The 7650 7651 7652 7653 7654 </p> 7655 7656 7657 7658 7659 7660 7661 7662 <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The 1577 7663 upstream-spline scheme is not implemented for humidity and passive 1578 7664 scalars (see <a href="#humidity">humidity</a> … … 1582 7668 very long execution times! This scheme is also not allowed for 1583 7669 non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a> 1584 and <a href="#bc_ns">bc_ns</a>).</p><br>A 7670 and <a href="#bc_ns">bc_ns</a>).</p> 7671 7672 7673 7674 <br> 7675 7676 7677 7678 A 1585 7679 differing advection scheme can be choosed for the subgrid-scale TKE 1586 7680 using parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>.</td> 1587 </tr> <tr> <td style="vertical-align: top;"> 1588 <p><a name="statistic_regions"></a><b>statistic_regions</b></p> 1589 </td> <td style="vertical-align: top;">I</td> 1590 <td style="vertical-align: top;"><i>0</i></td> 1591 <td style="vertical-align: top;"> <p>Number of 7681 7682 7683 7684 7685 </tr> 7686 7687 7688 7689 <tr> 7690 7691 7692 7693 <td style="vertical-align: top;"> 7694 7695 7696 7697 <p><a name="statistic_regions"></a><b>statistic_regions</b></p> 7698 7699 7700 7701 7702 </td> 7703 7704 7705 7706 <td style="vertical-align: top;">I</td> 7707 7708 7709 7710 7711 <td style="vertical-align: top;"><i>0</i></td> 7712 7713 7714 7715 7716 <td style="vertical-align: top;"> 7717 7718 7719 7720 <p>Number of 1592 7721 additional user-defined subdomains for which 1593 7722 statistical analysis 1594 7723 and corresponding output (profiles, time series) shall be 1595 made. </p> <p>By default, vertical profiles and 7724 made. </p> 7725 7726 7727 7728 7729 7730 7731 7732 <p>By default, vertical profiles and 1596 7733 other statistical quantities 1597 7734 are calculated as horizontal and/or volume average of the total model … … 1606 7743 can be used to assigned names (identifier) to these subdomains which 1607 7744 are then used in the headers 1608 of the output files and plots.</p><p>If the default NetCDF 7745 of the output files and plots.</p> 7746 7747 7748 7749 7750 7751 7752 <p>If the default NetCDF 1609 7753 output format is selected (see parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>), 1610 7754 data for the total domain and all defined subdomains are output to the 1611 7755 same file(s) (<a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>, 1612 <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>).7756 <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>). 1613 7757 In case of <span style="font-weight: bold;">statistic_regions</span> 1614 7758 > <span style="font-style: italic;">0</span>, 1615 7759 data on the file for the different domains can be distinguished by a 1616 7760 suffix which is appended to the quantity names. Suffix 0 means data for 1617 the total domain, suffix 1 means data for subdomain 1, etc.</p><p>In 7761 the total domain, suffix 1 means data for subdomain 1, etc.</p> 7762 7763 7764 7765 7766 7767 7768 <p>In 1618 7769 case of <span style="font-weight: bold;">data_output_format</span> 1619 7770 = <span style="font-style: italic;">'profil'</span>, … … 1628 7779 PLOT1D_DATA is used (this must be considered in the 1629 7780 respective file connection statements of the <span style="font-weight: bold;">mrun</span> configuration 1630 file).</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p> 1631 </td> <td style="vertical-align: top;">R</td> 1632 <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> 1633 heatflux<br> </span></td> <td style="vertical-align: top;"> <p>Kinematic sensible 1634 heat flux at the bottom surface (in K m/s). </p> <p>If 7781 file).</p> 7782 7783 7784 7785 </td> 7786 7787 7788 7789 </tr> 7790 7791 7792 7793 <tr> 7794 7795 7796 7797 <td style="vertical-align: top;"> 7798 7799 7800 7801 <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p> 7802 7803 7804 7805 7806 </td> 7807 7808 7809 7810 <td style="vertical-align: top;">R</td> 7811 7812 7813 7814 7815 <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> 7816 7817 7818 7819 7820 heatflux<br> 7821 7822 7823 7824 </span></td> 7825 7826 7827 7828 <td style="vertical-align: top;"> 7829 7830 7831 7832 <p>Kinematic sensible 7833 heat flux at the bottom surface (in K m/s). </p> 7834 7835 7836 7837 7838 7839 7840 7841 <p>If 1635 7842 a value is assigned to this parameter, the internal two-dimensional 1636 7843 surface heat flux field <span style="font-style: italic;">shf</span> … … 1647 7854 heat 1648 7855 flux field <span style="font-style: italic;">shf</span>. </p> 1649 <p> 7856 7857 7858 7859 7860 7861 7862 7863 <p> 1650 7864 In case of a non-flat <a href="#topography">topography</a>, the 1651 7865 internal two-dimensional surface heat … … 1657 7871 heat 1658 7872 flux field <span style="font-style: italic;">shf</span>. 1659 </p> <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated 7873 </p> 7874 7875 7876 7877 7878 7879 7880 7881 <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated 1660 7882 at each timestep by u<sub>*</sub> * theta<sub>*</sub> 1661 7883 (of course only with <a href="#prandtl_layer">prandtl_layer</a> … … 1665 7887 logarithmic wind and temperature 1666 7888 profiles between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_pt_b">bc_pt_b</a>) 1667 must be used as bottom boundary condition for the potential temperature.</p><p>See 7889 must be used as bottom boundary condition for the potential temperature.</p> 7890 7891 7892 7893 7894 7895 7896 <p>See 1668 7897 also <a href="#top_heatflux">top_heatflux</a>.</p> 1669 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="surface_pressure"></a><b>surface_pressure</b></p> 1670 </td> <td style="vertical-align: top;">R</td> 1671 <td style="vertical-align: top;"><i>1013.25</i></td> 1672 <td style="vertical-align: top;"> <p>Atmospheric 7898 7899 7900 7901 7902 </td> 7903 7904 7905 7906 </tr> 7907 7908 7909 7910 <tr> 7911 7912 7913 7914 <td style="vertical-align: top;"> 7915 7916 7917 7918 <p><a name="surface_pressure"></a><b>surface_pressure</b></p> 7919 7920 7921 7922 7923 </td> 7924 7925 7926 7927 <td style="vertical-align: top;">R</td> 7928 7929 7930 7931 7932 <td style="vertical-align: top;"><i>1013.25</i></td> 7933 7934 7935 7936 7937 <td style="vertical-align: top;"> 7938 7939 7940 7941 <p>Atmospheric 1673 7942 pressure at the surface (in hPa). </p> 7943 7944 7945 7946 1674 7947 Starting from this surface value, the vertical pressure 1675 7948 profile is calculated once at the beginning of the run assuming a … … 1678 7951 converting between the liquid water potential temperature and the 1679 7952 potential temperature (see <a href="#cloud_physics">cloud_physics</a><span style="text-decoration: underline;"></span>).</td> 1680 </tr> <tr> <td style="vertical-align: top;"> 1681 <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p> 1682 </td> <td style="vertical-align: top;">R</td> 1683 <td style="vertical-align: top;"><i>0.0</i></td> 1684 <td style="vertical-align: top;"> <p>Scalar flux at 7953 7954 7955 7956 7957 </tr> 7958 7959 7960 7961 <tr> 7962 7963 7964 7965 <td style="vertical-align: top;"> 7966 7967 7968 7969 <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p> 7970 7971 7972 7973 7974 </td> 7975 7976 7977 7978 <td style="vertical-align: top;">R</td> 7979 7980 7981 7982 7983 <td style="vertical-align: top;"><i>0.0</i></td> 7984 7985 7986 7987 7988 <td style="vertical-align: top;"> 7989 7990 7991 7992 <p>Scalar flux at 1685 7993 the surface (in kg/(m<sup>2</sup> s)). </p> 1686 <p>If a non-zero value is assigned to this parameter, the 7994 7995 7996 7997 7998 7999 8000 8001 <p>If a non-zero value is assigned to this parameter, the 1687 8002 respective scalar flux value is used 1688 8003 as bottom (horizontally homogeneous) boundary condition for the scalar … … 1694 8009 changes of the 1695 8010 surface scalar concentration (see <a href="#s_surface_initial_change">s_surface_initial_change</a>) 1696 are not allowed. <br> </p> <p>If no surface scalar 8011 are not allowed. <br> 8012 8013 8014 8015 </p> 8016 8017 8018 8019 8020 8021 8022 8023 <p>If no surface scalar 1697 8024 flux is assigned (<b>surface_scalarflux</b> 1698 8025 = <i>0.0</i>), … … 1703 8030 profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_s_b">bc_s_b</a>) 1704 8031 must be used as bottom boundary condition for the scalar concentration.