[915] | 1 | % $Id: sgs_models.tex 991 2012-09-05 13:09:35Z kanani $ |
---|
| 2 | \input{header_tmp.tex} |
---|
| 3 | %\input{header_lectures.tex} |
---|
| 4 | |
---|
| 5 | \usepackage[utf8]{inputenc} |
---|
| 6 | \usepackage{ngerman} |
---|
| 7 | \usepackage{pgf} |
---|
| 8 | \usetheme{Dresden} |
---|
| 9 | \usepackage{subfigure} |
---|
| 10 | \usepackage{units} |
---|
| 11 | \usepackage{multimedia} |
---|
| 12 | \usepackage{hyperref} |
---|
| 13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 14 | \usepackage{xmpmulti} |
---|
| 15 | \usepackage{tikz} |
---|
| 16 | \usetikzlibrary{shapes,arrows,positioning} |
---|
| 17 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
| 18 | \usepackage{amsmath} |
---|
| 19 | \usepackage{amssymb} |
---|
| 20 | \usepackage{multicol} |
---|
[945] | 21 | \usepackage{pdfcomment} |
---|
[915] | 22 | |
---|
| 23 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
| 24 | \date{last update: \today} |
---|
| 25 | \event{PALM Seminar} |
---|
| 26 | \setbeamertemplate{navigation symbols}{} |
---|
| 27 | |
---|
| 28 | \setbeamertemplate{footline} |
---|
| 29 | { |
---|
| 30 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 31 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 32 | \end{beamercolorbox} |
---|
| 33 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
| 34 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
| 35 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
| 36 | \end{beamercolorbox} |
---|
| 37 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
| 38 | \end{beamercolorbox} |
---|
| 39 | } |
---|
| 40 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
| 41 | |
---|
| 42 | \title[SGS Models]{SGS Models} |
---|
| 43 | \author{Siegfried Raasch} |
---|
| 44 | |
---|
| 45 | \begin{document} |
---|
| 46 | |
---|
| 47 | % Folie 1 |
---|
| 48 | \begin{frame} |
---|
| 49 | \titlepage |
---|
| 50 | \end{frame} |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | \section{SGS Models} |
---|
| 54 | \subsection{SGS Models} |
---|
| 55 | |
---|
| 56 | % Folie 2 |
---|
| 57 | \begin{frame} |
---|
| 58 | \frametitle{SGS Models (I)} |
---|
| 59 | \small |
---|
| 60 | \begin{itemize} |
---|
| 61 | \item<2->The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence). |
---|
| 62 | \item<3->Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange) |
---|
| 63 | \item<4->SGS stresses should depend on: |
---|
| 64 | \begin{itemize} |
---|
| 65 | \item local resolved-scale field \hspace{3mm} and / or |
---|
| 66 | \item past history of the local fluid (via a PDE) |
---|
| 67 | \end{itemize} |
---|
| 68 | \item<5->Importance of the model depends on how much energy is contained in the subgrid-scales: |
---|
| 69 | \begin{itemize} |
---|
| 70 | \item $E_{SGS} / E < 50\%$: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme) |
---|
| 71 | \item $E_{SGS} / E = 1$: model more important |
---|
| 72 | \item<6->\textbf{If the large-scale eddies are not resolved, the SGS model and the LES will fail at all!} |
---|
| 73 | \end{itemize} |
---|
| 74 | \end{itemize} |
---|
| 75 | \end{frame} |
---|
| 76 | |
---|
| 77 | % Folie 3 |
---|
| 78 | \begin{frame} |
---|
| 79 | \frametitle{SGS Models (II)} |
---|
| 80 | Requirements that a good SGS model must fulfill: |
