1 | % $Id: exercise_neutral.tex 1534 2015-01-27 09:12:08Z maronga $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{../header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage{ngerman} |
---|
7 | \usepackage{pgf} |
---|
8 | \usepackage{subfigure} |
---|
9 | \usepackage{units} |
---|
10 | \usepackage{tabto} |
---|
11 | \usepackage{multimedia} |
---|
12 | \usepackage{hyperref} |
---|
13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
14 | \usepackage{xmpmulti} |
---|
15 | \usepackage{tikz} |
---|
16 | \usetikzlibrary{shapes,arrows,positioning} |
---|
17 | \usetikzlibrary{decorations.markings} %neues paket |
---|
18 | \usetikzlibrary{decorations.pathreplacing} %neues paket |
---|
19 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
20 | \usepackage{amsmath} |
---|
21 | \usepackage{amssymb} |
---|
22 | \usepackage{multicol} |
---|
23 | \usepackage{pdfcomment} |
---|
24 | \usepackage{graphicx} |
---|
25 | \usepackage{listings} |
---|
26 | \lstset{showspaces=false,language=fortran,basicstyle= |
---|
27 | \ttfamily,showstringspaces=false,captionpos=b} |
---|
28 | |
---|
29 | \institute{Institute of Meteorology and Climatology, Leibniz UniversitÀt Hannover} |
---|
30 | \selectlanguage{english} |
---|
31 | \date{last update: \today} |
---|
32 | \event{PALM Seminar} |
---|
33 | \setbeamertemplate{navigation symbols}{} |
---|
34 | |
---|
35 | \setbeamertemplate{footline} |
---|
36 | { |
---|
37 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
38 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
39 | \end{beamercolorbox} |
---|
40 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
41 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
42 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
43 | \end{beamercolorbox} |
---|
44 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
45 | \end{beamercolorbox} |
---|
46 | } |
---|
47 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
48 | |
---|
49 | \title[Exercise 2: Neutrally Stratified Boundary Layer]{Exercise 2: Neutrally Stratified Boundary Layer} |
---|
50 | \author{PALM group} |
---|
51 | |
---|
52 | \setbeamersize{text margin left=.2cm,text margin right=.2cm} |
---|
53 | |
---|
54 | \begin{document} |
---|
55 | \footnotesize |
---|
56 | % Folie 1 |
---|
57 | \begin{frame} |
---|
58 | \titlepage |
---|
59 | \end{frame} |
---|
60 | |
---|
61 | \section{Exercise} |
---|
62 | \subsection{Exercise} |
---|
63 | |
---|
64 | % Folie 2 |
---|
65 | \begin{frame} |
---|
66 | \frametitle{Exercise 2: Neutrally Stratified Atmospheric Boundary Layer} |
---|
67 | \begin{itemize} |
---|
68 | \item A neutrally stratified atmospheric boundary layer shall be simulated. |
---|
69 | \item<2-> The flow shall be driven by a constant large-scale pressure gradient, i.e., a geostrophic wind. |
---|
70 | \item<3-> At the end of the simulation, turbulence as well as the mean flow should be in a stationary state. |
---|
71 | \end{itemize} |
---|
72 | \onslide<4->\textbf{Simulation features:} |
---|
73 | \begin{itemize} |
---|
74 | \item<4-> geostrophic wind: \tabto{3cm} $u_\mathrm{g} = \unit[5]{m\ s^{-1}}, v_\mathrm{g} = \unit[0]{m\ s^{-1}}$ |
---|
75 | \item<5-> initial velocity: \tabto{3cm} try constant velocity ($u = u_\mathrm{g}, v = v_\mathrm{g}$, everywhere)\\ |
---|
76 | \tabto{3cm} or a mean vertical profile created by the 1D-model |
---|
77 | \item<6-> roughness length: \tabto{3cm} $z_0 = \unit[0.1]{m}$ |
---|
78 | \end{itemize} |
---|
79 | \onslide<7->Please choose domain size, grid size and time to be simulated appropriately. |
---|
80 | \end{frame} |
---|
81 | |
---|
82 | % Folie 3 |
---|
83 | \begin{frame} |
---|
84 | \frametitle{Questions to be Answered:} |
---|
85 | \begin{itemize} |
---|
86 | \item<1-> How long do you have to simulate until turbulence / mean flow become stationary? |
---|
87 | \vspace{1em} |
---|
88 | \item<2-> How do the horizontally and temporally averaged vertical velocity and momentum flux profiles look like? |
---|
89 | \vspace{1em} |
---|
90 | \item<3-> Is it really a large-eddy simulation, i.e., are the subgrid-scale fluxes much smaller than the resolved-scale fluxes? |
---|
91 | \vspace{1em} |
---|
92 | \item<4-> How do the turbulence spectra of $u$, $v$, $w$ along $x$ and along $y$ look like?\\ |
---|
93 | Can you identify the inertial subrange? |
---|
94 | \end{itemize} |
---|
95 | \end{frame} |
---|