</p> 1705 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p> 1706 </td> <td style="vertical-align: top;">R</td> 1707 <td style="vertical-align: top;"><i>0.0</i></td> 1708 <td style="vertical-align: top;"> <p>Kinematic 1709 water flux near the surface (in m/s). </p> <p>If 8032 8033 8034 8035 8036 </td> 8037 8038 8039 8040 </tr> 8041 8042 8043 8044 <tr> 8045 8046 8047 8048 <td style="vertical-align: top;"> 8049 8050 8051 8052 <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p> 8053 8054 8055 8056 8057 </td> 8058 8059 8060 8061 <td style="vertical-align: top;">R</td> 8062 8063 8064 8065 8066 <td style="vertical-align: top;"><i>0.0</i></td> 8067 8068 8069 8070 8071 <td style="vertical-align: top;"> 8072 8073 8074 8075 <p>Kinematic 8076 water flux near the surface (in m/s). </p> 8077 8078 8079 8080 8081 8082 8083 8084 <p>If 1710 8085 a non-zero value is assigned to this parameter, the 1711 8086 respective water flux value is used … … 1718 8093 changes of the 1719 8094 surface humidity (see <a href="#q_surface_initial_change">q_surface_initial_change</a>) 1720 are not allowed.<br> </p> <p>If no surface water 8095 are not allowed.<br> 8096 8097 8098 8099 </p> 8100 8101 8102 8103 8104 8105 8106 8107 <p>If no surface water 1721 8108 flux is assigned (<b>surface_waterflux</b> 1722 8109 = <i>0.0</i>), … … 1726 8113 profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_q_b">bc_q_b</a>) 1727 8114 must be used as the bottom boundary condition for the humidity.</p> 1728 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="s_surface"></a><b>s_surface</b></p> 1729 </td> <td style="vertical-align: top;">R</td> 1730 <td style="vertical-align: top;"><i>0.0</i></td> 1731 <td style="vertical-align: top;"> <p>Surface value 8115 8116 8117 8118 8119 </td> 8120 8121 8122 8123 </tr> 8124 8125 8126 8127 <tr> 8128 8129 8130 8131 <td style="vertical-align: top;"> 8132 8133 8134 8135 <p><a name="s_surface"></a><b>s_surface</b></p> 8136 8137 8138 8139 8140 </td> 8141 8142 8143 8144 <td style="vertical-align: top;">R</td> 8145 8146 8147 8148 8149 <td style="vertical-align: top;"><i>0.0</i></td> 8150 8151 8152 8153 8154 <td style="vertical-align: top;"> 8155 8156 8157 8158 <p>Surface value 1732 8159 of the passive scalar (in kg/m<sup>3</sup>). <br> 1733 </p> 8160 8161 8162 8163 8164 </p> 8165 8166 8167 8168 1734 8169 This parameter assigns the value of the passive scalar s at 1735 8170 the surface (k=0)<b>.</b> Starting from this value, the 1736 8171 initial vertical scalar concentration profile is constructed with<a href="#s_vertical_gradient"> 1737 8172 s_vertical_gradient</a> and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.</td> 1738 </tr> <tr> <td style="vertical-align: top;"> 1739 <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b> 1740 <br> <b>_change</b></p> </td> <td style="vertical-align: top;">R</td> <td style="vertical-align: top;"><i>0.0</i></td> 1741 <td style="vertical-align: top;"> <p>Change in 8173 8174 8175 8176 8177 </tr> 8178 8179 8180 8181 <tr> 8182 8183 8184 8185 <td style="vertical-align: top;"> 8186 8187 8188 8189 <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b> 8190 <br> 8191 8192 8193 8194 <b>_change</b></p> 8195 8196 8197 8198 </td> 8199 8200 8201 8202 <td style="vertical-align: top;">R</td> 8203 8204 8205 8206 <td style="vertical-align: top;"><i>0.0</i></td> 8207 8208 8209 8210 8211 <td style="vertical-align: top;"> 8212 8213 8214 8215 <p>Change in 1742 8216 surface scalar concentration to be made at the 1743 8217 beginning of the 3d run (in kg/m<sup>3</sup>). </p> 1744 <p>If <b>s_surface_initial_change</b><i> </i>is 8218 8219 8220 8221 8222 8223 8224 8225 <p>If <b>s_surface_initial_change</b><i> </i>is 1745 8226 set to a 1746 8227 non-zero 1747 8228 value, the near surface scalar flux is not allowed to be given 1748 8229 simultaneously (see <a href="#surface_scalarflux">surface_scalarflux</a>).</p> 1749 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p> 1750 </td> <td style="vertical-align: top;">R (10)</td> 1751 <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td> 1752 <td style="vertical-align: top;"> <p>Scalar 8230 8231 8232 8233 8234 </td> 8235 8236 8237 8238 </tr> 8239 8240 8241 8242 <tr> 8243 8244 8245 8246 <td style="vertical-align: top;"> 8247 8248 8249 8250 <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p> 8251 8252 8253 8254 8255 </td> 8256 8257 8258 8259 <td style="vertical-align: top;">R (10)</td> 8260 8261 8262 8263 8264 <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td> 8265 8266 8267 8268 8269 <td style="vertical-align: top;"> 8270 8271 8272 8273 <p>Scalar 1753 8274 concentration gradient(s) of the initial scalar 1754 8275 concentration profile (in kg/m<sup>3 </sup>/ 1755 100 m). </p> <p>The scalar gradient holds 8276 100 m). </p> 8277 8278 8279 8280 8281 8282 8283 8284 <p>The scalar gradient holds 1756 8285 starting from the height level 1757 8286 defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level 1758 </a>(precisely: for all uv levels k, where zu(k) >8287 </a>(precisely: for all uv levels k, where zu(k) > 1759 8288 s_vertical_gradient_level, s_init(k) is set: s_init(k) = s_init(k-1) + 1760 8289 dzu(k) * <b>s_vertical_gradient</b>) up to the top … … 1765 8294 = <i>0.0</i>) can be assigned. The surface scalar value is 1766 8295 assigned 1767 via <a href="#s_surface">s_surface</a>.<br> </p> 1768 <p>Example: </p> <ul> <p><b>s_vertical_gradient</b> 8296 via <a href="#s_surface">s_surface</a>.<br> 8297 8298 8299 8300 </p> 8301 8302 8303 8304 8305 8306 8307 8308 <p>Example: </p> 8309 8310 8311 8312 8313 8314 8315 8316 <ul> 8317 8318 8319 8320 8321 8322 8323 8324 <p><b>s_vertical_gradient</b> 1769 8325 = <i>0.1</i>, <i>0.05</i>, <br> 1770 <b>s_vertical_gradient_level</b> = <i>500.0</i>, 1771 <i>1000.0</i>,</p> </ul> <p>That 8326 8327 8328 8329 8330 <b>s_vertical_gradient_level</b> = <i>500.0</i>, 8331 <i>1000.0</i>,</p> 8332 8333 8334 8335 8336 8337 8338 8339 </ul> 8340 8341 8342 8343 8344 8345 8346 8347 <p>That 1772 8348 defines the scalar concentration to be constant with 1773 8349 height up to z = 500.0 m with a value given by <a href="#s_surface">s_surface</a>. … … 1779 8355 assigned height levels 1780 8356 correspond with uv 1781 levels).</p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b> 1782 <br> <b>level</b></p> </td> <td style="vertical-align: top;">R (10)</td> <td style="vertical-align: top;"> <p><i>10 *</i> 1783 <i>0.0</i></p> </td> <td style="vertical-align: top;"> <p>Height level from 8357 levels).</p> 8358 8359 8360 8361 </td> 8362 8363 8364 8365 </tr> 8366 8367 8368 8369 <tr> 8370 8371 8372 8373 <td style="vertical-align: top;"> 8374 8375 8376 8377 <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b> 8378 <br> 8379 8380 8381 8382 <b>level</b></p> 8383 8384 8385 8386 </td> 8387 8388 8389 8390 <td style="vertical-align: top;">R (10)</td> 8391 8392 8393 8394 <td style="vertical-align: top;"> 8395 8396 8397 8398 <p><i>10 *</i> 8399 <i>0.0</i></p> 8400 8401 8402 8403 </td> 8404 8405 8406 8407 <td style="vertical-align: top;"> 8408 8409 8410 8411 <p>Height level from 1784 8412 which on the scalar gradient defined by <a href="#s_vertical_gradient">s_vertical_gradient</a> 1785 is effective (in m). </p> <p>The height levels 8413 is effective (in m). </p> 8414 8415 8416 8417 8418 8419 8420 8421 <p>The height levels 1786 8422 are to be assigned in ascending order. The 1787 8423 default values result in a scalar concentration constant with height … … 1790 8426 the 1791 8427 piecewise construction of scalar concentration profiles see <a href="#s_vertical_gradient">s_vertical_gradient</a>.