---|
| 81 | \begin{footnotesize} |
---|
| 82 | \begin{itemize} |
---|
| 83 | \item<2-> Represent interactions with small scales. |
---|
| 84 | \item<3-> Provide adequate dissipation\\ (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation $\varepsilon$ in this context is the flux of energy through the inertial subrange). |
---|
| 85 | \item<4-> Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics. |
---|
| 86 | \item<5->In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model. |
---|
| 87 | \item<6->\underline{The primary goal of an SGS model is to obtain correct statistics of the}\\ |
---|
| 88 | \underline{energy containing scales of motion.} |
---|
| 89 | \end{itemize} |
---|
| 90 | \end{footnotesize} |
---|
| 91 | \end{frame} |
---|
| 92 | |
---|
| 93 | % Folie 4 |
---|
| 94 | \begin{frame} |
---|
| 95 | \frametitle{SGS Models (III)} |
---|
| 96 | \onslide<1-> All the above observation suggest the use of an eddy viscosity type SGS model: |
---|
| 97 | \begin{footnotesize} |
---|
| 98 | \begin{itemize} |
---|
| 99 | \item<2-> Take idea from RANS modeling, introduce eddy viscosity $\nu_T$: |
---|
| 100 | \begin{flalign*} |
---|
| 101 | &\tau_{ki} = - \nu_T \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right) = -2 \nu_T \overline{S}_{ki}& \text{with} \hspace{3mm} \overline{S}_{ki} = \frac{1}{2} \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right)\\ |
---|
| 102 | & & \text{filtered strain rate tensor} |
---|
| 103 | \end{flalign*} |
---|
| 104 | \end{itemize} |
---|
| 105 | \end{footnotesize} |
---|
| 106 | \onslide<3->Now we need a model for the eddy viscosity: |
---|
| 107 | \begin{footnotesize} |
---|
| 108 | \begin{itemize} |
---|
| 109 | \item<4-> Dimensionality of $\nu_T$ is $l^2/t$ |
---|
| 110 | \item<5-> Obvious choice: $\nu_T = Cql$ \hspace{5mm} (q, l: characterictic velocity / length scale) |
---|
| 111 | \item<6-> Turbulence length scale is easy to define: largest size of the unresolved scales is $\Delta$ \hspace{10mm} $l = \Delta$ |
---|
| 112 | \item<7-> Velocity scale not obvious (smallest resolved scales, their size is of the order of the variation of velocity over one grid element) |
---|
| 113 | \begin{flalign*} |
---|
| 114 | &q = l \frac{\partial \overline{u}}{\partial x} = l \overline{S}& \text{for 3D: } \overline{S} = \sqrt{2 \overline{S}_{ki}\,\overline{S}_{ki}} \hspace{15mm} \\ |
---|
| 115 | & & \text{characterictic filtered rate of strain}\hspace{15mm} |
---|
| 116 | \end{flalign*} |
---|
| 117 | \end{itemize} |
---|
| 118 | \end{footnotesize} |
---|
| 119 | \end{frame} |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | \section{Smagorinsky Model} |
---|
| 123 | \subsection{The Smagorinsky Model} |
---|
| 124 | |
---|
| 125 | % Folie 5 |
---|
| 126 | \begin{frame} |
---|
| 127 | \frametitle{The Smagorinsky Model} |
---|
| 128 | \onslide<2->Combine previous expressions to obtain: |
---|
| 129 | \begin{equation*} |
---|
| 130 | \nu_T = C \Delta^2 \overline{S} = (C_S \Delta)^2 \overline{S} |
---|
| 131 | \end{equation*} |
---|
| 132 | \onslide<3-> Model due to Smagorinsky (1963): |
---|
| 133 | \begin{itemize} |
---|
| 134 | \item<3-> Originally designed at NCAR for global weather modeling. |
