source: palm/trunk/TUTORIAL/SOURCE/sgs_models.tex @ 965

Last change on this file since 965 was 945, checked in by maronga, 12 years ago

added/updated several tutorial files

  • Property svn:keywords set to Id
File size: 6.8 KB
Line 
1% $Id: sgs_models.tex 945 2012-07-17 15:43:01Z raasch $
2\input{header_tmp.tex}
3%\input{header_lectures.tex}
4
5\usepackage[utf8]{inputenc}
6\usepackage{ngerman}
7\usepackage{pgf}
8\usetheme{Dresden}
9\usepackage{subfigure}
10\usepackage{units}
11\usepackage{multimedia}
12\usepackage{hyperref}
13\newcommand{\event}[1]{\newcommand{\eventname}{#1}}
14\usepackage{xmpmulti}
15\usepackage{tikz}
16\usetikzlibrary{shapes,arrows,positioning}
17\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
18\usepackage{amsmath}
19\usepackage{amssymb}
20\usepackage{multicol}
21\usepackage{pdfcomment}
22
23\institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover}
24\date{last update: \today}
25\event{PALM Seminar}
26\setbeamertemplate{navigation symbols}{}
27
28\setbeamertemplate{footline}
29  {
30    \begin{beamercolorbox}[rightskip=-0.1cm]&
31     {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}}
32    \end{beamercolorbox}
33    \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,
34      leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}
35      {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}
36    \end{beamercolorbox}
37    \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}
38    \end{beamercolorbox}
39  }
40%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}}
41
42\title[SGS Models]{SGS Models}
43\author{Siegfried Raasch}
44
45\begin{document}
46
47% Folie 1
48\begin{frame}
49\titlepage
50\end{frame}
51
52
53\section{SGS Models}
54\subsection{SGS Models}
55
56% Folie 2
57\begin{frame}
58   \frametitle{SGS Models (I)}
59   \small
60   \begin{itemize}
61      \item<2->The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence).
62      \item<3->Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange)
63      \item<4->SGS stresses should depend on:
64      \begin{itemize}
65         \item local resolved-scale field \hspace{3mm} and / or
66         \item past history of the local fluid (via a PDE)
67      \end{itemize}
68      \item<5->Importance of the model depends on how much energy is contained in the subgrid-scales:
69      \begin{itemize}
70         \item $E_{SGS} / E < 50\%$: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme)
71         \item $E_{SGS} / E = 1$: model more important
72         \item<6->\textbf{If the large-scale eddies are not resolved, the SGS model and the LES will fail at all!} 
73      \end{itemize}
74   \end{itemize}
75\end{frame}
76
77% Folie 3
78\begin{frame}
79   \frametitle{SGS Models (II)}
80   Requirements that a good SGS model must fulfill:
81   \begin{footnotesize}
82      \begin{itemize}
83         \item<2-> Represent interactions with small scales.
84         \item<3-> Provide adequate dissipation\\ (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation $\varepsilon$ in this context is the flux of energy through the inertial subrange).
85         \item<4-> Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics.
86         \item<5->In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model.
87         \item<6->\underline{The primary goal of an SGS model is to obtain correct statistics of the}\\ 
88         \underline{energy containing scales of motion.}
89      \end{itemize}
90   \end{footnotesize}
91\end{frame}
92
93% Folie 4
94\begin{frame}
95   \frametitle{SGS Models (III)}
96   \onslide<1-> All the above observation suggest the use of an eddy viscosity type SGS model:
97   \begin{footnotesize}
98      \begin{itemize}
99         \item<2-> Take idea from RANS modeling, introduce eddy viscosity $\nu_T$:
100         \begin{flalign*}
101            &\tau_{ki} = - \nu_T \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right) = -2 \nu_T \overline{S}_{ki}& \text{with} \hspace{3mm} \overline{S}_{ki} = \frac{1}{2} \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right)\\
102            & & \text{filtered strain rate tensor}
103         \end{flalign*}
104      \end{itemize}
105   \end{footnotesize}
106   \onslide<3->Now we need a model for the eddy viscosity:
107   \begin{footnotesize}
108      \begin{itemize}
109         \item<4-> Dimensionality of $\nu_T$ is $l^2/t$
110         \item<5-> Obvious choice: $\nu_T = Cql$ \hspace{5mm} (q, l: characterictic velocity / length scale)
111         \item<6-> Turbulence length scale is easy to define: largest size of the unresolved scales is $\Delta$ \hspace{10mm} $l = \Delta$
112         \item<7-> Velocity scale not obvious (smallest resolved scales, their size is of the order of the variation of velocity over one grid element)
113         \begin{flalign*}
114            &q = l \frac{\partial \overline{u}}{\partial x} = l \overline{S}& \text{for 3D: } \overline{S} = \sqrt{2 \overline{S}_{ki}\,\overline{S}_{ki}} \hspace{15mm} \\
115            & & \text{characterictic filtered rate of strain}\hspace{15mm}
116         \end{flalign*}
117      \end{itemize}
118   \end{footnotesize}
119\end{frame}
120
121
122\section{Smagorinsky Model}
123\subsection{The Smagorinsky Model}
124
125% Folie 5
126\begin{frame}
127   \frametitle{The Smagorinsky Model}
128   \onslide<2->Combine previous expressions to obtain:
129   \begin{equation*}
130      \nu_T = C \Delta^2 \overline{S} = (C_S \Delta)^2 \overline{S}
131   \end{equation*}
132   \onslide<3-> Model due to Smagorinsky (1963):
133   \begin{itemize}
134      \item<3-> Originally designed at NCAR for global weather modeling.
135      \item<4-> Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theories.
136      \item<5-> Constant predicted by all methods (based on theory, decay of isotropic turbulence): $C_S = \sqrt{C} \approx 0.2$
137   \end{itemize}
138\end{frame}
139
140% Folie 6
141\begin{frame}
142   \frametitle{The Smagorinsky Model: Performance}
143   \begin{itemize}
144      \item<2-> Predicts many flows reasonably well
145      \item<3-> Problems:
146      \begin{itemize}
147         \item<3-> Optimum parameter value varies with flow type:
148         \begin{itemize}
149            \item Isotropic turbulence: $C_S \approx 0.2$\\
150            \item Shear (channel) flows: $C_S \approx 0.065$
151         \end{itemize}
152         \item<4-> Length scale uncertain with anisotropic filter:
153         \begin{equation*}
154            (\Delta_x \Delta_y \Delta_z)^{1/3} \hspace{5mm} (\Delta_x + \Delta_y + \Delta_z)/3
155         \end{equation*}
156         \item<5-> Needs modification to account for:
157         \begin{itemize}
158            \item stratification: $C_S = F(Ri,...)$, $Ri$: Richardson number\\
159            \item near-wall region: $C_S = F(z+)$, $z+$: distance from wall
160         \end{itemize}
161      \end{itemize}
162   \end{itemize}
163\end{frame}
164
165
166\end{document}
Note: See TracBrowser for help on using the repository browser.