</p> 1792 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p> 1793 </td> <td style="vertical-align: top;">C * 20</td> 1794 <td style="vertical-align: top;"> <p><i>'runge</i><br> 1795 <i>kutta-3'</i></p> </td> <td style="vertical-align: top;"> <p>Time step scheme to 8428 8429 8430 8431 8432 </td> 8433 8434 8435 8436 </tr> 8437 8438 8439 8440 <tr> 8441 8442 8443 8444 <td style="vertical-align: top;"> 8445 8446 8447 8448 <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p> 8449 8450 8451 8452 8453 </td> 8454 8455 8456 8457 <td style="vertical-align: top;">C * 20</td> 8458 8459 8460 8461 8462 <td style="vertical-align: top;"> 8463 8464 8465 8466 <p><i>'runge</i><br> 8467 8468 8469 8470 8471 <i>kutta-3'</i></p> 8472 8473 8474 8475 </td> 8476 8477 8478 8479 <td style="vertical-align: top;"> 8480 8481 8482 8483 <p>Time step scheme to 1796 8484 be used for the integration of the prognostic 1797 variables. </p> <p>The user can choose between 1798 the following schemes:<br> </p> <p><span style="font-style: italic;">'runge-kutta-3'</span><br> 1799 </p> <div style="margin-left: 40px;">Third order 8485 variables. </p> 8486 8487 8488 8489 8490 8491 8492 8493 <p>The user can choose between 8494 the following schemes:<br> 8495 8496 8497 8498 </p> 8499 8500 8501 8502 8503 8504 8505 8506 <p><span style="font-style: italic;">'runge-kutta-3'</span><br> 8507 8508 8509 8510 8511 </p> 8512 8513 8514 8515 8516 8517 8518 8519 <div style="margin-left: 40px;">Third order 1800 8520 Runge-Kutta scheme.<br> 8521 8522 8523 8524 1801 8525 This scheme requires the use of <a href="#momentum_advec">momentum_advec</a> 1802 8526 = <a href="#scalar_advec">scalar_advec</a> 1803 8527 = '<i>pw-scheme'</i>. Please refer to the <a href="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation 1804 8528 on PALM's time integration schemes (28p., in German)</a> 1805 fur further details.<br> </div> <p><span style="font-style: italic;">'runge-kutta-2'</span><br> 1806 </p> <div style="margin-left: 40px;">Second order 8529 fur further details.<br> 8530 8531 8532 8533 </div> 8534 8535 8536 8537 8538 8539 8540 8541 <p><span style="font-style: italic;">'runge-kutta-2'</span><br> 8542 8543 8544 8545 8546 </p> 8547 8548 8549 8550 8551 8552 8553 8554 <div style="margin-left: 40px;">Second order 1807 8555 Runge-Kutta scheme.<br> 8556 8557 8558 8559 1808 8560 For special features see <b>timestep_scheme</b> = '<i>runge-kutta-3'</i>.<br> 1809 </div> <br> <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br> 1810 <br> </span> <div style="margin-left: 40px;">Second 8561 8562 8563 8564 8565 </div> 8566 8567 8568 8569 <br> 8570 8571 8572 8573 <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br> 8574 8575 8576 8577 8578 <br> 8579 8580 8581 8582 </span> 8583 8584 8585 8586 <div style="margin-left: 40px;">Second 1811 8587 order leapfrog scheme.<br> 8588 8589 8590 8591 1812 8592 Although this scheme requires a constant timestep (because it is 1813 8593 centered in time), is even applied in case of changes in … … 1820 8600 with the Euler scheme, although the leapfrog scheme is switched 1821 8601 on. <br> 8602 8603 8604 8605 1822 8606 The leapfrog scheme must not be used together with the upstream-spline 1823 8607 scheme for calculating the advection (see <a href="#scalar_advec">scalar_advec</a> 1824 8608 = '<i>ups-scheme'</i> and <a href="#momentum_advec">momentum_advec</a> 1825 = '<i>ups-scheme'</i>).<br> </div> <br> 1826 <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br> 1827 <br> </span> <div style="margin-left: 40px;">The 8609 = '<i>ups-scheme'</i>).<br> 8610 8611 8612 8613 </div> 8614 8615 8616 8617 <br> 8618 8619 8620 8621 8622 <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br> 8623 8624 8625 8626 8627 <br> 8628 8629 8630 8631 </span> 8632 8633 8634 8635 <div style="margin-left: 40px;">The 1828 8636 leapfrog scheme is used, but 1829 8637 after each change of a timestep an Euler timestep is carried out. … … 1832 8640 velocity field (after applying the pressure solver) may be 1833 8641 significantly larger than with <span style="font-style: italic;">'leapfrog'</span>.<br> 1834 </div> <br> <span style="font-style: italic;">'euler'</span><br> 1835 <br> <div style="margin-left: 40px;">First order 8642 8643 8644 8645 8646 </div> 8647 8648 8649 8650 <br> 8651 8652 8653 8654 <span style="font-style: italic;">'euler'</span><br> 8655 8656 8657 8658 8659 <br> 8660 8661 8662 8663 8664 8665 8666 8667 <div style="margin-left: 40px;">First order 1836 8668 Euler scheme. <br> 8669 8670 8671 8672 1837 8673 The Euler scheme must be used when treating the advection terms with 1838 8674 the upstream-spline scheme (see <a href="#scalar_advec">scalar_advec</a> … … 1840 8676 and <a href="#momentum_advec">momentum_advec</a> 1841 8677 = <span style="font-style: italic;">'ups-scheme'</span>).</div> 1842 <br><br>A differing timestep scheme can be choosed for the 8678 8679 8680 8681 8682 <br> 8683 8684 8685 8686 <br> 8687 8688 8689 8690 A differing timestep scheme can be choosed for the 1843 8691 subgrid-scale TKE using parameter <a href="#use_upstream_for_tke">use_upstream_for_tke</a>.<br> 1844 </td> </tr> <tr> <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td> 1845 <td style="vertical-align: top;">C * 40</td> <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td> <td> 1846 <p>Topography mode. </p> <p>The user can 1847 choose between the following modes:<br> </p> <p><span style="font-style: italic;">'flat'</span><br> </p> 1848 <div style="margin-left: 40px;">Flat surface.</div> <p><span style="font-style: italic;">'single_building'</span><br> 1849 </p> <div style="margin-left: 40px;">Flow 8692 8693 8694 8695 8696 </td> 8697 8698 8699 8700 </tr> 8701 8702 8703 8704 <tr> 8705 8706 8707 8708 <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td> 8709 8710 8711 8712 8713 <td style="vertical-align: top;">C * 40</td> 8714 8715 8716 8717 <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td> 8718 8719 8720 8721 <td> 8722 8723 8724 8725 <p>Topography mode. </p> 8726 8727 8728 8729 8730 8731 8732 8733 <p>The user can 8734 choose between the following modes:<br> 8735 8736 8737 8738 </p> 8739 8740 8741 8742 8743 8744 8745 8746 <p><span style="font-style: italic;">'flat'</span><br> 8747 8748 8749 8750 </p> 8751 8752 8753 8754 8755 8756 8757 8758 <div style="margin-left: 40px;">Flat surface.</div> 8759 8760 8761 8762 8763 8764 8765 8766 <p><span style="font-style: italic;">'single_building'</span><br> 8767 8768 8769 8770 8771 </p> 8772 8773 8774 8775 8776 8777 8778 8779 <div style="margin-left: 40px;">Flow 1850 8780 around a single rectangular building mounted on a flat surface.<br> 8781 8782 8783 8784 1851 8785 The building size and location can be specified with the parameters <a href="#building_height">building_height</a>, <a href="#building_length_x">building_length_x</a>, <a href="#building_length_y">building_length_y</a>, <a href="#building_wall_left">building_wall_left</a> and <a href="#building_wall_south">building_wall_south</a>.</div> 1852 <span style="font-style: italic;"></span> <p><span style="font-style: italic;">'read_from_file'</span><br> 1853 </p> <div style="margin-left: 40px;">Flow around 8786 8787 8788 8789 8790 <span style="font-style: italic;"></span> 8791 8792 8793 8794 <p><span style="font-style: italic;">'read_from_file'</span><br> 8795 8796 8797 8798 8799 </p> 8800 8801 8802 8803 8804 8805 8806 8807 <div style="margin-left: 40px;">Flow around 1854 8808 arbitrary topography.<br> 8809 8810 8811 8812 1855 8813 This mode requires the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. This file contains </font><font color="#000000"><font color="#000000">the </font></font><font color="#000000">arbitrary topography </font><font color="#000000"><font color="#000000">height 1856 8814 information</font></font><font color="#000000"> 1857 8815 in m. These data <span style="font-style: italic;"></span>must 1858 exactly match the horizontal grid.</font> </div> <span style="font-style: italic;"><br> </span><font color="#000000"> 8816 exactly match the horizontal grid.</font> </div> 8817 8818 8819 8820 <span style="font-style: italic;"><br> 8821 8822 8823 8824 </span><font color="#000000"> 1859 8825 Alternatively, the user may add code to the user interface subroutine <a href="chapter_3.5.1.html#user_init_grid">user_init_grid</a> 1860 to allow further topography modes.