---|
| 135 | \item<4-> Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theories. |
---|
| 136 | \item<5-> Constant predicted by all methods (based on theory, decay of isotropic turbulence): $C_S = \sqrt{C} \approx 0.2$ |
---|
| 137 | \end{itemize} |
---|
| 138 | \end{frame} |
---|
| 139 | |
---|
| 140 | % Folie 6 |
---|
| 141 | \begin{frame} |
---|
| 142 | \frametitle{The Smagorinsky Model: Performance} |
---|
| 143 | \begin{itemize} |
---|
| 144 | \item<2-> Predicts many flows reasonably well |
---|
| 145 | \item<3-> Problems: |
---|
| 146 | \begin{itemize} |
---|
| 147 | \item<3-> Optimum parameter value varies with flow type: |
---|
| 148 | \begin{itemize} |
---|
| 149 | \item Isotropic turbulence: $C_S \approx 0.2$\\ |
---|
| 150 | \item Shear (channel) flows: $C_S \approx 0.065$ |
---|
| 151 | \end{itemize} |
---|
| 152 | \item<4-> Length scale uncertain with anisotropic filter: |
---|
| 153 | \begin{equation*} |
---|
| 154 | (\Delta_x \Delta_y \Delta_z)^{1/3} \hspace{5mm} (\Delta_x + \Delta_y + \Delta_z)/3 |
---|
| 155 | \end{equation*} |
---|
| 156 | \item<5-> Needs modification to account for: |
---|
| 157 | \begin{itemize} |
---|
| 158 | \item stratification: $C_S = F(Ri,...)$, $Ri$: Richardson number\\ |
---|
| 159 | \item near-wall region: $C_S = F(z+)$, $z+$: distance from wall |
---|
| 160 | \end{itemize} |
---|
| 161 | \end{itemize} |
---|
| 162 | \end{itemize} |
---|
| 163 | \end{frame} |
---|
| 164 | |
---|
| 165 | |
---|
[987] | 166 | % Folie 7 |
---|
| 167 | \begin{frame} |
---|
| 168 | \frametitle{The Smagorinsky Model: Performance} |
---|
| 169 | \begin{itemize} |
---|
| 170 | \item<2-> Predicts many flows reasonably well |
---|
| 171 | \item<3-> Problems: |
---|
| 172 | \begin{itemize} |
---|
| 173 | \item<3-> Optimum parameter value varies with flow type: |
---|
| 174 | \begin{itemize} |
---|
| 175 | \item Isotropic turbulence: $C_S \approx 0.2$\\ |
---|
| 176 | \item Shear (channel) flows: $C_S \approx 0.065$ |
---|
| 177 | \end{itemize} |
---|
| 178 | \item<4-> Length scale uncertain with anisotropic filter: |
---|
| 179 | \begin{equation*} |
---|
| 180 | (\Delta_x \Delta_y \Delta_z)^{1/3} \hspace{5mm} (\Delta_x + \Delta_y + \Delta_z)/3 |
---|
| 181 | \end{equation*} |
---|
| 182 | \item<5-> Needs modification to account for: |
---|
| 183 | \begin{itemize} |
---|
| 184 | \item stratification: $C_S = F(Ri,...)$, $Ri$: Richardson number\\ |
---|
| 185 | \item near-wall region: $C_S = F(z+)$, $z+$: distance from wall |
---|
| 186 | \end{itemize} |
---|
| 187 | \end{itemize} |
---|
| 188 | \end{itemize} |
---|
| 189 | \end{frame} |
---|
| 190 | |
---|
| 191 | |
---|
| 192 | \section{Deardoff Modification} |
---|
| 193 | \subsection{Deardoff Modification} |
---|
| 194 | |
---|
| 195 | % Folie 8 |
---|
| 196 | \begin{frame} |
---|
| 197 | \frametitle{Deardorff (1980) Modification (Used in PALM) (I)} |
---|
| 198 | \footnotesize |
---|
| 199 | \onslide<1->{ |
---|
| 200 | $ \nu_T = Cql = C_M \Lambda \sqrt{\bar{e}} $ \quad \textbf{with} \quad $ \bar{e} = \frac{\overline{u_i' u_i'}}{2} $ \quad \textbf{SGS-turbulent kinetic energy}} |
---|
| 201 | \normalsize |
---|
| 202 | \begin{itemize} |
---|
| 203 | \item<2->{The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.} |