96 | |
---|
97 | % Folie 4 |
---|
98 | \begin{frame} |
---|
99 | \frametitle{Hints (I)} |
---|
100 | \begin{itemize} |
---|
101 | \item<1-> Please remember hints given for the previous exercise! |
---|
102 | \item<2-> \textbf{Initial profiles:} |
---|
103 | \begin{itemize} |
---|
104 | \tiny |
---|
105 | \item<3-> The 1D-model (\texttt{\textcolor{blue}{initializing\_actions} = 'set\_1d-model\_profiles'}) is mainly controlled by parameters \texttt{\textcolor{blue}{end\_time\_1d}} and \texttt{\textcolor{blue}{damp\_level\_1d}}. Please keep in mind that the profiles from the 1D-model should also be in a stationary state. |
---|
106 | \vspace{0.5em} |
---|
107 | \item<3-> Output of vertical profile data generated by the 1D-model is controlled by parameter \texttt{\textcolor{blue}{dt\_pr\_1d}}. It is in ASCII-format and it is written into a separate file. You can include the profiles of the 1D-model, which are used to initialize the 3D-model, in the standard profile data output of the 3D-model (which is controlled by parameter \texttt{\textcolor{blue}{data\_output\_pr}}) by adding a \texttt{'\#'} sign to the respective output quantity, e.g. \texttt{\textcolor{blue}{data\_output\_pr} = '\#u'}. |
---|
108 | \vspace{0.5em} |
---|
109 | \item<3-> For the 1D-model, please set \texttt{\textcolor{blue}{mixing\_length\_1d} = 'blackadar'} and \texttt{\textcolor{blue}{dissipation\_1d} = 'detering'} in order to get a correct mean boundary layer wind profile. The default settings of these parameters would switch the turbulence parameterization of the 1D-model to the SGS-parameterization of the 3D-LES-model, which represents only the SGS-parts of turbulence. However, for this exercise the 1D-model has to parameterize all scales of turbulence (i.e., it should be used as a RANS-model). |
---|
110 | \end{itemize} |
---|
111 | |
---|
112 | \item<4-> \textbf{Stationary state:} |
---|
113 | \begin{itemize} |
---|
114 | \tiny |
---|
115 | \item<4-> You probably will find it difficult to get the mean flow to a stationary state (for the 1D-model as well as for the 3D-model. Can you identify the mechanism responsible for this? Try parameters \texttt{\textcolor{blue}{damp\_level\_1d}} (for the 1D-model) and \texttt{\textcolor{blue}{rayleigh\_damping\_factor}} (for the 3D-model; this is a \texttt{inipar}-parameter!) to overcome this problem. |
---|
116 | \vspace{0.5em} |
---|
117 | \item<5-> You can switch on a Galilei-transformation in order to save CPU-time (see parameter \texttt{\textcolor{blue}{galilei\_transformation}}). |
---|
118 | \end{itemize} |
---|
119 | |
---|
120 | \end{itemize} |
---|
121 | \end{frame} |
---|
122 | |
---|
123 | % Folie 5 |
---|
124 | \begin{frame} |
---|
125 | \frametitle{Hints (II)} |
---|
126 | \begin{itemize} |
---|
127 | \item<1-> \textbf{Spectra:} |
---|
128 | \begin{itemize} |
---|
129 | \scriptsize |
---|
130 | \item<2-> Output of spectra requires to switch on the spectra-package using \textbf{mrun}-option \texttt{-p}:\\ |
---|
131 | \texttt{mrun ... -p spectra -r \dq d3\# sp\# ...\dq} |
---|
132 | \vspace{0.5em} |
---|
133 | \item<3-> Spectra output is controlled by parameters \texttt{\textcolor{blue}{data\_output\_sp}}, \texttt{\textcolor{blue}{dt\_dosp}}, etc. These package-parameters have to be given in a separate NAMELIST-block which has to follow the \texttt{d3par}-block:\\ |
---|
134 | \texttt{\&d3par end\_time = ... /}\\ |
---|
135 | \texttt{\&spectra\_par data\_output\_sp = ... /}\\ |
---|
136 | \end{itemize} |
---|
137 | \end{itemize} |
---|
138 | \end{frame} |
---|
139 | |
---|
140 | % Folie 6 |
---|
141 | \section{Results} |
---|
142 | \subsection{Results} |
---|
143 | |
---|
144 | % Folie 7 |
---|
145 | \begin{frame} |
---|
146 | \frametitle{Time series of TKE, umax and wmax} |
---|
147 | \begin{center} |
---|
148 | \includegraphics[width=0.62\textwidth]{exercise_neutral_figures/ts_tke_umax_wmax.eps} |
---|
149 | \end{center} |
---|
150 | \end{frame} |
---|
151 | |
---|
152 | % Folie 8 |
---|
153 | \begin{frame} |
---|
154 | \frametitle{Vertical profiles of $\overline{w}$, $\overline{wu}$, $\overline{wv}$} |
---|
155 | \begin{center} |
---|
156 | \includegraphics[width=1.0\textwidth]{exercise_neutral_figures/pr_w_wu_wv.eps} |
---|
157 | \end{center} |
---|
158 | \end{frame} |
---|
159 | |
---|
160 | % Folie 9 |
---|
161 | \begin{frame} |
---|