<br> <br> 8826 to allow further topography modes.<br> 8827 8828 8829 8830 <br> 8831 8832 8833 8834 1861 8835 All non-flat <span style="font-weight: bold;">topography</span> 1862 8836 modes </font>require the use of <a href="#momentum_advec">momentum_advec</a> … … 1864 8838 = '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a> 1865 8839 = <i>'poisfft'</i> or '<i>poisfft_hybrid'</i>, 1866 <i> </i><a href="#alpha_surface">alpha_surface</a>8840 <i> </i><a href="#alpha_surface">alpha_surface</a> 1867 8841 = 0.0, <a href="#bc_lr">bc_lr</a> = <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>, <a style="" href="#galilei_transformation">galilei_transformation</a> 1868 8842 = <span style="font-style: italic;">.F.</span>, <a href="#cloud_physics">cloud_physics </a> = <span style="font-style: italic;">.F.</span>, <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>, <a href="#humidity">humidity</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br> 1869 <font color="#000000"><br> 8843 8844 8845 8846 8847 <font color="#000000"><br> 8848 8849 8850 8851 1870 8852 Note that an inclined model domain requires the use of <span style="font-weight: bold;">topography</span> = <span style="font-style: italic;">'flat'</span> and a 1871 8853 nonzero </font><a href="#alpha_surface">alpha_surface</a>.</td> 1872 </tr> <tr><td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> 1873 heatflux</span></td><td style="vertical-align: top;"><p>Kinematic 8854 8855 8856 8857 8858 </tr> 8859 8860 8861 8862 <tr> 8863 8864 8865 8866 <td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td> 8867 8868 8869 8870 <td style="vertical-align: top;">R</td> 8871 8872 8873 8874 <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> 8875 8876 8877 8878 8879 heatflux</span></td> 8880 8881 8882 8883 <td style="vertical-align: top;"> 8884 8885 8886 8887 <p>Kinematic 1874 8888 sensible heat flux at the top boundary (in K m/s). </p> 1875 <p>If a value is assigned to this parameter, the internal 8889 8890 8891 8892 8893 8894 8895 8896 <p>If a value is assigned to this parameter, the internal 1876 8897 two-dimensional surface heat flux field <span style="font-family: monospace;">tswst</span> is 1877 8898 initialized with the value of <span style="font-weight: bold;">top_heatflux</span> as … … 1881 8902 because otherwise the resolved scale may contribute to 1882 8903 the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> 1883 <p><span style="font-weight: bold;">Note:</span><br>The 8904 8905 8906 8907 8908 8909 8910 8911 <p><span style="font-weight: bold;">Note:</span><br> 8912 8913 8914 8915 The 1884 8916 application of a top heat flux additionally requires the setting of 1885 8917 initial parameter <a href="#use_top_fluxes">use_top_fluxes</a> 1886 = .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p><p>No 1887 Prandtl-layer is available at the top boundary so far.</p><p>See 8918 = .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p> 8919 8920 8921 8922 8923 8924 8925 <p>No 8926 Prandtl-layer is available at the top boundary so far.</p> 8927 8928 8929 8930 8931 8932 8933 <p>See 1888 8934 also <a href="#surface_heatflux">surface_heatflux</a>.</p> 1889 </td></tr><tr><td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td><td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br><p>If a value is assigned to this parameter, the internal 8935 8936 8937 8938 8939 </td> 8940 8941 8942 8943 </tr> 8944 8945 8946 8947 <tr> 8948 8949 8950 8951 <td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td> 8952 8953 8954 8955 <td style="vertical-align: top;">R</td> 8956 8957 8958 8959 <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td> 8960 8961 8962 8963 <td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br> 8964 8965 8966 8967 8968 8969 8970 <p>If a value is assigned to this parameter, the internal 1890 8971 two-dimensional u-momentum flux field <span style="font-family: monospace;">uswst</span> is 1891 8972 initialized with the value of <span style="font-weight: bold;">top_momentumflux_u</span> as 1892 top (horizontally homogeneous) boundary condition for the u-momentum equation.</p><p><span style="font-weight: bold;">Notes:</span><br>The 8973 top (horizontally homogeneous) boundary condition for the u-momentum equation.</p> 8974 8975 8976 8977 8978 8979 8980 <p><span style="font-weight: bold;">Notes:</span><br> 8981 8982 8983 8984 The 1893 8985 application of a top momentum flux additionally requires the setting of 1894 8986 initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a> 1895 = .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p><p>A Neumann 8987 = .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p> 8988 8989 8990 8991 8992 8993 8994 <p>A Neumann 1896 8995 condition should be used for the u velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>), 1897 8996 because otherwise the resolved scale may contribute to 1898 8997 the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> 1899 <span style="font-weight: bold;"></span><p>No 1900 Prandtl-layer is available at the top boundary so far.</p></td></tr><tr><td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td><td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br><p>If a value is assigned to this parameter, the internal 8998 8999 9000 9001 9002 <span style="font-weight: bold;"></span> 9003 9004 9005 9006 <p>No 9007 Prandtl-layer is available at the top boundary so far.</p> 9008 9009 9010 9011 9012 9013 9014 <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and <a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p> 9015 9016 9017 9018 </td> 9019 9020 9021 9022 </tr> 9023 9024 9025 9026 <tr> 9027 9028 9029 9030 <td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td> 9031 9032 9033 9034 <td style="vertical-align: top;">R</td> 9035 9036 9037 9038 <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td> 9039 9040 9041 9042 <td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br> 9043 9044 9045 9046 9047 9048 9049 <p>If a value is assigned to this parameter, the internal 1901 9050 two-dimensional v-momentum flux field <span style="font-family: monospace;">vswst</span> is 1902 9051 initialized with the value of <span style="font-weight: bold;">top_momentumflux_v</span> as 1903 top (horizontally homogeneous) boundary condition for the v-momentum equation.</p><p><span style="font-weight: bold;">Notes:</span><br>The 9052 top (horizontally homogeneous) boundary condition for the v-momentum equation.</p> 9053 9054 9055 9056 9057 9058 9059 <p><span style="font-weight: bold;">Notes:</span><br> 9060 9061 9062 9063 The 1904 9064 application of a top momentum flux additionally requires the setting of 1905 9065 initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a> 1906 = .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p><p>A Neumann 9066 = .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p> 9067 9068 9069 9070 9071 9072 9073 <p>A Neumann 1907 9074 condition should be used for the v velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>), 1908 9075 because otherwise the resolved scale may contribute to 1909 9076 the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> 1910 <span style="font-weight: bold;"></span><p>No 1911 Prandtl-layer is available at the top boundary so far.</p></td></tr><tr><td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> 1912 salinityflux</span></td><td style="vertical-align: top;"><p>Kinematic 9077 9078 9079 9080 9081 <span style="font-weight: bold;"></span> 9082 9083 9084 9085 <p>No 9086 Prandtl-layer is available at the top boundary so far.