---|
| 204 | \end{itemize} |
---|
| 205 | \onslide<3->{ |
---|
| 206 | $ C_M = const. = 0.1 $ |
---|
| 207 | \par\bigskip |
---|
| 208 | \scriptsize |
---|
| 209 | $ \Lambda = \begin{cases} min\left( 0.7 \cdot z, \Delta \right), & \textbf{unstable or neutral stratification} \\ |
---|
| 210 | min\left( 0.7 \cdot z, \Delta, 0.76 \sqrt{\bar{e}} \left[ \frac{g}{\Theta_0} \frac{\partial \bar{\Theta}}{\partial z} \right]^{-1/2} \right), & \textbf{stable stratification} |
---|
| 211 | \end{cases} $ |
---|
| 212 | \normalsize |
---|
| 213 | \par\bigskip |
---|
| 214 | $ \Delta = \left( \Delta x \Delta y \Delta z \right)^{1/3} $ } |
---|
| 215 | \end{frame} |
---|
| 216 | |
---|
| 217 | % Folie 9 |
---|
| 218 | \begin{frame} |
---|
| 219 | \frametitle{Deardorff (1980) Modification (Used in PALM) (II)} |
---|
| 220 | \begin{itemize} |
---|
| 221 | \item{SGS-TKE from prognostic equation} |
---|
| 222 | \end{itemize} |
---|
| 223 | $ \frac{\partial \bar{e}}{\partial t} = -\bar{u_k} \frac{\partial \bar{e}}{\partial x_k} - \tau_{ki} \frac{\partial \bar{u_i}}{\partial x_k} + \frac{g}{\Theta_0} \overline{u_3' \Theta'} - \frac{\partial}{\partial x_k} \left\{ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right\} - \epsilon $ |
---|
[991] | 224 | \par\bigskip |
---|
| 225 | $ \tau_{ki} = -K_{m} \left(\frac{\partial \bar{u_{i}}}{\partial x_{k}} + \frac{\partial \bar{u_{k}}}{\partial x_{i}}\right) + \frac{2}{3}\delta_{ik}\bar{e} \qquad \textnormal{with} \qquad K_{m}=0.1\cdot \Lambda \sqrt{\bar{e}}$ |
---|
| 226 | \par\bigskip |
---|
| 227 | $ H_{k}=\overline{u_k'\Theta'} = -K_{h}\frac{\partial\bar{\Theta}}{\partial x_{k}} \qquad \textnormal{with} \qquad K_{h}= \left(1+2\frac{\Lambda}{\Delta}\right)$ |
---|
| 228 | \par\bigskip |
---|
| 229 | $W_{k}=\overline{u_k'q'} = -K_{h}\frac{\partial\bar{q}}{\partial x_{k}}$ |
---|
| 230 | \par\bigskip |
---|
[987] | 231 | $ \frac{\partial}{\partial x_k} \left[ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right] = - \frac{\partial}{\partial x_k} \nu_e \frac{\partial \bar{e}}{\partial x_k} $ |
---|
| 232 | \par\bigskip |
---|
| 233 | $ \nu_e = 2 \nu_T $ |
---|
| 234 | \par\bigskip |
---|
| 235 | $ \epsilon = C_{\epsilon} \frac{\bar{e}^{3/2}}{\Lambda} \qquad \qquad C_{\epsilon} = 0.19 + 0.74\frac{\Lambda}{\Delta} $ |
---|
| 236 | \end{frame} |
---|
| 237 | |
---|
| 238 | % Folie 10 |
---|
| 239 | \begin{frame} |
---|
| 240 | \frametitle{Deardorff (1980) Modification (Used in PALM) (III)} |
---|
| 241 | \begin{itemize} |
---|
| 242 | \item{There are still problems with this parameterization:} |
---|
| 243 | \begin{itemize} |
---|
| 244 | \item[-]<2->{The model overestimates the velocity shear near the wall.} |
---|
| 245 | \item[-]<3->{$\textrm{C}_\mathrm{M}$ is still a constant but actually varies for different types of flows.} |
---|
| 246 | \item[-]<4->{Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.} |
---|
| 247 | \end{itemize} |
---|
| 248 | \item<5->{Several other SGS models have been developed:} |
---|
| 249 | \begin{itemize} |
---|
| 250 | \item[-]<5->{Two part eddy viscosity model (Sullivan, et al.)} |
---|
| 251 | \item[-]<6->{Scale similarity model (Bardina et al.)} |
---|
| 252 | \item[-]<7->{Backscatter model (Mason)} |