162 | \frametitle{Vertical profiles of $\overline{w'u'}$, $\overline{w'v'}$, |
---|
163 | $\overline{w``u''}$ and $\overline{w``v''}$} |
---|
164 | \begin{center} |
---|
165 | \includegraphics[width=0.55\textwidth]{exercise_neutral_figures/pr_wu_wv_sgs_res.eps} |
---|
166 | \end{center} |
---|
167 | \end{frame} |
---|
168 | |
---|
169 | % Folie 10 |
---|
170 | \begin{frame} |
---|
171 | \frametitle{Spectra of $u$, $v$ and $w$} |
---|
172 | \begin{center} |
---|
173 | \includegraphics[angle=90,width=0.7\textwidth]{exercise_neutral_figures/sp_u_v_w.eps} |
---|
174 | \end{center} |
---|
175 | \end{frame} |
---|
176 | |
---|
177 | |
---|
178 | \subsection{Answers} |
---|
179 | % Folie 11 |
---|
180 | \begin{frame} |
---|
181 | \frametitle{Answers to question I} |
---|
182 | \footnotesize |
---|
183 | How long do you have to simulate until turbulence / mean flow become stationary? |
---|
184 | \begin{itemize} |
---|
185 | \item As can be seen in frame 6, a simulation time of about 48~h should at least be taken to obtain a roughly constant kinetic energy. |
---|
186 | \item The time series of E shows an oscillation with a period of roughly 14~h. This can be attributed to the inertial oscillation |
---|
187 | affecting the air parcels due to the Coriolis force. This oscillation is damped with time. |
---|
188 | \item umax and wmax do not change much in time after the spin-up time of roughly 6~h. |
---|
189 | \end{itemize} |
---|
190 | \end{frame} |
---|
191 | |
---|
192 | % Folie 12 |
---|
193 | \begin{frame} |
---|
194 | \frametitle{Answers to question II} |
---|
195 | \footnotesize |
---|
196 | How do the horizontally and temporally averaged vertical velocity and momentum flux profiles look like? |
---|
197 | \begin{itemize} |
---|
198 | \item The profiles are shown in frame 7. The horizontally averaged vertical velocity is practically zero as the usage of incompressible |
---|
199 | equations together with cyclic boundary conditions (horizontal homogeneity) suggest. |
---|
200 | \item wu an wv decrease with height since friction decelerates the flow at the surface. Due to the turning of the wind vector |
---|
201 | with height (Ekman spiral), |
---|
202 | the meridional velocity component is non-zero evoking also a non-zero vertical momentum flux of the v-velocity component. |
---|
203 | \item The non-convergence of the single profiles can be attributed to the inertial oscillation. |
---|
204 | \end{itemize} |
---|
205 | \end{frame} |
---|
206 | |
---|
207 | % Folie 13 |
---|
208 | \begin{frame} |
---|
209 | \frametitle{Answers to question III} |
---|
210 | \footnotesize |
---|
211 | Is it really a large-eddy simulation? |
---|
212 | \begin{itemize} |
---|
213 | \item Frame 8 shows sub-grid and resolved momentum flux profiles. |
---|
214 | \item The simulation is an LES since resolved momentum fluxes are the dominant components to the total flux except for the near |
---|
215 | vicinity of the surface where the unresolved, sub-grid fluxes dominate. |
---|
216 | \end{itemize} |
---|
217 | \end{frame} |
---|
218 | |
---|
219 | |
---|
220 | % Folie 14 |
---|
221 | \begin{frame} |
---|
222 | \frametitle{Answers to question IV} |
---|
223 | \footnotesize |
---|
224 | Can you identify the inertial subrange? |
---|
225 | \begin{itemize} |
---|
226 | \item In PALM, the spectral density is normalized by means of the variance and additionally multiplied by the wave number. Thus, the spectral density appearing |
---|
227 | on the ordinate of the plots in frame 9 is dimensionless. |
---|
228 | \item The spectra show a maximum spectral density for small wave numbers. Thus, the largest eddies contain the highest variance |
---|
229 | (or turbulence kinetic energy, TKE). For higher wave numbers the inertial subrange follows where the spectra follow a -2/3 |
---|
230 | slope in the plot (indicated by a black line). There, the variance follows the energy cascade where larger eddies break-up |
---|
231 | into smaller eddies. For the highest wave numbers, the spectra depart from the -2/3 slope indicating that dissipation takes place. |
---|
232 | \item The spectra also show that the production range is not well developed (very flat maxima). This suggests that the modeling domain |
---|
233 | might be too small to capture relevant larger scales. |
---|
234 | \end{itemize} |
---|
235 | \end{frame} |
---|
236 | |
---|
237 | \end{document} |
---|