</p> 9087 9088 9089 9090 9091 9092 9093 <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and <a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p> 9094 9095 9096 9097 </td> 9098 9099 9100 9101 </tr> 9102 9103 9104 9105 <tr> 9106 9107 9108 9109 <td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td> 9110 9111 9112 9113 <td style="vertical-align: top;">R</td> 9114 9115 9116 9117 <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> 9118 9119 9120 9121 9122 salinityflux</span></td> 9123 9124 9125 9126 <td style="vertical-align: top;"> 9127 9128 9129 9130 <p>Kinematic 1913 9131 salinity flux at the top boundary, i.e. the sea surface (in psu m/s). </p> 1914 <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p><p>If a value is assigned to this parameter, the internal 9132 9133 9134 9135 9136 9137 9138 9139 <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p> 9140 9141 9142 9143 9144 9145 9146 <p>If a value is assigned to this parameter, the internal 1915 9147 two-dimensional surface heat flux field <span style="font-family: monospace;">saswst</span> is 1916 9148 initialized with the value of <span style="font-weight: bold;">top_salinityflux</span> as … … 1919 9151 because otherwise the resolved scale may contribute to 1920 9152 the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> 1921 <p><span style="font-weight: bold;">Note:</span><br>The 9153 9154 9155 9156 9157 9158 9159 9160 <p><span style="font-weight: bold;">Note:</span><br> 9161 9162 9163 9164 The 1922 9165 application of a salinity flux at the model top additionally requires the setting of 1923 9166 initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a> 1924 = .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p><p>See 1925 also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p></td></tr><tr> <td style="vertical-align: top;"> 1926 <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p> 1927 </td> <td style="vertical-align: top;">R<br> </td> 1928 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> </td> 1929 <td style="vertical-align: top;">u-component of the 9167 = .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p> 9168 9169 9170 9171 9172 9173 9174 <p>See 9175 also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p> 9176 9177 9178 9179 </td> 9180 9181 9182 9183 </tr> 9184 9185 9186 9187 <tr> 9188 9189 9190 9191 <td style="vertical-align: top;"> 9192 9193 9194 9195 <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p> 9196 9197 9198 9199 9200 </td> 9201 9202 9203 9204 <td style="vertical-align: top;">R<br> 9205 9206 9207 9208 </td> 9209 9210 9211 9212 9213 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> 9214 9215 9216 9217 </td> 9218 9219 9220 9221 9222 <td style="vertical-align: top;">u-component of the 1930 9223 geostrophic 1931 wind at the surface (in m/s).<br> <br> 9224 wind at the surface (in m/s).<br> 9225 9226 9227 9228 <br> 9229 9230 9231 9232 1932 9233 This parameter assigns the value of the u-component of the geostrophic 1933 9234 wind (ug) at the surface (k=0). Starting from this value, the initial 1934 9235 vertical profile of the <br> 9236 9237 9238 9239 1935 9240 u-component of the geostrophic wind is constructed with <a href="#ug_vertical_gradient">ug_vertical_gradient</a> 1936 9241 and <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>. … … 1945 9250 value, it is recommended to use a Galilei-transformation of the 1946 9251 coordinate system, if possible (see <a href="#galilei_transformation">galilei_transformation</a>), 1947 in order to obtain larger time steps.<br><br><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 9252 in order to obtain larger time steps.<br> 9253 9254 9255 9256 <br> 9257 9258 9259 9260 <span style="font-weight: bold;">Attention:</span><br> 9261 9262 9263 9264 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 1948 9265 this parameter gives the velocity value at the sea surface, which is 1949 9266 at k=nzt. The profile is then constructed from the surface down to the 1950 bottom of the model.<br> </td> </tr> 1951 <tr> <td style="vertical-align: top;"> <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p> 1952 </td> <td style="vertical-align: top;">R(10)<br> 1953 </td> <td style="vertical-align: top;"><span style="font-style: italic;">10 1954 * 0.0</span><br> </td> <td style="vertical-align: top;">Gradient(s) of the initial 9267 bottom of the model.<br> 9268 9269 9270 9271 </td> 9272 9273 9274 9275 </tr> 9276 9277 9278 9279 9280 <tr> 9281 9282 9283 9284 <td style="vertical-align: top;"> 9285 9286 9287 9288 <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p> 9289 9290 9291 9292 9293 </td> 9294 9295 9296 9297 <td style="vertical-align: top;">R(10)<br> 9298 9299 9300 9301 9302 </td> 9303 9304 9305 9306 <td style="vertical-align: top;"><span style="font-style: italic;">10 9307 * 0.0</span><br> 9308 9309 9310 9311 </td> 9312 9313 9314 9315 <td style="vertical-align: top;">Gradient(s) of the initial 1955 9316 profile of the u-component of the geostrophic wind (in 1956 1/100s).<br> <br> 9317 1/100s).<br> 9318 9319 9320 9321 <br> 9322 9323 9324 9325 1957 9326 The gradient holds starting from the height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a> 1958 9327 (precisely: for all uv levels k where zu(k) > <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>, … … 1963 9332 total of 10 different gradients for 11 height intervals (10 1964 9333 intervals if <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>(1) 1965 = 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br><br><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 9334 = 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br> 9335 9336 9337 9338 <br> 9339 9340 9341 9342 <span style="font-weight: bold;">Attention:</span><br> 9343 9344 9345 9346 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 1966 9347 the profile is constructed like described above, but starting from the 1967 9348 sea surface (k=nzt) down to the bottom boundary of the model. Height 1968 levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br> </td> 1969 </tr> <tr> <td style="vertical-align: top;"> 1970 <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p> 1971 </td> <td style="vertical-align: top;">R(10)<br> 1972 </td> <td style="vertical-align: top;"><span style="font-style: italic;">10 1973 * 0.0</span><br> </td> <td style="vertical-align: top;">Height level from which on the 9349 levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br> 9350 9351 9352 9353 </td> 9354 9355 9356 9357 9358 </tr> 9359 9360 9361 9362 <tr> 9363 9364 9365 9366 <td style="vertical-align: top;"> 9367 9368 9369 9370 <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p> 9371 9372 9373 9374 9375 </td> 9376 9377 9378 9379 <td style="vertical-align: top;">R(10)<br> 9380 9381 9382 9383 9384 </td> 9385 9386 9387 9388 <td style="vertical-align: top;"><span style="font-style: italic;">10 9389 * 0.0</span><br> 9390 9391 9392 9393 </td> 9394 9395 9396 9397 <td style="vertical-align: top;">Height level from which on the 1974 9398 gradient defined by <a href="#ug_vertical_gradient">ug_vertical_gradient</a> 1975 is effective (in m).<br> <br> 9399 is effective (in m).<br> 9400 9401 9402 9403 <br> 9404 9405 9406 9407 1976 9408 The height levels have to be assigned in ascending order. For the 1977 9409 piecewise construction of a profile of the u-component of the 1978 geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br><br><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p> 1979 </td> <td style="vertical-align: top;">R</td> 1980 <td style="vertical-align: top;"><i>0.0</i></td> 1981 <td style="vertical-align: top;"> <p>Subgrid-scale 9410 geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br> 9411 9412 9413 9414 <br> 9415 9416 9417 9418 <span style="font-weight: bold;">Attention:</span><br> 9419 9420 9421 9422 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td> 9423 9424 9425 9426 </tr> 9427 9428 9429 9430 <tr> 9431 9432 9433 9434 <td style="vertical-align: top;"> 9435 9436 9437 9438 <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p> 9439 9440 9441 9442 9443 </td> 9444 9445 9446 9447 <td style="vertical-align: top;">R</td> 9448 9449 9450 9451 9452 <td style="vertical-align: top;"><i>0.0</i></td> 9453 9454 9455 9456 9457 <td style="vertical-align: top;"> 9458 9459 9460 9461 <p>Subgrid-scale 1982 9462 turbulent kinetic energy difference used as 1983 9463 criterion for applying the upstream scheme when upstream-spline 1984 9464 advection is switched on (in m<sup>2</sup>/s<sup>2</sup>). 