---|
| 253 | \end{itemize} |
---|
| 254 | \item<8->{However, for fine grid resolutions ($\textrm{E}_\mathrm{SGS} << \ \textrm{E}$) LES results become almost independent |
---|
| 255 | from the different models (Beare et al., 2006, BLM).} |
---|
| 256 | \end{itemize} |
---|
| 257 | \end{frame} |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | \section{Summary / Important Points for Beginners} |
---|
| 261 | \subsection{Summary / Important Points for Beginners} |
---|
| 262 | |
---|
| 263 | % Folie 11 |
---|
| 264 | \begin{frame} |
---|
| 265 | \frametitle{Summary / Important Points for Beginners (I)} |
---|
| 266 | \begin{columns}[c] |
---|
| 267 | \column[T]{0.4\textwidth} |
---|
| 268 | \includegraphics<2-7>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_2.png} |
---|
| 269 | \includegraphics<8>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_8.png} |
---|
| 270 | \includegraphics<9>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_9.png} |
---|
| 271 | \includegraphics<10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_10.png} |
---|
| 272 | \onslide<8-10>{\begin{flushright} \begin{tiny} after Schatzmann and Leitl (2001) \end{tiny} \end{flushright}} |
---|
| 273 | \column[T]{0.2\textwidth} |
---|
| 274 | \vspace{0.9cm} |
---|
| 275 | \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png} |
---|
| 276 | \par |
---|
| 277 | \onslide<8->{\begin{small} fluctuations (\textbf{u},c) \end{small}} |
---|
| 278 | \par\bigskip |
---|
| 279 | \thicklines |
---|
| 280 | \onslide<9->{\mbox{\line(6,0){5} \, \line(1,0){5} \, \line(1,0){5} \quad \begin{small} {critical concentration level} \end{small}}} |
---|
| 281 | \vspace{1cm} |
---|
| 282 | |
---|
| 283 | \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png} |
---|
| 284 | \par |
---|
| 285 | \onslide<8->{\begin{small} smooth result \end{small}} |
---|
| 286 | \column[T]{0.4\textwidth} |
---|
| 287 | \includegraphics<1-2>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_1_neu.png} |
---|
| 288 | \includegraphics<3>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_3_neu.png} |
---|
| 289 | \includegraphics<4>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_4.png} |
---|
| 290 | \includegraphics<5-10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_5.png} |
---|
| 291 | \vspace{1.3cm} |
---|
| 292 | \includegraphics<6>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_6_neu.png} |
---|
| 293 | \uncover<7->{\includegraphics[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_7_neu.png}} |
---|
| 294 | \end{columns} |
---|
| 295 | \end{frame} |
---|
| 296 | |
---|
| 297 | % Folie 12 |
---|
| 298 | \begin{frame} |
---|
| 299 | \frametitle{Summary / Important Points for Beginners (II)} |
---|
| 300 | For an LES it always has to be guaranteed that the main energy containing eddies of the respective |
---|
| 301 | turbulent flow can really be simulated by the numerical model: |
---|
| 302 | \begin{itemize} |
---|
| 303 | \item<2->{The grid spacing has to be fine enough.} |
---|
| 304 | \item<3->{$\textrm{E}_\mathrm{SGS} < (<<) \ \textrm{E} $} |
---|
| 305 | \item<4->{The inflow/outflow boundaries must not effect the flow turbulence \\ |
---|
| 306 | (therefore cyclic boundary conditions are used in most cases).} |
---|
| 307 | \item<5->{In case of homogeneous initial and boundary conditions, the onset of turbulence |
---|
| 308 | has to be triggered by imposing random fluctuations.} |
---|
| 309 | \item<6->{Simulations have to be run for a long time to reach a stationary state and stable statistics.} |
---|
| 310 | \end{itemize} |
---|
| 311 | \end{frame} |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | \section{Example Output} |
---|
| 315 | \subsection{Example Output} |
---|
| 316 | |
---|
| 317 | % Folie 13 |
---|
| 318 | \begin{frame} |
---|
| 319 | \frametitle{Example Output (I)} |
---|
| 320 | \begin{itemize} |
---|
| 321 | \item{LES of a convective boundary layer} |
---|
| 322 | \end{itemize} |
---|
| 323 | \includegraphics<1>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_1.png} |
---|
| 324 | \includegraphics<2>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_2.png} |
---|
| 325 | \includegraphics<3>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_3.png} |
---|
| 326 | \includegraphics<4>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_4.png} |
---|
| 327 | \includegraphics<5>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_5.png} |
---|
| 328 | \includegraphics<6>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_6.png} |
---|
| 329 | \includegraphics<7>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_7.png} |
---|
| 330 | \end{frame} |
---|
| 331 | |
---|
| 332 | % Folie 14 |
---|
| 333 | \begin{frame} |
---|
| 334 | \frametitle{Example Output (II)} |
---|
| 335 | \begin{itemize} |
---|
| 336 | \item{LES of a convective boundary layer} |
---|
| 337 | \end{itemize} |
---|
| 338 | \begin{center} |
---|
| 339 | \includegraphics[width=0.8\textwidth]{sgs_models_figures/Example_output_2.png} |
---|
| 340 | power spectrum of vertical velocity |
---|
| 341 | \end{center} |
---|
| 342 | \end{frame} |
---|
| 343 | |
---|
| 344 | % Folie 15 |
---|
| 345 | \begin{frame} |
---|
| 346 | \frametitle{Some Symbols} |
---|
| 347 | \begin{columns}[c] |
---|
| 348 | \column{0.6\textwidth} |
---|
| 349 | \begin{tabbing} |
---|
| 350 | $u_i \quad (i = 1,2,3)$ \quad \= velocity components \\ |
---|
| 351 | $u,v,w$ \\ |
---|
| 352 | |
---|
| 353 | \\ |
---|
| 354 | |
---|
| 355 | $x_i \quad (i = 1,2,3)$ \> spatial coordinates \\ |
---|
| 356 | $x,y,z$ \\ |
---|
| 357 | |
---|
| 358 | \\ |
---|
| 359 | |
---|
| 360 | $\Theta$ \> potential temperature \\ \\ |
---|
| 361 | |
---|
| 362 | $\Psi$ \> passive scalar \\ \\ |
---|
| 363 | |
---|
| 364 | $T$ \> actual Temperatur \\ \\ |
---|
| 365 | \end{tabbing} |
---|
| 366 | \column{0.4\textwidth} |
---|
| 367 | \begin{tabbing} |
---|
| 368 | $\Phi = gz$ \quad \= geopotential \\ \\ |
---|
| 369 | |
---|
| 370 | $p$ \> pressure \\ \\ |
---|
| 371 | |
---|
| 372 | $\rho$ \> density \\ \\ |
---|
| 373 | |
---|
| 374 | $f_i$ \> Coriolis Parameter \\ \\ |
---|
| 375 | |
---|
| 376 | $\epsilon_{ijk}$ \> alternating symbol \\ \\ |
---|
| 377 | |
---|
| 378 | $\nu, \nu_\Psi$ \> molecular diffusivity \\ \\ |
---|
| 379 | |
---|
| 380 | $Q, Q_\Psi$ \> sources or sinks \\ \\ |
---|
| 381 | \end{tabbing} |
---|
| 382 | \end{columns} |
---|
| 383 | \end{frame} |
---|
[945] | 384 | \end{document} |
---|