1985 </p> <p>This variable steers the appropriate 9465 </p> 9466 9467 9468 9469 9470 9471 9472 9473 <p>This variable steers the appropriate 1986 9474 treatment of the 1987 9475 advection of the subgrid-scale turbulent kinetic energy in case that 1988 9476 the uptream-spline scheme is used . For further information see <a href="#ups_limit_pt">ups_limit_pt</a>. </p> 1989 <p>Only positive values are allowed for <b>ups_limit_e</b>. 1990 </p> </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p> 1991 </td> <td style="vertical-align: top;">R</td> 1992 <td style="vertical-align: top;"><i>0.0</i></td> 1993 <td style="vertical-align: top;"> <p>Temperature 9477 9478 9479 9480 9481 9482 9483 9484 <p>Only positive values are allowed for <b>ups_limit_e</b>. 9485 </p> 9486 9487 9488 9489 </td> 9490 9491 9492 9493 </tr> 9494 9495 9496 9497 <tr> 9498 9499 9500 9501 <td style="vertical-align: top;"> 9502 9503 9504 9505 <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p> 9506 9507 9508 9509 9510 </td> 9511 9512 9513 9514 <td style="vertical-align: top;">R</td> 9515 9516 9517 9518 9519 <td style="vertical-align: top;"><i>0.0</i></td> 9520 9521 9522 9523 9524 <td style="vertical-align: top;"> 9525 9526 9527 9528 <p>Temperature 1994 9529 difference used as criterion for applying 1995 9530 the upstream scheme when upstream-spline advection is 1996 9531 switched on 1997 (in K). </p> <p>This criterion is used if the 9532 (in K). </p> 9533 9534 9535 9536 9537 9538 9539 9540 <p>This criterion is used if the 1998 9541 upstream-spline scheme is 1999 9542 switched on (see <a href="#scalar_advec">scalar_advec</a>).<br> 9543 9544 9545 9546 2000 9547 If, for a given gridpoint, the absolute temperature difference with 2001 9548 respect to the upstream … … 2010 9557 the upstream scheme. The numerical diffusion caused by the upstream 2011 9558 schme remains small as long as the upstream gradients are small.<br> 2012 </p> <p>The percentage of grid points for which the 9559 9560 9561 9562 9563 </p> 9564 9565 9566 9567 9568 9569 9570 9571 <p>The percentage of grid points for which the 2013 9572 upstream 2014 9573 scheme is actually used, can be output as a time series with respect to … … 2016 9575 three directions in space with run parameter (see <a href="chapter_4.2.html#dt_dots">dt_dots</a>, the 2017 9576 timeseries names in the NetCDF file are <i>'splptx'</i>, <i>'splpty'</i>, 2018 <i>'splptz'</i>). The percentage9577 <i>'splptz'</i>). The percentage 2019 9578 of gridpoints should stay below a certain limit, however, it 2020 9579 is 2021 9580 not possible to give 2022 9581 a general limit, since it depends on the respective flow. </p> 2023 <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br> 2024 </p> 9582 9583 9584 9585 9586 9587 9588 9589 <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br> 9590 9591 9592 9593 9594 </p> 9595 9596 9597 9598 2025 9599 A more effective control of 2026 9600 the “overshoots” can be achieved with parameter <a href="#cut_spline_overshoot">cut_spline_overshoot</a>. 2027 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p> 2028 </td> <td style="vertical-align: top;">R</td> 2029 <td style="vertical-align: top;"><i>0.0</i></td> 2030 <td style="vertical-align: top;"> <p>Velocity 9601 </td> 9602 9603 9604 9605 </tr> 9606 9607 9608 9609 <tr> 9610 9611 9612 9613 <td style="vertical-align: top;"> 9614 9615 9616 9617 <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p> 9618 9619 9620 9621 9622 </td> 9623 9624 9625 9626 <td style="vertical-align: top;">R</td> 9627 9628 9629 9630 9631 <td style="vertical-align: top;"><i>0.0</i></td> 9632 9633 9634 9635 9636 <td style="vertical-align: top;"> 9637 9638 9639 9640 <p>Velocity 2031 9641 difference (u-component) used as criterion for 2032 9642 applying the upstream scheme 2033 9643 when upstream-spline advection is switched on (in m/s). </p> 2034 <p>This variable steers the appropriate treatment of the 9644 9645 9646 9647 9648 9649 9650 9651 <p>This variable steers the appropriate treatment of the 2035 9652 advection of the u-velocity-component in case that the upstream-spline 2036 9653 scheme is used. For further 2037 9654 information see <a href="#ups_limit_pt">ups_limit_pt</a>. 2038 </p> <p>Only positive values are permitted for <b>ups_limit_u</b>.</p> 2039 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p> 2040 </td> <td style="vertical-align: top;">R</td> 2041 <td style="vertical-align: top;"><i>0.0</i></td> 2042 <td style="vertical-align: top;"> <p>Velocity 9655 </p> 9656 9657 9658 9659 9660 9661 9662 9663 <p>Only positive values are permitted for <b>ups_limit_u</b>.</p> 9664 9665 9666 9667 9668 </td> 9669 9670 9671 9672 </tr> 9673 9674 9675 9676 <tr> 9677 9678 9679 9680 <td style="vertical-align: top;"> 9681 9682 9683 9684 <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p> 9685 9686 9687 9688 9689 </td> 9690 9691 9692 9693 <td style="vertical-align: top;">R</td> 9694 9695 9696 9697 9698 <td style="vertical-align: top;"><i>0.0</i></td> 9699 9700 9701 9702 9703 <td style="vertical-align: top;"> 9704 9705 9706 9707 <p>Velocity 2043 9708 difference (v-component) used as criterion for 2044 9709 applying the upstream scheme 2045 9710 when upstream-spline advection is switched on (in m/s). </p> 2046 <p>This variable steers the appropriate treatment of the 9711 9712 9713 9714 9715 9716 9717 9718 <p>This variable steers the appropriate treatment of the 2047 9719 advection of the v-velocity-component in case that the upstream-spline 2048 9720 scheme is used. For further 2049 9721 information see <a href="#ups_limit_pt">ups_limit_pt</a>. 2050 </p> <p>Only positive values are permitted for <b>ups_limit_v</b>.</p> 2051 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p> 2052 </td> <td style="vertical-align: top;">R</td> 2053 <td style="vertical-align: top;"><i>0.0</i></td> 2054 <td style="vertical-align: top;"> <p>Velocity 9722 </p> 9723 9724 9725 9726 9727 9728 9729 9730 <p>Only positive values are permitted for <b>ups_limit_v</b>.</p> 9731 9732 9733 9734 9735 </td> 9736 9737 9738 9739 </tr> 9740 9741 9742 9743 <tr> 9744 9745 9746 9747 <td style="vertical-align: top;"> 9748 9749 9750 9751 <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p> 9752 9753 9754 9755 9756 </td> 9757 9758 9759 9760 <td style="vertical-align: top;">R</td> 9761 9762 9763 9764 9765 <td style="vertical-align: top;"><i>0.0</i></td> 9766 9767 9768 9769 9770 <td style="vertical-align: top;"> 9771 9772 9773 9774 <p>Velocity 2055 9775 difference (w-component) used as criterion for 2056 9776 applying the upstream scheme 2057 9777 when upstream-spline advection is switched on (in m/s). </p> 2058 <p>This variable steers the appropriate treatment of the 9778 9779 9780 9781 9782 9783 9784 9785 <p>This variable steers the appropriate treatment of the 2059 9786 advection of the w-velocity-component in case that the upstream-spline 2060 9787 scheme is used. For further 2061 9788 information see <a href="#ups_limit_pt">ups_limit_pt</a>. 2062 </p> <p>Only positive values are permitted for <b>ups_limit_w</b>.</p> 2063 </td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p> 2064 </td> <td style="vertical-align: top;">L</td> 2065 <td style="vertical-align: top;"><i>.F.</i></td> 2066 <td style="vertical-align: top;"> <p>Parameter to 9789 </p> 9790 9791 9792 9793 9794 9795 9796 9797 <p>Only positive values are permitted for <b>ups_limit_w</b>.</p> 9798 9799 9800 9801 9802 </td> 9803 9804 9805 9806 </tr> 9807 9808 9809 9810 <tr> 9811 9812 9813 9814 <td style="vertical-align: top;"> 9815 9816 9817 9818 <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p> 9819 9820 9821 9822 9823 </td> 9824 9825 9826 9827 <td style="vertical-align: top;">L</td> 9828 9829 9830 9831 9832 <td style="vertical-align: top;"><i>.F.</i></td> 9833 9834 9835 9836 9837 <td style="vertical-align: top;"> 9838 9839 9840 9841 <p>Parameter to 2067 9842 steer the treatment of the subgrid-scale vertical 2068 fluxes within the diffusion terms at k=1 (bottom boundary).<br> </p> 2069 <p>By default, the near-surface subgrid-scale fluxes are 9843 fluxes within the diffusion terms at k=1 (bottom boundary).<br> 9844 9845 9846 9847 </p> 9848 9849 9850 9851 9852 9853 9854 9855 <p>By default, the near-surface subgrid-scale fluxes are 2070 9856 parameterized (like in the remaining model domain) using the gradient 2071 9857 approach. If <b>use_surface_fluxes</b> … … 2073 9859 instead 2074 9860 (see <a href="#surface_heatflux">surface_heatflux</a>, 2075 <a href="#surface_waterflux">surface_waterflux</a>9861 <a href="#surface_waterflux">surface_waterflux</a> 2076 9862 and <a href="#surface_scalarflux">surface_scalarflux</a>) 2077 <span style="font-weight: bold;">or</span> the9863 <span style="font-weight: bold;">or</span> the 2078 9864 surface fluxes are 2079 9865 calculated via the Prandtl layer relation (depends on the bottom 2080 9866 boundary conditions, see <a href="#bc_pt_b">bc_pt_b</a>, 2081 <a href="#bc_q_b">bc_q_b</a> 2082 and <a href="#bc_s_b">bc_s_b</a>).<br> </p> 2083 <p><b>use_surface_fluxes</b> 9867 <a href="#bc_q_b">bc_q_b</a> 9868 and <a href="#bc_s_b">bc_s_b</a>).<br> 9869 9870 9871 9872 </p> 9873 9874 9875 9876 9877 9878 9879 9880 <p><b>use_surface_fluxes</b> 2084 9881 is automatically set <i>.TRUE.</i>, if a Prandtl layer is 2085 9882 used (see <a href="#prandtl_layer">prandtl_layer</a>). 2086 </p> <p>The user may prescribe the surface fluxes at the 9883 </p> 9884 9885 9886 9887 9888 9889 9890 9891 <p>The user may prescribe the surface fluxes at the 2087 9892 bottom 2088 9893 boundary without using a Prandtl layer by setting <span style="font-weight: bold;">use_surface_fluxes</span> = 2089 <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this9894 <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this 2090 9895 case, the 2091 9896 momentum flux (u<sub>*</sub><sup>2</sup>) 2092 9897 should also be prescribed, 2093 9898 the user must assign an appropriate value within the user-defined code.</p> 2094 </td> </tr> <tr><td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;"> <p>Parameter to steer 9899 9900 9901 9902 9903 </td> 9904 9905 9906 9907 </tr> 9908 9909 9910 9911 <tr> 9912 9913 9914 9915 <td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td> 9916 9917 9918 9919 <td style="vertical-align: top;">L</td> 9920 9921 9922 9923 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> 9924 9925 9926 9927 <td style="vertical-align: top;"> 9928 9929 9930 9931 <p>Parameter to steer 2095 9932 the treatment of the subgrid-scale vertical 2096 fluxes within the diffusion terms at k=nz (top boundary).</p><p>By 9933 fluxes within the diffusion terms at k=nz (top boundary).</p> 9934 9935 9936 9937 9938 9939 9940 <p>By 2097 9941 default, the fluxes at nz are calculated using the gradient approach. 2098 9942 If <b>use_top_fluxes</b> 2099 9943 = <i>.TRUE.</i>, the user-assigned top fluxes are used 2100 9944 instead 2101 (see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p><p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent 2102 heat flux at the top will be automatically set to zero.</p></td></tr><tr> 2103 <td style="vertical-align: top;"> <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p> 2104 </td> <td style="vertical-align: top;">L</td> 2105 <td style="vertical-align: top;"><i>.T.</i></td> 2106 <td style="vertical-align: top;"> <p>Switch to 9945 (see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p> 9946 9947 9948 9949 9950 9951 9952 <p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent 9953 heat flux at the top will be automatically set to zero.</p> 9954 9955 9956 9957 </td> 9958 9959 9960 9961 </tr> 9962 9963 9964 9965 <tr> 9966 9967 9968 9969 9970 <td style="vertical-align: top;"> 9971 9972 9973 9974 <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p> 9975 9976 9977 9978 9979 </td> 9980 9981 9982 9983 <td style="vertical-align: top;">L</td> 9984 9985 9986 9987 9988 <td style="vertical-align: top;"><i>.T.</i></td> 9989 9990 9991 9992 9993 <td style="vertical-align: top;"> 9994 9995 9996 9997 <p>Switch to 2107 9998 determine the translation velocity in case that a 2108 Galilean transformation is used.<br> </p> <p>In 9999 Galilean transformation is used.<br> 10000 10001 10002 10003 </p> 10004 10005 10006 10007 10008 10009 10010 10011 <p>In 2109 10012 case of a Galilean transformation (see <a href="#galilei_transformation">galilei_transformation</a>), 2110 <b>use_ug_for_galilei_tr</b>10013 <b>use_ug_for_galilei_tr</b> 2111 10014 = <i>.T.</i> ensures 2112 10015 that the coordinate system is translated with the geostrophic windspeed.<br> 2113 </p> <p>Alternatively, with <b>use_ug_for_galilei_tr</b> 10016 10017 10018 10019 10020 </p> 10021 10022 10023 10024 10025 10026 10027 10028 <p>Alternatively, with <b>use_ug_for_galilei_tr</b> 2114 10029 = <i>.F</i>., 2115 10030 the … … 2117 10032 averaged velocity. However, in this case the user must be aware of fast 2118 10033 growing gravity waves, so this 2119 choice is usually not recommended!</p> </td> </tr> <tr><td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td><td align="left" valign="top">L</td><td align="left" valign="top"><span style="font-style: italic;">.F.</span></td><td align="left" valign="top">Parameter to choose the 2120 advection/timestep scheme to be used for the subgrid-scale TKE.<br><br>By 10034 choice is usually not recommended!</p> 10035 10036 10037 10038 </td> 10039 10040 10041 10042 </tr> 10043 10044 10045 10046 <tr> 10047 10048 10049 10050 <td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td> 10051 10052 10053 10054 <td align="left" valign="top">L</td> 10055 10056 10057 10058 <td align="left" valign="top"><span style="font-style: italic;">.F.</span></td> 10059 10060 10061 10062 <td align="left" valign="top">Parameter to choose the 10063 advection/timestep scheme to be used for the subgrid-scale TKE.<br> 10064 10065 10066 10067 <br> 10068 10069 10070 10071 By 2121 10072 default, the advection scheme and the timestep scheme to be used for 2122 10073 the subgrid-scale TKE are set by the initialization parameters <a href="#scalar_advec">scalar_advec</a> and <a href="#timestep_scheme">timestep_scheme</a>, … … 2128 10079 are significantly reduced. This is required when subgrid-scale 2129 10080 velocities are used for advection of particles (see particle package 2130 parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td></tr><tr> 2131 <td style="vertical-align: top;"> <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p> 2132 </td> <td style="vertical-align: top;">R<br> </td> 2133 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> </td> 2134 <td style="vertical-align: top;">v-component of the 10081 parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td> 10082 10083 10084 10085 </tr> 10086 10087 10088 10089 <tr> 10090 10091 10092 10093 10094 <td style="vertical-align: top;"> 10095 10096 10097 10098 <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p> 10099 10100 10101 10102 10103 </td> 10104 10105 10106 10107 <td style="vertical-align: top;">R<br> 10108 10109 10110 10111 </td> 10112 10113 10114 10115 10116 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> 10117 10118 10119 10120 </td> 10121 10122 10123 10124 10125 <td style="vertical-align: top;">v-component of the 2135 10126 geostrophic 2136 wind at the surface (in m/s).<br> <br> 10127 wind at the surface (in m/s).<br> 10128 10129 10130 10131 <br> 10132 10133 10134 10135 2137 10136 This parameter assigns the value of the v-component of the geostrophic 2138 10137 wind (vg) at the surface (k=0). Starting from this value, the initial 2139 10138 vertical profile of the <br> 10139 10140 10141 10142 2140 10143 v-component of the geostrophic wind is constructed with <a href="#vg_vertical_gradient">vg_vertical_gradient</a> 2141 10144 and <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>. … … 2155 10158 if possible (see <a href="#galilei_transformation">galilei_transformation</a>), 2156 10159 in order to obtain larger 2157 time steps.<br><br><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 10160 time steps.<br> 10161 10162 10163 10164 <br> 10165 10166 10167 10168 <span style="font-weight: bold;">Attention:</span><br> 10169 10170 10171 10172 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 2158 10173 this parameter gives the velocity value at the sea surface, which is 2159 10174 at k=nzt. The profile is then constructed from the surface down to the 2160 bottom of the model.</td> </tr> <tr> <td style="vertical-align: top;"> <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p> 2161 </td> <td style="vertical-align: top;">R(10)<br> 2162 </td> <td style="vertical-align: top;"><span style="font-style: italic;">10 2163 * 0.0</span><br> </td> <td style="vertical-align: top;">Gradient(s) of the initial 10175 bottom of the model.</td> 10176 10177 10178 10179 </tr> 10180 10181 10182 10183 <tr> 10184 10185 10186 10187 <td style="vertical-align: top;"> 10188 10189 10190 10191 <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p> 10192 10193 10194 10195 10196 </td> 10197 10198 10199 10200 <td style="vertical-align: top;">R(10)<br> 10201 10202 10203 10204 10205 </td> 10206 10207 10208 10209 <td style="vertical-align: top;"><span style="font-style: italic;">10 10210 * 0.0</span><br> 10211 10212 10213 10214 </td> 10215 10216 10217 10218 <td style="vertical-align: top;">Gradient(s) of the initial 2164 10219 profile of the v-component of the geostrophic wind (in 2165 1/100s).<br> <br> 10220 1/100s).<br> 10221 10222 10223 10224 <br> 10225 10226 10227 10228 2166 10229 The gradient holds starting from the height level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a> 2167 10230 (precisely: for all uv levels k where zu(k) … … 2176 10239 = 2177 10240 0.0) can be assigned. The surface 2178 geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br><br><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 10241 geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br> 10242 10243 10244 10245 <br> 10246 10247 10248 10249 <span style="font-weight: bold;">Attention:</span><br> 10250 10251 10252 10253 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), 2179 10254 the profile is constructed like described above, but starting from the 2180 10255 sea surface (k=nzt) down to the bottom boundary of the model. Height 2181 10256 levels have then to be given as negative values, e.g. <span style="font-weight: bold;">vg_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</td> 2182 </tr> <tr> <td style="vertical-align: top;"> 2183 <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p> 2184 </td> <td style="vertical-align: top;">R(10)<br> 2185 </td> <td style="vertical-align: top;"><span style="font-style: italic;">10 2186 * 0.0</span><br> </td> <td style="vertical-align: top;">Height level from which on the 10257 10258 10259 10260 10261 </tr> 10262 10263 10264 10265 <tr> 10266 10267 10268 10269 <td style="vertical-align: top;"> 10270 10271 10272 10273 <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p> 10274 10275 10276 10277 10278 </td> 10279 10280 10281 10282 <td style="vertical-align: top;">R(10)<br> 10283 10284 10285 10286 10287 </td> 10288 10289 10290 10291 <td style="vertical-align: top;"><span style="font-style: italic;">10 10292 * 0.0</span><br> 10293 10294 10295 10296 </td> 10297 10298 10299 10300 <td style="vertical-align: top;">Height level from which on the 2187 10301 gradient defined by <a href="#vg_vertical_gradient">vg_vertical_gradient</a> 2188 is effective (in m).<br> <br> 10302 is effective (in m).<br> 10303 10304 10305 10306 <br> 10307 10308 10309 10310 2189 10311 The height levels have to be assigned in ascending order. For the 2190 10312 piecewise construction of a profile of the v-component of the 2191 geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br><br><span style="font-weight: bold;">Attention:</span><br>In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td> 2192 </tr> <tr> <td style="vertical-align: top;"> 2193 <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p> 2194 </td> <td style="vertical-align: top;">L</td> 2195 <td style="vertical-align: top;"><i>.T.</i></td> 2196 <td style="vertical-align: top;"> <p>Parameter to 10313 geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br> 10314 10315 10316 10317 <br> 10318 10319 10320 10321 <span style="font-weight: bold;">Attention:</span><br> 10322 10323 10324 10325 In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td> 10326 10327 10328 10329 10330 </tr> 10331 10332 10333 10334 <tr> 10335 10336 10337 10338 <td style="vertical-align: top;"> 10339 10340 10341 10342 <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p> 10343 10344 10345 10346 10347 </td> 10348 10349 10350 10351 <td style="vertical-align: top;">L</td> 10352 10353 10354 10355 10356 <td style="vertical-align: top;"><i>.T.</i></td> 10357 10358 10359 10360 10361 <td style="vertical-align: top;"> 10362 10363 10364 10365 <p>Parameter to 2197 10366 restrict the mixing length in the vicinity of the 2198 10367 bottom 2199 boundary. </p> <p>With <b>wall_adjustment</b> 10368 boundary. </p> 10369 10370 10371 10372 10373 10374 10375 10376 <p>With <b>wall_adjustment</b> 2200 10377 = <i>.TRUE., </i>the mixing 2201 10378 length is limited to a maximum of 1.8 * z. This condition 2202 10379 typically affects only the 2203 first grid points above the bottom boundary.</p> </td> </tr> 2204 <tr> <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td> 2205 <td style="vertical-align: top;">R(5)</td> <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td> <td>Prescribed 10380 first grid points above the bottom boundary.</p> 10381 10382 10383 10384 </td> 10385 10386 10387 10388 </tr> 10389 10390 10391 10392 10393 <tr> 10394 10395 10396 10397 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td> 10398 10399 10400 10401 10402 <td style="vertical-align: top;">R(5)</td> 10403 10404 10405 10406 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td> 10407 10408 10409 10410 <td>Prescribed 2206 10411 kinematic sensible heat flux in W m<sup>-2</sup> 2207 at the five topography faces:<br> <br> <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0) 2208 </span>top face<br> <span style="font-weight: bold;">wall_heatflux(1) 2209 </span>left face<br> <span style="font-weight: bold;">wall_heatflux(2) 2210 </span>right face<br> <span style="font-weight: bold;">wall_heatflux(3) 2211 </span>south face<br> <span style="font-weight: bold;">wall_heatflux(4) 2212 </span>north face</div> <br> 10412 at the five topography faces:<br> 10413 10414 10415 10416 <br> 10417 10418 10419 10420 10421 10422 10423 10424 <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0) 10425 </span>top face<br> 10426 10427 10428 10429 <span style="font-weight: bold;">wall_heatflux(1) 10430 </span>left face<br> 10431 10432 10433 10434 <span style="font-weight: bold;">wall_heatflux(2) 10435 </span>right face<br> 10436 10437 10438 10439 <span style="font-weight: bold;">wall_heatflux(3) 10440 </span>south face<br> 10441 10442 10443 10444 <span style="font-weight: bold;">wall_heatflux(4) 10445 </span>north face</div> 10446 10447 10448 10449 <br> 10450 10451 10452 10453 2213 10454 This parameter applies only in case of a non-flat <a href="#topography">topography</a>. The 2214 10455 parameter <a href="#random_heatflux">random_heatflux</a> … … 2218 10459 that is composed of <a href="#surface_heatflux">surface_heatflux</a> 2219 10460 at the bottom surface and <span style="font-weight: bold;">wall_heatflux(0)</span> 2220 at the topography top face. </td> </tr> </tbody> 2221 </table><br> 2222 <p style="line-height: 100%;"><br><font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p> 10461 at the topography top face. </td> 10462 10463 10464 10465 </tr> 10466 10467 10468 10469 10470 10471 10472 10473 </tbody> 10474 </table> 10475 10476 10477 10478 <br> 10479 10480 10481 10482 10483 <p style="line-height: 100%;"><br> 10484 10485 10486 10487 <font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p> 10488 10489 10490 10491 2223 10492 <p style="line-height: 100%;"><i>Last 2224 10493 change: </i> $Id$ </p> 2225 <br><br> 2226 </body></html> 10494 10495 10496 10497 10498 <br> 10499 10500 10501 10502 <br> 10503 10504 10505 10506 10507 </body> 10508 </html>
Note: See TracChangeset
for help on using the changeset viewer.